Next Article in Journal
Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter
Previous Article in Journal
The College Park, Maryland, Tornado of 24 September 2001
Previous Article in Special Issue
Saharan Dust Transport during the Incipient Growth Phase of African Easterly Waves
Open AccessArticle

Atmospheric Dynamics from Synoptic to Local Scale During an Intense Frontal Dust Storm over the Sistan Basin in Winter 2019

1
Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
2
NYUAD Institute, New York University Abu Dhabi, Abu Dhabi 129188, UAE
3
Department of Desert and Arid zones management, Ferdowsi University of Mashhad, Mashhad 91735, Iran
4
Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
5
Aryabhatta Research Institute of Observational Sciences, Nainital 263 001, India
*
Author to whom correspondence should be addressed.
Geosciences 2019, 9(10), 453; https://doi.org/10.3390/geosciences9100453
Received: 1 October 2019 / Revised: 18 October 2019 / Accepted: 21 October 2019 / Published: 22 October 2019
(This article belongs to the Special Issue Observing Atmospheric Dynamics and Dust Activity)
The Sistan Basin has been recognized as one of the most active dust sources and windiest desert environments in the world. Although the dust activity in Sistan maximizes during the summer, rare but intense dust storms may also occur in the winter. This study aims to elucidate the atmospheric dynamics related to dust emission and transport, dust-plume characteristics, and impacts on aerosol properties and air quality during an intense dust storm over Sistan in February 2019. The dust storm was initiated by strong northerly winds (~20 ms−1) associated with the intrusion of a cold front from high latitudes. The upper-level potential vorticity (PV)-trough evolved into a cut-off low in the mid and upper troposphere and initiated unstable weather over Afghanistan and northern Pakistan. At the surface, density currents emanating from deep convective clouds and further strengthened by downslope winds from the mountains, caused massive soil erosion. The passage of the cold front reduced the temperature by ~10 °C and increased the atmospheric pressure by ~10 hPa, while the visibility was limited to less than 200 m. The rough topography played a major role in modulating the atmospheric dynamics, wind field, dust emissions, and transport pathways. Meso-NH model simulates large amounts of columnar mass dust loading (> 20 g m−2) over Sistan, while the intense dust plume was mainly traveling below 2 km and increased the particulate matter (PM10) concentrations up to 1800 µg m−3 at Zabol. The dust storm was initially moving in an arc-shaped pathway over the Sistan Basin and then it spread away. Plumes of dust covered a large area in southwest Asia, reaching the northern Arabian Sea, and the Thar desert one to two days later, while they strongly affected the aerosol properties at Karachi, Pakistan, by increasing the aerosol optical depth (AOD > 1.2) and the coarse-mode fraction at ~0.7. View Full-Text
Keywords: frontal dust storm; upper-level trough; cut-off low; dust aerosols; Sistan frontal dust storm; upper-level trough; cut-off low; dust aerosols; Sistan
Show Figures

Figure 1

MDPI and ACS Style

Kaskaoutis, D.G.; Francis, D.; Rashki, A.; Chaboureau, J.-P.; Dumka, U.C. Atmospheric Dynamics from Synoptic to Local Scale During an Intense Frontal Dust Storm over the Sistan Basin in Winter 2019. Geosciences 2019, 9, 453.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop