Early European Observations of Precipitation Partitioning by Vegetation: A Synthesis and Evaluation of 19th Century Findings
Abstract
:1. Introduction
2. Forest Hydrometeorological Monitoring during the 19th Century
“The question of ‘How much precipitation reaches the forest soil compared to the open?’ has multiple scientific and practical implications, not just for silviculture but for hydrology in general. There is scarcely a more difficult obstacle to meteorological research than this, as forests are highly variable in species composition, age, height, and crown density, development, shape and closure.”E. Ebermayer, Munich, Germany [14]
3. Canopy and Litter Interception
“How much rain reaches forest soils, how much is stored and how much evaporates, seems to me worthy of investigation in many respects. but, experiments must also question the value of forest litter water-absorbing and water-holding capability, as it clarifies why comparatively small amounts of rain can pass through the forest floor.”H. Krutzsch, Tharandt, Germany [15]
4. Throughfall and its Spatiotemporal Variability
“There are silvicultural, water management and, therefore, forestry-political reasons why precipitation beneath forest canopies [i.e., throughfall] must be quantified.”A. Bühler, Zurich, Switzerland [23]
5. The Rise of Stemflow
“…it can be assumed that different tree species, with great differences in branch structure and position, will very differently discharge precipitation down their stems.”W. Riegler, Vienna, Austria [35]
6. Conclusions
“I am already quite satisfied if we are able to prove numerically that the differences between the rain gauges have to be corrected by about 40 or 60% to calculate the loss that the forest soil and springs suffer due to rainfall intercepted by tree canopies. Whether it is now exactly 51 or 59, I don’t care. Today we do not really know whether it is 20 or 80%.”C.E. Ney, Brunswick, Germany [37]
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment. Main Report, FAO Forest Paper 163. 2010. Available online: http://www.fao.org/3/i1757e/i1757e00.htm (accessed on 28 September 2019).
- Suttie, J.M.; Reynolds, S.G.; Batello, C. Grasslands of the World. Food & Agriculture Org., 2005. Available online: http://www.fao.org/3/y8344e00.htm (accessed on 28 September 2019).
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. ESA Working paper FAO, Rome. 2012. Available online: https://ideas.repec.org/p/ags/faoaes/288998.html (accessed on 28 September 2019).
- Van Stan, J.T.; Pypker, T.G. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ 2015, 536, 813–824. [Google Scholar] [CrossRef]
- Hutchings, N.; Milne, R.; Crowther, J. Canopy storage capacity and its vertical distribution in a sitka spruce canopy. J. Hydrol. 1988, 104, 161–171. [Google Scholar] [CrossRef]
- Black, T.; Kelliher, F.M. Processes controlling understorey evapotranspiration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1989, 324, 207–231. [Google Scholar] [CrossRef]
- Gerrits, A.; Savenije, H. Forest floor interception. In Hydrology and Biogeochemistry of Forest Ecosystems; Levia, D.F., Carlyle-Moses, D.E., Tanaka, T., Eds.; Springer: Berlin, Germany, 2011; pp. 445–454. [Google Scholar]
- Porada, P.; Van Stan, J.T.; Kleidon, A. Significant contribution of non-vascular vegetation to global rainfall interception. Nat. Geosci. 2018, 11, 563. [Google Scholar] [CrossRef]
- Spencer, S.A.; van Meerveld, H.J. Double funnelling in a mature coastal British Columbia forest: Spatial patterns of stemflow after infiltration. Hydrol. Process. 2016, 30, 4185–4201. [Google Scholar] [CrossRef]
- Tanaka, T. Effects of the Canopy Hydrologic Flux on Groundwater. In Hydrology and Biogeochemistry of Forest Ecosystems; Levia, D.F., Carlyle-Moses, D.E., Tanaka, T., Eds.; Springer: Berlin, Germany, 2011; pp. 499–518. [Google Scholar]
- Savenije, H.H.G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 2004, 18, 1507–1511. [Google Scholar] [CrossRef]
- Horton, R.E. Rainfall interception. Mon. Weather. Rev. 1919, 47, 603–623. [Google Scholar] [CrossRef]
- Zon, R. Forest and Water in the Light of Scientific Investigation; Forest Service, United States Department of Agriculture. United States Government Printing Office: Washington, DC, USA, 1927; 106p.
- Ebermayer, E. Die Physikalischen Einwirkungen des Waldes auf Luft und Boden und seine klimatologische und Hygienische Bedeutung: Begründet Durch die Beobachtungen der Forst.-Meteorolog. Stationen im Königreich Bayern; C. Krebs: Aschaffenburg, Germany, 1873; Volume 1, 1253p. [Google Scholar]
- Krutzsch, H. Die zu forstlichen Zwecken eingerichteten meteorologischen Stationen und die Resultate der Beobachtungen im Jahre 1863. Tharandter forstliches Jahrbuch 1863, 16, 216–226. [Google Scholar]
- Ney, C.E. Der Wald und die Quellen; F. Pietzcker: Tübingen, Germany, 1893; 101p. [Google Scholar]
- Wollny, E. Untersuchungen über das Verhalten der atmosphärischen Niederschläge zur Pflanze und zum Boden. Forschungen auf dem Gebiete der Agricultur-Physik 1890, 13, 316–356. [Google Scholar]
- Wollny, E. Forschungen auf dem Gebiete der Agricultur-Physik. Available online: https://archive.org/details/bub_gb_WJZPAAAAIAAJ/page/n7 (accessed on 28 September 2019).
- Dove, H. Ueber die Vertheilung der Regen in der gemässigten Zone. Annalen der Physik 1855, 170, 42–59. [Google Scholar] [CrossRef]
- Krutzsch, H. Ueber den Einfluß der Waldungen auf die Regenverhältnisse der gemäßigten Zone. Tharander forstliches Jahrbuch 1855, 11, 123–141. [Google Scholar]
- Fuchs, R.; Herold, M.; Verburg, P.H.; Clevers, J.G.P.W. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 2013, 10, 1543–1559. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.; Herold, M.; Verburg, P.H.; Clevers, J.G.; Eberle, J. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob. Chang. Biol. 2015, 21, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Bühler, A. Die Niederschläge im Walde. Mitt. d. Schweiz. Centr. Anst. f. forstl. Versuchswesen. 1892, 127–160. [Google Scholar]
- Ebermayer, E. Untersuchungs-Ergebnisse über die Menge und Vertheilung der Niederschläge in den Wäldern. Forstl. Naturw. Ztschr. 1897, 6, 283–291. [Google Scholar]
- Von Carlowitz, H.-C. Sylvicultura oeconomica oder Haußwirthliche Nachricht und Naturmäßige Anweisung zur Wilden Baum-Zucht. Johann Friedrich Braun, Leipzig. 1713. Available online: https://reader.digitale-sammlungen.de/de/fs1/object/display/bsb10214444_00002.html (accessed on 28 September 2019).
- Clavé, J. Étude de météorologie forestière. Revue des Deux Mondes (1829-1971) 1875, 9, 632–649. [Google Scholar]
- Fernow, B.E. A Brief History of Forestry in Europe, The United States and other Countries; University Press: Toronto, ON, Canda, 1913. [Google Scholar]
- Johnen, A.; Breitenlohner, J. Comparative Beobachtungen der Niederschläge nach Fautrat’s Methode. Akademische Verlagsgesellschaft 1879, 8, 16–19. [Google Scholar]
- Maurice, A.; Frécaut, R. Hydrologie fluviale de l’europe continentale. Revue Géographique de l’Est 1962, 2, 411–428. [Google Scholar] [CrossRef]
- Krutzsch, H. Über die zu forstlichen Zwecken in Sachsen eingerichteten meteorologischen Stationen. Tharandter Forstl. Jahrb. 1863, 15, 72–104. [Google Scholar]
- Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Friesen, J. Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, ailanthus altissima (mill., tree of heaven). Agric. For. Meteorol. 2017, 240–241, 10–17. [Google Scholar] [CrossRef]
- Bruhns, C. Resultate aus den meteorologischen Beobachtungen angestellt an mehreren Orten im Königreich Sachsen in den Jahren 1826 bis 1861 und an den königl. sächsischen Stationen im Jahre 1866; Ernst Julius Günther: Leipzig, Germany, 1868. [Google Scholar]
- Müttrich, A. Jahresbericht Über die Beobachtungs-Ergebnisse der im Königreich Preussen und in den Reichslanden Eingerichteten Forstlich-Meteorologischen Stationen; Julius Springer: Berlin, Germany, 1877. [Google Scholar]
- Wollny, E. Forstlich-meteorologische Beobachtungen. Zweite Mittheilung. Forschungen auf dem Gebiete der Agricultur-Physik 1890, 13, 134–184. [Google Scholar]
- Riegler, W. Beobachtungen über die Abfuhr meteorischen Wassers entlang den Hochstämmen. Mitteilungen der forstlichen Bundes-Versuchsanstalt Wien 1881, 2, 234–246. [Google Scholar]
- Bühler, A. Studien nach dem Schneefall vom 16. Februar 1884. Forstwissenschaftliches Centralblatt 1885, 7, 236–239. [Google Scholar]
- Ney, C.E. Über die Messung des an den Schäften der Bäume herabfliessenden Regenwassers. Mitt. ad forstl. Versuchswesen Österr 1894, 17, 115. [Google Scholar]
- Hoppe, E. Regenmessung unter Baumkronen; 75 p. W. Frick: Wien, Austria, 1896. [Google Scholar]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Krutzsch, H. Untersuchungen über die Waldstreu. Forstwirtschaftliches Jahrbuch. Königl.-Sächs. Akademie für Forst- und Landwirthe zu Tharand. 1850, 6, 88–110. [Google Scholar]
- Klamerus-Iwan, A.; Link, T.; Keim, R.; Van Stan, J., II. Storage and routing of precipitation through canopies. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, J., II, Gutmann, E., Friesen, J., Eds.; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Sadeghi, S.; Gordon, A.; Van Stan, J., II. A global synthesis of throughfall and stemflow hydrometeorology. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, J., II, Gutmann, E., Friesen, J., Eds.; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Bühler, A. Der Waldbau nach wissenschaftlicher Forschung und praktischer Erfahrung: Ein Hand-und Lehrbuch; University of Michigan Library: Ann Arbor, MI, USA, 1918; Volume 1. [Google Scholar]
- Friesen, J.; Lundquist, J.; Van Stan, J.T. Evolution of forest precipitation water storage measurement methods. Hydrol. Process. 2015, 29, 2504–2520. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Błońska, E. Seasonal variability of interception and water wettability of common oak leaves. Ann. For. Res. 2016, 60, 63–73. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Witek, W. Variability in the wettability and water storage capacity of common oak leaves (quercus robur l.). Water 2018, 10, 695. [Google Scholar] [CrossRef]
- Matthes, J.H.; Goring, S.; Williams, J.W.; Dietze, M.C. Benchmarking historical cmip5 plant functional types across the upper midwest and northeastern united states. J. Geophys. Res.: Biogeosci. 2016, 121, 523–535. [Google Scholar] [CrossRef]
- Matheny, A.M.; Mirfenderesgi, G.; Bohrer, G. Trait-based representation of hydrological functional properties of plants in weather and ecosystem models. Plant Divers. 2017, 39, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Tamjidi, J.; Friesen, J.; Farahnaklangroudi, M. Importance of transitional leaf states in canopy rainfall partitioning dynamics. Eur. J. For. Res. 2018, 137, 121–130. [Google Scholar] [CrossRef]
- Staelens, J.; De Schrijver, A.; Verheyen, K. Seasonal variation in throughfall and stemflow chemistry beneath a european beech (fagus sylvatica) tree in relation to canopy phenology. Can. J. For. Res. 2007, 37, 1359–1372. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Levia, D.F., Jr.; Inamdar, S.P.; Lepori-Bui, M.; Mitchell, M.J. The effects of phenoseason and storm characteristics on throughfall solute washoff and leaching dynamics from a temperate deciduous forest canopy. Sci. Total Environ. 2012, 430, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Levia, D.F. Differential winter stemflow generation under contrasting storm conditions in a southern new england broad-leaved deciduous forest. Hydrol. Process. 2004, 18, 1105–1112. [Google Scholar] [CrossRef]
- Aston, A. Rainfall interception by eight small trees. J. hydrol. 1979, 42, 383–396. [Google Scholar] [CrossRef]
- Helvey, J.; Patric, J. Canopy and litter interception of rainfall by hardwoods of eastern united states. Water Resour. Res. 1965, 1, 193–206. [Google Scholar] [CrossRef]
- Keim, R.F.; Skaugset, A.E.; Weiler, M. Temporal persistence of spatial patterns in throughfall. J. Hydrol. 2005, 314, 263–274. [Google Scholar] [CrossRef]
- Kimmins, J. Some statistical aspects of sampling throughfall precipitation in nutrient cycling studies in british columbian coastal forests. Ecology 1973, 54, 1008–1019. [Google Scholar] [CrossRef]
- Lloyd, C.; Marques, A.D.O. Spatial variability of throughfall and stemflow measurements in amazonian rainforest. Agricul. For. Meteorol. 1988, 42, 63–73. [Google Scholar] [CrossRef]
- Voss, S.; Zimmermann, B.; Zimmermann, A. Detecting spatial structures in throughfall data: The effect of extent, sample size, sampling design, and variogram estimation method. J. Hydrol. 2016, 540, 527–537. [Google Scholar] [CrossRef]
- Wilm, H.G. Determining net rainfall under a conifer forest. J. Agricul. Res. 1943, 67, 501–513. [Google Scholar]
- Zimmermann, A.; Zimmermann, B.; Elsenbeer, H. Rainfall redistribution in a tropical forest: Spatial and temporal patterns. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, A.; Zimmermann, B. Requirements for throughfall monitoring: The roles of temporal scale and canopy complexity. Agricul. For. Meteorol. 2014, 189, 125–139. [Google Scholar] [CrossRef]
- Van Stan, J.T., II; Hildebrandt, A.; Friesen, J.; Metzger, J.C.; Yankine, S.A. Spatial variablity and temporal stability of local net precipitation patterns. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, J., II, Gutmann, E., Friesen, J., Eds.; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Metzger, J.C.; Wutzler, T.; Dalla Valle, N.; Filipzik, J.; Grauer, C.; Lehmann, R.; Roggenbuck, M.; Schelhorn, D.; Weckmüller, J.; Küsel, K. Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrol. Process. 2017, 31, 3783–3795. [Google Scholar] [CrossRef]
- Loustau, D.; Berbigier, P.; Granier, A.; Moussa, F.E.H. Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy. J. Hydrol. 1992, 138, 449–467. [Google Scholar] [CrossRef]
- Holwerda, F.; Scatena, F.; Bruijnzeel, L. Throughfall in a puerto rican lower montane rain forest: A comparison of sampling strategies. J. Hydrol. 2006, 327, 592–602. [Google Scholar] [CrossRef]
- Zimmermann, B.; Zimmermann, A.; Lark, R.M.; Elsenbeer, H. Sampling procedures for throughfall monitoring: A simulation study. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Linskens, H. Niederschlagsmessungen unter verschiedenen baumkronentypen im belaubten und unbelaubten zustand. Plant Biol. 1951, 64, 214–220. [Google Scholar]
- Linskens, H. Niederschlagsverteilung unter einem Apfelbaum im Laufe einer Vegetationsperiode. Ann. Meteorol. 1952, 1/2, 30–34. [Google Scholar]
- Levia, D.F.; Germer, S. A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev. Geophys. 2015, 53, 673–714. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Gordon, D.A. Mini-review: Stemflow as a resource limitation to near-stem soils. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Murray, S.; Watson, I.; Prentice, I. The use of dynamic global vegetation models for simulating hydrology and the potential integration of satellite observations. Prog. Phys. Geogr. 2013, 37, 63–97. [Google Scholar] [CrossRef]
- Gutmann, E.D. Global modeling of precipitation partitioning by vegetation and their applications. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, J., II, Gutmann, E., Friesen, J., Eds.; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Vanguelova, E.I.; Benham, S.; Pitman, R.; Moffat, A.J.; Broadmeadow, M.; Nisbet, T.; Durrant, T.; Barsoum, N.; Wilkinson, M.; Bochereau, F.; et al. Chemical fluxes in time through forest ecosystems in the UK – Soil response to pollution recovery. Environ. Pollut. 2010, 158, 1857–1869. [Google Scholar] [CrossRef] [PubMed]
- Aussenac, G. Interception des précipitations par le couvert forestier. Ann. Sci. forest. 1968, 25, 135–156. [Google Scholar] [CrossRef]
- Ovington, J.D. A comparison of rainfall in different woodlands. For.: Int. J. For. Res. 1954, 27, 41–53. [Google Scholar] [CrossRef]
- Nihlgard, B. Precipitation, Its Chemical Composition and Effect on Soil Water in a Beech and a Spruce Forest in South Sweden. Oikos 1970, 21, 208–217. [Google Scholar] [CrossRef]
- Herbst, M.; Rosier, P.T.W.; McNeil, D.D.; Harding, R.J.; Gowing, D.J. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agric. For. Meteorol. 2008, 148, 1655–1667. [Google Scholar] [CrossRef]
- Matthew, S.M. Hydrological and Biogeochemical Fluxes of Throughfall and Stemflow in Temperate Swamps. Master’s Thesis, Department of Geography and Planning, University of Toronto, Toronto, ON, Canada, 2015. [Google Scholar]
- Buttle, J.M.; Farnsworth, A.G. Measurement and modeling of canopy water partitioning in a reforested landscape: The Ganaraska Forest, southern Ontario. Can. J. Hydrol. 2012, 466–467, 103–114. [Google Scholar] [CrossRef]
- Freedman, B.; Prager, U. Ambient bulk deposition, throughfall, and stemflow in a variety of forest stands in Nova Scotia. Can. J. For. Res. 1986, 16, 854–860. [Google Scholar] [CrossRef]
- Bittner, S.; Talkner, U.; Krämer, I.; Beese, F.; Hölscher, D.; Priesack, E. Modeling stand water budgets of mixed temperate broad-leaved forest stands by considering variations in species specific drought response. Agric. For. Meteorol. 2010, 150, 1347–1357. [Google Scholar] [CrossRef]
- Levia, D.F.; Michalzik, B.; Näthe, K.; Bischoff, S.; Richter, S.; Legates, D.R. Differential stemflow yield from european beech saplings: The role of individual canopy structure metrics. Hydrol. Process. 2015, 29, 43–51. [Google Scholar] [CrossRef]
- Su, L.; Xu, W.; Zhao, C.; Xie, Z.; Ju, H. Inter-and intra-specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest. J. Hydrol. 2016, 537, 1–9. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Levia, D.F. Inter- and intraspecific variation of stemflow production from fagus grandifoliaehrh. (american beech) and liriodendron tulipiferal. (yellow poplar) in relation to bark microrelief in the eastern united states. Ecohydrology 2010, 3, 11–19. [Google Scholar]
- Van Stan, J.T.; Lewis, E.S.; Hildebrandt, A.; Rebmann, C.; Friesen, J. Impact of interacting bark structure and rainfall conditions on stemflow variability in a temperate beech-oak forest, central Germany. Hydrol. Sci. J. 2016, 61, 2071–2083. [Google Scholar] [CrossRef] [Green Version]
- Herwitz, S.R. Infiltration-excess caused by stemflow in a cyclone-prone tropical rainforest. Earth Surf. Process. Landf. 1986, 11, 401–412. [Google Scholar] [CrossRef]
- Johnson, M.S.; Lehmann, J. Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience 2006, 13, 324–333. [Google Scholar] [CrossRef]
Study | Location | Species | Age | Flux | Precipitation Type | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[y] | I | T | S | Ra | Sn | Mx | Fo | Ri | |||
Krutzsch [30] | Grillenburg, Germany | Picea abies | n/a | x | x | x | |||||
Krutzsch [15]1 | Kingdom of Saxony | Multiple | - | ||||||||
Ebermayer [14]1 | Kingdom of Bavaria | Multiple | - | ||||||||
Müttrich [33] | Kingdom of Prussia | Multiple | |||||||||
Eberswalde | Pinus sp. | 45 | x | x | x | x | |||||
Friedrichsrode | Fagus sylvatica | 65–85 | x | x | x | x | |||||
Hollerath | Picea sp. | 45 | x | x | x | x | |||||
Carlsberg | Picea sp. | 45 | x | x | x | x | |||||
Hagenau | Pinus sp. | 55–65 | x | x | x | x | |||||
Melkerei | Fagus sylvatica | 60–80 | x | x | x | x | |||||
Neumath | Fagus sylvatica | 45 | x | x | x | x | |||||
Fritzen | Picea sp. | 45 | x | x | x | x | |||||
Hadersleben | Fagus sylvatica | 70–80 | x | x | x | x | |||||
Kurwien | Pinus sp. | 80–140 | x | x | x | x | |||||
Johnen and | Groß-Karlowitz, Moravia | Fagus sylvatica | n/a | x | x | x | |||||
Breitenloner [28]2 | Groß-Karlowitz, Moravia | Picea sp. | n/a | x | x | x | |||||
Riegler [35] | Mariabrunn, Austria | Fagus sylvatica | 55 | x | x | ||||||
Mariabrunn | Quercus robur | 55 | x | x | |||||||
Mariabrunn | Acer platanoides | 55 | x | x | |||||||
Mariabrunn | Abies excelsa | 55 | x | x | |||||||
Bühler [36] | Switzerland | Multiple | |||||||||
Uetliberg | Picea sp. | 15–90 | x | x | x | ||||||
Uetliberg | Fagus sylvatica | 15–70 | x | x | x | ||||||
Bühler [36] | Uetliberg | Carpinus betulus | 10 | x | x | x | |||||
Wollny [17] | Unknown | Various crops3 | n/a | x | x | ||||||
Wollny [34] | Kingdom of Bavaria | Multiple | |||||||||
Forst Kasten (Planegg) | Litter material4 | n/a | |||||||||
Nymphenburg | Litter material4 | n/a | |||||||||
Bühler [23] | Switzerland | Multiple | |||||||||
Adlisberg | Fagus sylvatica | 20 | x | x | x | x | x | ||||
Adlisberg | Picea abies | 20 | x | x | x | x | x | ||||
Adlisberg | Fagus sylvatica | 60 | x | x | x | x | x | ||||
Adlisberg | Fagus sylvatica | 80–90 | x | x | x | x | x | ||||
Haidenhaus | Fagus sylvatica | 50 | x | x | x | x | x | ||||
Haidenhaus | Picea abies | 80 | x | x | x | x | x | ||||
Grosswald | Picea abies | 40 | x | x | x | x | x | ||||
Ney [16] | Kingdoms of Prussia/Bavaria | Multiple | |||||||||
Hagenau | Pinus sp. | n/a | x | x | x | x | x | ||||
Hagenau | Picea abies | n/a | x | x | x | x | x | ||||
Hagenau | Fagus sylvatica | n/a | x | x | x | x | x | ||||
Ney [37]5 | Kingdoms of Prussia/Bavaria | Multiple | x | x | |||||||
Hoppe [38] | Austria | Multiple | |||||||||
Brunneck (Wöglerin) | Picea sp. | 60 | x | x | x | ||||||
Farnleite | Pinus sylvestris | 65 | x | x | x | ||||||
Brunneck (Wöglerin) | Fagus sylvatica | 88 | x | x | x | ||||||
Farnleite | Fagus sylvatica | 84 | x | x | x | ||||||
Ebermayer [24]6 | Kingdom of Bavaria | Multiple | |||||||||
Ebrach | Picea sp. | 40 | x | x | x | ||||||
Seeshaupt | Picea sp. | 40 | x | x | x | ||||||
Hirschhorn | Picea sp. | 50 | x | x | x | ||||||
Duschlberg | Picea sp. | 65 | x | x | x | ||||||
Altenfurt | Pinus sylvestris | 26 | x | x | x | ||||||
Rohrbrunn | Fagus sylvatica | 66 | x | x | x | ||||||
Johanniskreuz | Fagus sylvatica | 66 | x | x | x | ||||||
Falleck | Picea sp. | 120 | x | x | x | ||||||
Hirschhorn | Picea sp. | 50 | x | x |
Rainfall [mm]: | 1.1 | 2.2 | 4.4 | 6.6 | 11.0 | 14.8 |
---|---|---|---|---|---|---|
Litter drainage [%]: | 9% | 18% | 22% | 27% | 54% | 57% |
Litter Depth (cm) | Species | 1887 (Dry) | 1886 (Mean) | 1888 (Wet) |
---|---|---|---|---|
5 | Quercus | 42.5% | 61.7% | 64.2% |
10 | Quercus | 39.6% | 68.3% | - |
20 | Quercus | 69.8% | 74.2% | - |
30 | Quercus | 71.5% | 73.8% | - |
5 | Fagus | - | - | 63.8% |
30 | Fagus | 72.6% | 73.8% | - |
5 | Picea | 46.6% | 62.4% | 72.3% |
10 | Picea | 39.6% | 67.6% | - |
20 | Picea | 78.7% | 68.4% | - |
30 | Picea | 74.9% | 68.2% | - |
5 | Pinus | - | - | 64.3% |
30 | Pinus | 52.7% | 69.2% | - |
5 | Hypnum (moss) | 39.1% | 52.5% | 54.5% |
10 | Hypnum (moss) | - | - | 56.6% |
15 | Hypnum (moss) | - | - | 63.6% |
20 | Hypnum (moss) | - | - | 73.0% |
25 | Hypnum (moss) | - | - | 71.7% |
30 | Hypnum (moss) | - | - | 70.5% |
Canopy | Relative Throughfall (%) | ||
---|---|---|---|
Condition | Snow | Rain | Mixed |
Fagus sylvatica, 50 y/o | |||
Dense | ~100 * | 69.8 | 82.3 |
Light | ~100 * | 72.5 | 84.3 |
Picea abies, 40 y/o | |||
Dense | 62.6 | 53.9 | 52.1 |
Light | 76.0 | 72.1 | 62.1 |
Gap | ~100 | ~100 | ~100 |
Picea abies, 80 y/o | |||
Dense | 56.4 | 62.8 | 57.9 |
Light | 54.6 | 60.0 | 53.4 |
Class [mm]: | n | Coefficient of Variation [%] | Quartile Coefficient of Dispersion [%] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<5.0 | 5.1–15.0 | >15.1 | Extreme | N/A | All | <5.0 | 5.1–15.0 | >15.1 | Extreme | N/A | All | ||
Picea abies | 40 | 38.3 | 24.0 | 11.5 | 11.5 | 14.4 | 23.4 | 14.1 | 5.6 | 8.4 | 6.3 | ||
<0.5 m | 5 | 29.8 | 23.6 | 11.2 | 10.6 | 14.1 | 15.6 | 17.9 | 9.8 | 0.7 | 11.1 | ||
0.5–1.0 m | 13 | 26.9 | 24.9 | 5.6 | 6.4 | 8.4 | 19.3 | 13.7 | 3.5 | 4.3 | 5.8 | ||
1.0–1.5 m | 9 | 20.9 | 15.1 | 7.7 | 6.7 | 9.7 | 7.7 | 6.8 | 4.3 | 5.6 | 6.3 | ||
>1.5 m | 5 | 24.3 | 19.0 | 6.4 | 8.7 | 9.3 | 12.7 | 10.9 | 4.1 | 5.6 | 6.9 | ||
Gap | 8 | 22.1 | 10.5 | 14.1 | 13.9 | 12.2 | 9.2 | 5.7 | 8.9 | 9.9 | 7.6 | ||
Class [mm]: | <5.0 | 5.1–15.0 | >15.1 | N/A | N/A | All | <5.0 | 5.1–15.0 | >15.1 | N/A | N/A | All | |
Pinus sylvestris | 39 | 20.1 | 13.1 | 7.2 | 9.0 | 13.2 | 6.9 | 5.7 | 5.6 | ||||
<0.5 m * | 1 | - | - | - | - | - | - | - | - | ||||
0.5–1.0 m | 5 | 24.6 | 15.1 | 5.1 | 7.6 | 10.6 | 2.9 | 1.9 | 0.7 | ||||
1.0–1.5 m | 10 | 11.4 | 9.4 | 5.5 | 5.7 | 4.1 | 6.3 | 3.7 | 3.9 | ||||
>1.5 m | 15 | 17.2 | 9.4 | 5.8 | 6.7 | 10.8 | 7.0 | 4.6 | 5.0 | ||||
Gap | 8 | 12.5 | 11.9 | 9.8 | 9.9 | 8.4 | 10.1 | 4.2 | 6.5 | ||||
Class [mm]: | <3.0 | 3.1–5.0 | 5.1–10.0 | 10.1–20.0 | >20.1 | All | <3.0 | 3.1–5.0 | 5.1–10.0 | 10.1–20.0 | >20.1 | All | |
Fagus sylvatica | 45 | 16.4 | 13.7 | 12.2 | 9.8 | 9.6 | 9.5 | 9.8 | 8.1 | 7.6 | 6.9 | 5.7 | 6.3 |
<0.5 m * | 2 | - | - | - | - | - | - | - | - | - | - | - | - |
0.5–1.0 m | 12 | 17.9 | 11.5 | 13.0 | 10.7 | 9.8 | 9.7 | 7.0 | 8.1 | 7.0 | 5.6 | 5.4 | 5.0 |
1.0–1.5 m | 11 | 13.9 | 11.3 | 10.5 | 7.6 | 7.8 | 7.8 | 8.0 | 6.0 | 7.4 | 6.1 | 4.0 | 4.5 |
>1.5 m | 18 | 16.7 | 14.7 | 11.4 | 9.0 | 8.7 | 8.8 | 7.5 | 6.7 | 7.4 | 6.1 | 7.5 | 6.2 |
Gap * | 2 | - | - | - | - | - | - | - | - | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friesen, J.; Van Stan, J.T., II. Early European Observations of Precipitation Partitioning by Vegetation: A Synthesis and Evaluation of 19th Century Findings. Geosciences 2019, 9, 423. https://doi.org/10.3390/geosciences9100423
Friesen J, Van Stan JT II. Early European Observations of Precipitation Partitioning by Vegetation: A Synthesis and Evaluation of 19th Century Findings. Geosciences. 2019; 9(10):423. https://doi.org/10.3390/geosciences9100423
Chicago/Turabian StyleFriesen, Jan, and John T. Van Stan, II. 2019. "Early European Observations of Precipitation Partitioning by Vegetation: A Synthesis and Evaluation of 19th Century Findings" Geosciences 9, no. 10: 423. https://doi.org/10.3390/geosciences9100423
APA StyleFriesen, J., & Van Stan, J. T., II. (2019). Early European Observations of Precipitation Partitioning by Vegetation: A Synthesis and Evaluation of 19th Century Findings. Geosciences, 9(10), 423. https://doi.org/10.3390/geosciences9100423