Asymmetric Craters on the Dwarf Planet Ceres—Results of Second Extended Mission Data Analysis
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Plescia, J.B. Impacts on Sloping Surfaces: Lunar Examples. Meteorit. Planet. Sci. Suppl. 2012, 75, 5318. [Google Scholar]
- Jaumann, R.; Williams, D.A.; Buczkowski, D.L.; Yingst, R.A.; Preusker, F.; Hiesinger, H.; Schmedemann, N.; Kneissl, T.; Vincent, J.B.; Blewett, D.T.; et al. Vesta’s shape and morphology. Science 2012, 336, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Krohn, K.; Jaumann, R.; Elbeshausen, D.; Kneissl, T.; Schmedemann, N.; Wagner, R.; Voigt, J.; Otto, K.; Matz, K.D.; Preusker, F.; et al. Asymmetric craters on Vesta: Impact on sloping surfaces. Planet. Space Sci. 2014, 103, 36–56. [Google Scholar] [CrossRef]
- Massironi, M.; Marchi, S.; Pajola, M.; Snodgrass, C.; Thomas, N.; Tubiana, C.; Baptiste Vincent, J.; Cremonese, G.; Da Deppo, V.; Ferri, F.; et al. Geological map and stratigraphy of asteroid 21 Lutetia. Planet. Space Sci. 2012, 66, 125–136. [Google Scholar] [CrossRef]
- Thomas, N.; Barbieri, C.; Keller, H.U.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; Wenzel, K.P.; Cremonese, G.; Jorda, L.; et al. The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA’s Rosetta spacecraft. Planet. Space Sci. 2012, 66, 96–124. [Google Scholar] [CrossRef]
- Elbeshausen, D.; Wünnemann, K.; Collins, G.S. Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms. Icarus 2009, 204, 716–731. [Google Scholar] [CrossRef]
- Gault, D.E.; Wedekind, J.A. Experimental Studies of Oblique Impact. In Proceedings of the Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 13–17 March 1978; pp. 3843–3875. [Google Scholar]
- Elbeshausen, D.; Wünnemann, K.; Collins, G.S. The transition from circular to elliptical impact craters. J. Geophys. Res. 2013, 118, 2295–2309. [Google Scholar] [CrossRef]
- Elbeshausen, D.; Wünnemann, K. The Effect of Target Topography and Impact Angle on Crater Formation—Insight from 3D Numerical Modelling. In Proceedings of the Lunar and Planetary Institute Science Conference Abstracts, The Woodlands, TX, USA, 7–11 March 2011; p. 1778. [Google Scholar]
- Collins, G.S.; Morgan, J.; Barton, P.; Christeson, G.L.; Gulick, S.; Urrutia, J.; Warner, M.; Wünnemann, K. Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth Planet. Sci. Lett. 2008, 270, 221–230. [Google Scholar] [CrossRef]
- Gulick, S.P.S.; Barton, P.J.; Christeson, G.L.; Morgan, J.V.; McDonald, M.; Mendoza-Cervantes, K.; Pearson, Z.F.; Surendra, A.; Urrutia-Fucugauchi, J.; Vermeesch, P.M.; et al. Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nat. Geosci. 2008, 1, 131–135. [Google Scholar] [CrossRef]
- Schultz, P.H. Moon Morphology: Interpretations Based on Lunar Orbiter Photography; University of Texas Press: Austin, TX, USA, 1976. [Google Scholar]
- Gurov, E.P.; Koeberl, C.; Yamnichenko, A. El’gygytgyn impact crater, Russia: Structure, tectonics, and morphology. Meteorit. Planet. Sci. 2007, 42, 307–319. [Google Scholar] [CrossRef]
- Simonds, C.H.; Kieffer, S.W. Impact and volcanism—A momentum scaling law for erosion. J. Geophys. Res. 1993, 98, 14321. [Google Scholar] [CrossRef]
- Russell, C.T.; Raymond, C.A. The Dawn mission to Vesta and Ceres. Space Sci. Rev. 2011, 163, 3–23. [Google Scholar] [CrossRef]
- Sierks, H.; Keller, H.U.; Jaumann, R.; Michalik, H.; Behnke, T.; Bubenhagen, F.; Büttner, I.; Carsenty, U.; Christensen, U.; Enge, R.; et al. The Dawn Framing Camera. Space Sci. Rev. 2011, 163, 263–327. [Google Scholar] [CrossRef]
- De Sanctis, M.C.; Coradini, A.; Ammannito, E.; Filacchione, G.; Capria, M.T.; Fonte, S.; Magni, G.; Barbis, A.; Bini, A.; Dami, M.; et al. The VIR Spectrometer. Space Sci. Rev. 2011, 163, 329–369. [Google Scholar] [CrossRef]
- Prettyman, T.H.; Feldman, W.C.; McSween, H.Y.; Dingler, R.D.; Enemark, D.C.; Patrick, D.E.; Storms, S.A.; Hendricks, J.S.; Morgenthaler, J.P.; Pitman, K.M.; et al. Dawn’s Gamma Ray and Neutron Detector. Space Sci. Rev. 2011, 163, 371–459. [Google Scholar] [CrossRef]
- Raymond, C.; Russell, C.T.; Pieters, C.; Mc Cord, T.B.; Castillo-Rogez, J.; McSween, H.; Marchi, S.; De Sanctis, M.C. Origins of Vesta and Ceres and Implications for Planetesimal Diversity. In Proceedings of the 42nd COSPAR Scientific Assembly, Pasadena, CA, USA, 14–22 July 2018. [Google Scholar]
- Raymond, C.A.; Castillo, J.C.; Russell, C.T.; De Sanctis, M.C.; Nathues, A.; Prettyman, T.H.; Park, R.S.; Rayman, M.; Polanskey, C.A.; Joy, S.P.; et al. Dawn’s second extended mission at Ceres: The final harvest. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018; Volume 24. [Google Scholar]
- Preusker, F.; Scholten, F.; Matz, K.-D.; Elgner, S.; Jaumann, R.; Roatsch, T.; Joy, S.P.; Polanskey, C.A.; Raymond, C.A.; Russell, C.T. Dawn at Ceres—Shape Model and Rotational State. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 1954. [Google Scholar]
- Roatsch, T.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Elgner, S.; Schroeder, S.E.; Jaumann, R.; Raymond, C.A.; Russell, C.T. Dawn Fc2 Derived Ceres Lamo Dtm Spg V1.0, Dawn-A-Fc2-5-Cereslamodtmspg-V1.0; NASA Planetary Data System: Washington, DC, UAS, 2018. [Google Scholar]
- Kneissl, T.; van Gasselt, S.; Neukum, G. Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS. Planet. Space Sci. 2011, 59, 1243–1254. [Google Scholar] [CrossRef]
- Gou, S.; Yue, Z.; Di, K.; Liu, Z. A global catalogue of Ceres impact craters ≥ 1 km and preliminary analysis. Icarus 2018, 302, 296–307. [Google Scholar] [CrossRef]
- Buczkowski, D.L.; Schmidt, B.E.; Williams, D.A.; Mest, S.C.; Scully, J.E.C.; Ermakov, A.I.; Preusker, F.; Schenk, P.; Otto, K.A.; Hiesinger, H.; et al. The geomorphology of Ceres. Science 2016, 353. [Google Scholar] [CrossRef]
- Otto, K.A.; Jaumann, R.; Krohn, K.; Buczkowski, D.L.; von der Gathen, I.; Kersten, E.; Mest, S.C.; Naß, A.; Neesemann, A.; Preusker, F.; et al. Polygonal Impact Craters on Ceres: Morphology and Distribution. In Proceedings of the 79th Annual Meeting of the Meteoritical Society, Berlin, Germany, 7–12 August 2016; Volume 1921. [Google Scholar]
- Buczkowski, D.L.; Sizemore, H.G.; Bland, M.T.; Scully, J.E.C.; Quick, L.C.; Hughson, K.H.G.; Park, R.S.; Preusker, F.; Raymond, C.A.; Russell, C.T. Floor-Fractured Craters on Ceres and Implications for Interior Processes. J. Geophys. Res. 2018, 123, 3188–3204. [Google Scholar] [CrossRef]
- Krohn, K.; Jaumann, R.; Stephan, K.; Otto, K.A.; Schmedemann, N.; Wagner, R.J.; Matz, K.D.; Tosi, F.; Zambon, F.; von der Gathen, I.; et al. Cryogenic flow features on Ceres: Implications for crater-related cryovolcanism. Geophys. Res. Lett. 2016, 43, 1–10. [Google Scholar] [CrossRef]
- Schmidt, B.E.; Hughson, K.H.G.; Chilton, H.T.; Scully, J.E.C.; Platz, T.; Nathues, A.; Sizemore, H.; Bland, M.T.; Byrne, S.; Marchi, S.; et al. Geomorphological evidence for ground ice on dwarf planet Ceres. Nat. Geosci. 2017, 10, 338–343. [Google Scholar] [CrossRef]
- Krohn, K.; Jaumann, R.; Otto, K.A.; Schulzeck, F.; Neesemann, A.; Nass, A.; Stephan, K.; Tosi, F.; Wagner, R.J.; Zambon, F.; et al. The unique geomorphology and structural geology of the Haulani crater of dwarf planet Ceres as revealed by geological mapping of equatorial quadrangle Ac-6 Haulani. Icarus 2018, 316, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Scully, J.E.C.; Buczkowski, D.L.; Raymond, C.A.; Bowling, T.; Williams, D.A.; Neesemann, A.; Schenk, P.M.; Castillo-Rogez, J.C.; Russell, C.T. Ceres’ Occator crater and its faculae explored through geologic mapping. Icarus 2019, 320, 7–23. [Google Scholar] [CrossRef]
- de Sanctis, M.C.; Ammannito, E.; Carrozzo, F.G.; Ciarniello, M.; Giardino, M.; Frigeri, A.; Fonte, S.; McSween, H.Y.; Raponi, A.; Tosi, F.; et al. Ceres’s global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteorit. Planet. Sci. 2018, 53, 1844–1865. [Google Scholar] [CrossRef]
- Ruesch, O.; Quick, L.C.; Landis, M.E.; Sori, M.M.; Čadek, O.; Brož, P.; Otto, K.A.; Bland, M.T.; Byrne, S.; Castillo-Rogez, J.C.; et al. Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus 2019, 320, 39–48. [Google Scholar] [CrossRef]
- Stein, N.T.; Ehlmann, B.L.; Palomba, E.; De Sanctis, M.C.; Nathues, A.; Hiesinger, H.; Ammannito, E.; Raymond, C.A.; Jaumann, R.; Longobardo, A.; et al. The formation and evolution of bright spots on Ceres. Icarus 2019, 320, 188–201. [Google Scholar] [CrossRef]
- Elbeshausen, D.; Wünnemann, K.; Sierks, H.; Vincent, J.B.; Oklay, N. The Effect of Topography on the Impact Cratering Process on Lutetia. In Proceedings of the Lunar and Planetary Institute Science Conference Abstracts, The Woodlands, TX, USA, 19–23 March 2012; p. 1867. [Google Scholar]
- Russell, C.T.; Raymond, C.A.; Ammannito, E.; Buczkowski, D.L.; De Sanctis, M.C.; Hiesinger, H.; Jaumann, R.; Konopliv, A.S.; McSween, H.Y.; Nathues, A.; et al. Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science 2016, 353, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, R.R.; Ermakov, A.I.; Marchi, S.; Castillo-Rogez, J.C.; Raymond, C.A.; Hager, B.H.; Zuber, M.T.; King, S.D.; Bland, M.T.; Cristina De Sanctis, M.; et al. The interior structure of Ceres as revealed by surface topography. Earth Planet. Sci. Lett. 2017, 476, 153–164. [Google Scholar] [CrossRef]
- Castillo-Rogez, J.C.; Hesse, M.A.; Formisano, M.; Sizemore, H.; Bland, M.; Ermakov, A.I.; Fu, R.R. Conditions for the Long-Term Preservation of a Deep Brine Reservoir in Ceres. Geophys. Res. Lett. 2019, 46, 1963–1972. [Google Scholar] [CrossRef]
- Castillo-Rogez, J.; Neveu, M.; McSween, H.Y.; Fu, R.R.; Toplis, M.J.; Prettyman, T. Insights into Ceres’s evolution from surface composition. Meteorit. Planet. Sci. 2018, 53, 1820–1843. [Google Scholar] [CrossRef]
- De Sanctis, M.C.; Ammannito, E.; Raponi, A.; Marchi, S.; McCord, T.B.; McSween, H.Y.; Capaccioni, F.; Capria, M.T.; Carrozzo, F.G.; Ciarniello, M.; et al. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature 2015, 528, 241–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sanctis, M.C.; Raponi, A.; Ammannito, E.; Ciarniello, M.; Toplis, M.J.; McSween, H.Y.; Castillo-Rogez, J.C.; Ehlmann, B.L.; Carrozzo, F.G.; Marchi, S.; et al. Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature 2016, 536, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, A.I.; Fu, R.R.; Castillo-Rogez, J.C.; Raymond, C.A.; Park, R.S.; Preusker, F.; Russell, C.T.; Smith, D.E.; Zuber, M.T. Constraints on Ceres’ Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft. J. Geophys. Res. 2017, 122, 2267–2293. [Google Scholar] [CrossRef]
- Bland, M.T.; Raymond, C.A.; Schenk, P.M.; Fu, R.R.; Kneissl, T.; Pasckert, J.H.; Hiesinger, H.; Preusker, F.; Park, R.S.; Marchi, S.; et al. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nat. Geosci. 2016, 9, 538–542. [Google Scholar] [CrossRef]
- Krohn, K.; Neesemann, A.; Jaumann, R.; Otto, K.A.; Stephan, K.; Wagner, R.J.; Tosi, F.; Zambon, F.; Ruesch, O.; Williams, D.A.; et al. Ring-Mold Craters on Ceres: Evidence for Shallow Subsurface Water Ice Sources. Geophys. Res. Lett. 2018, 45, 8121–8128. [Google Scholar] [CrossRef]
- Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L.A.; Castillo-Rogez, J.C.; Quick, L.C.; Byrne, S.; Preusker, F.; O’Brien, D.P.; Schmedemann, N.; et al. Cryovolcanism on Ceres. Science 2016, 353, aaf4286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krohn, K.; Jaumann, R.; Wickhusen, K.; Otto, K.A.; Kersten, E.; Stephan, K.; Wagner, R.J.; Raymond, C.A.; Russell, C.T. Asymmetric Craters on the Dwarf Planet Ceres—Results of Second Extended Mission Data Analysis. Geosciences 2019, 9, 475. https://doi.org/10.3390/geosciences9110475
Krohn K, Jaumann R, Wickhusen K, Otto KA, Kersten E, Stephan K, Wagner RJ, Raymond CA, Russell CT. Asymmetric Craters on the Dwarf Planet Ceres—Results of Second Extended Mission Data Analysis. Geosciences. 2019; 9(11):475. https://doi.org/10.3390/geosciences9110475
Chicago/Turabian StyleKrohn, Katrin, Ralf Jaumann, Kai Wickhusen, Katharina A. Otto, Elke Kersten, Katrin Stephan, Roland J. Wagner, Carol A. Raymond, and Christopher T. Russell. 2019. "Asymmetric Craters on the Dwarf Planet Ceres—Results of Second Extended Mission Data Analysis" Geosciences 9, no. 11: 475. https://doi.org/10.3390/geosciences9110475
APA StyleKrohn, K., Jaumann, R., Wickhusen, K., Otto, K. A., Kersten, E., Stephan, K., Wagner, R. J., Raymond, C. A., & Russell, C. T. (2019). Asymmetric Craters on the Dwarf Planet Ceres—Results of Second Extended Mission Data Analysis. Geosciences, 9(11), 475. https://doi.org/10.3390/geosciences9110475