The Sedimentary Origin of Black and White Banded Cherts of the Buck Reef, Barberton, South Africa
Abstract
:1. Introduction
2. Geological Context
3. Field Descriptions
4. Sample Selection and Description of Thin Sections
4.1. White Chert Facies
4.2. Black Chert Facies
4.3. Slabs and Matrix in Slab Conglomerates
4.4. Contacts between Black and White Layers
5. Chemical Compositions
5.1. Analytical Techniques
5.2. Results
6. Discussion: Origin of the Buck Reef Cherts
6.1. The Banding is Not Inherited from Bedding in a Sedimentary or Volcanic Precursor
6.2. The Banding is Not Diagenetic.
6.3. Limitations of the Hydrothermal Plume Model
6.4. A New Model for the Buck Reef Chert
6.4.1. Origin of the Silica: Shallow Marine, Low Temperature Hydrothermalism
6.4.2. The Origins of the Fine Layering: Seasonal Variations Recorded within the Black Layers
6.4.3. Origin of the Coarse Layering: Astronomically-Forced White Chert
7. Implications
8. Conclusions
- The sediment-like contacts between the black and white layers; the high purity of the white bands and their lack of internal structures; and the common reworking of white bands at the surface into slab conglomerates, are all evidence that the banding is not inherited from the silicification of a previously bedded sedimentary precursor, nor was it produced during diagenesis. Instead, we argue that alternating bands of black and white chert were formed by the chemical precipitation of silica and carbonaceous matter on the seafloor from Si-saturated seawater.
- The basin chemistry and silica content were influenced by the seepage of low-temperature fluids that had interacted with felsic volcanics and volcaniclastics beneath the sea floor. Stratigraphic variations and an increasing hydrothermal signal in the cherts resulted from mixing with seawater and progressive deepening of the basin.
- Micro-scale alternations of silica and carbonaceous laminae within the black bands are attributed to seasonal (annual) fluctuations similar to those observed in modern siliceous sinters: white micro-bands formed during winter by abiologic silica precipitation, while microbial activity was inhibited by the cold temperatures; black micro-bands formed during summer, when warmer conditions promoted carbonaceous matter production and the colonization of the euphotic zone by anoxygenic photosynthetic microorganisms.
- The outcrop-scale macro-layering resulted from temperature variations at a much greater timescale, likely associated with glacial/interglacial intervals of a few thousand years periodicity. Warm periods were suitable for black chert formation, and promoted silica solubility and saturated Si content in the restricted basin. During cold intervals, the decrease of surface temperature, freshwater inputs and water pH led to a drastic decrease of silica solubility: ambient seawater temporarily passed through its saturation level, resulting in the sudden and dramatic flocculation and sedimentation of a massive amount of pure silica. The quiescence of microbial activity at that time explains the remarkable absence of carbonaceous matter in these layers.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Derry, L.A.; Jacobsen, S.B. The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations. Geochim. Cosmochim. Acta 1990, 54, 2965–2977. [Google Scholar] [CrossRef]
- Tice, M.M.; Lowe, D.R. The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert. Earth-Sci. Rev. 2006, 76, 259–300. [Google Scholar] [CrossRef]
- Frei, R.; Polat, A. Source heterogeneity for the major components of ∼3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation. Earth Planet. Sci. Lett. 2007, 253, 266–281. [Google Scholar] [CrossRef]
- De Vries, S.T. Early Archaean Sedimentary Basins: Depositional Environment and Hydrothermal Systems. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, September 2004; pp. 1–160. [Google Scholar]
- De Vries, S.T.; Nijman, W.; De Boer, P. Sedimentary geology of the Palaeoarchean Buck Ridge (South Africa) and Kittys Gap (Western Australia) volcano-sedimentary complexes. Precambrian Res. 2010, 183, 749–769. [Google Scholar] [CrossRef]
- De Vries, S.T.; Nijman, W.; Armstrong, R.A. Growth-fault structure and stratigraphic architecture of the Buck Ridge volcano-sedimentary complex, upper Hooggenoeg Formation, Barberton Greenstone Belt, South Africa. Precambrian Res. 2006, 149, 77–98. [Google Scholar] [CrossRef]
- Lowe, D.R.; Fisher Worrell, G.F. Sedimentology, mineralogy, and implications of silicified evaporites in the Kromberg Formation, Barbeton Greenstone Belt, South Africa. In Geological Evolution of the Barberton Greenstone Belt, South Africa; Lowe, D.R., Byerly, G.R., Eds.; Geological Society of America: Boulder, CO, USA, 1999; pp. 167–188. [Google Scholar]
- Morris, R. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res. 1993, 60, 243–286. [Google Scholar] [CrossRef]
- Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am. Miner. 2005, 90, 1473–1499. [Google Scholar] [CrossRef]
- Steinhoefel, G.; Horn, I.; Von Blanckenburg, F. Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation. Geochim. Cosmochim. Acta 2009, 73, 5343–5360. [Google Scholar] [CrossRef] [Green Version]
- Bontognali, T.R.; Fischer, W.W.; Föllmi, K.B. Siliciclastic associated banded iron formation from the 3.2Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res. 2013, 226, 116–124. [Google Scholar] [CrossRef]
- Geilert, S.; Vroon, P.Z.; Van Bergen, M.J. Silicon isotopes and trace elements in chert record early Archean basin evolution. Chem. Geol. 2014, 386, 133–142. [Google Scholar] [CrossRef]
- Posth, N.R.; Hegler, F.; Konhauser, K.O.; Kappler, A. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nat. Geosci. 2008, 1, 703–708. [Google Scholar] [CrossRef]
- Sugitani, K.; Yamamoto, K.; Adachi, M.; Kawabe, I.; Sugisaki, R. Archean cherts derived from chemical, biogenic and clastic sedimentation in a shallow restricted basin: Examples from the Gorge Creek Group in the Pilbara Block. Sedimentology 1998, 45, 1045–1062. [Google Scholar] [CrossRef]
- Kato, Y.; Nakamura, K. Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Precambrian Res. 2003, 125, 191–243. [Google Scholar] [CrossRef]
- Bolhar, R.; Van Kranendonk, M.J.; Kamber, B.S. A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton - Formation from hydrothermal fluids and shallow water. Precambrian Res. 2005, 137, 93–114. [Google Scholar] [CrossRef]
- Knauth, L.P.; Lowe, D.R. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bull. 2003, 115, 566–580. [Google Scholar] [CrossRef]
- Perry, E.; Lefticariu, L. The oxygen isotopic composition of Precambrian cherts. Geochim. Cosmochim. Acta 2006, 70, A483. [Google Scholar] [CrossRef]
- Robert, F.; Chaussidon, M. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 2006, 443, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Boorn, S.V.D.; Van Bergen, M.; Vroon, P.; De Vries, S.; Nijman, W. Silicon isotope and trace element constraints on the origin of ∼3.5Ga cherts: Implications for Early Archaean marine environments. Geochim. Cosmochim. Acta 2010, 74, 1077–1103. [Google Scholar] [CrossRef]
- Marin, J.; Chaussidon, M.; Robert, F. Microscale oxygen isotope variations in 1.9Ga Gunflint cherts: Assessments of diagenesis effects and implications for oceanic paleotemperature reconstructions. Geochim. Cosmochim. Acta 2010, 74, 116–130. [Google Scholar] [CrossRef]
- Marin-Carbonne, J.; Chaussidon, M.; Boiron, M.-C.; Robert, F. A combined in situ oxygen, silicon isotopic and fluid inclusion study of a chert sample from Onverwacht Group (3.35Ga, South Africa): New constraints on fluid circulation. Chem. Geol. 2011, 286, 59–71. [Google Scholar] [CrossRef]
- Marin-Carbonne, J.; Chaussidon, M.; Robert, F. Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochim. Cosmochim. Acta 2012, 92, 129–147. [Google Scholar] [CrossRef]
- Stefurak, E.J.; Fischer, W.W.; Lowe, D.R. Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater. Geochim. Cosmochim. Acta 2015, 150, 26–52. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, M.J.; Viljoen, R.P. An introduction to the geology of the Barberton, granite-greenstone terrain. Geol. Soc. S. Afr. Spec. Publ. 1969, 9, 1–20. [Google Scholar]
- Armstrong, R.; Compston, W.; De Wit, M.; Williams, I. The stratigraphy of the 3.5-3.2 Ga Barberton Greenstone Belt revisited: A single zircon ion microprobe study. Earth Planet. Sci. Lett. 1990, 101, 90–106. [Google Scholar] [CrossRef]
- Kröner, A.; Byerly, G.; Lowe, D.R. Chronology of Early Archean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by signle zircon evaporation. Earth Planet. Sci. Lett. 1991, 103, 41–54. [Google Scholar] [CrossRef]
- Kamo, S.L.; Davis, D.W. Reassessment of Archean crustal development in the Barberton Mountain Land, South Africa, based on U-Pb dating. Tectonics 1994, 13, 167–192. [Google Scholar] [CrossRef]
- Byerly, G.R.; Kroner, A.; Lowe, D.R.; Todt, W.; Walsh, M.M. Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: Evidence from the Upper Onverwacht and Fig Tree groups. Precambrian Res. 1996, 78, 125–138. [Google Scholar] [CrossRef]
- Lowe, D.R.; Byerly, G.R. An overview of the geology of the Barberton Greenstone Belt: implications for early crustal development. Dev. Precambrian Geol. 2007, 15, 481–526. [Google Scholar]
- Viljoen, M.J.; Viljoen, R.P. The geological and geochemical significance of the upper formations of the Onverwacht Group. Geol. Soc. S. Afr. Spec. Publ. 1969, 2, 113–151. [Google Scholar]
- De Wit, M.J.; Furnes, H.; Robins, B. Archaean abiogenic and probable biogenic structures associated with mineralized hydrothermal vent systems and regional metasomatism, with implications for greenstone belt studies. Econ. Geol. 2011, 77, 1783–1802. [Google Scholar] [CrossRef]
- Furnes, H.; De Wit, M.J.; Robins, B.; Sandstå, N.R. Volcanic evolution of the upper Onverwacht Suite, Barberton Greenstone Belt, South Africa. Precambrian Res. 2011, 186, 28–50. [Google Scholar] [CrossRef]
- Lowe, D.R. Petrology and Sedimentology of Cherts and Related Silicified Sedimentary Rocks in the Swaziland Supergroup; Geological Society of America: Boulder, CO, USA, 1999; pp. 83–114. [Google Scholar]
- Walsh, M.M. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res. 1992, 54, 271–292. [Google Scholar] [CrossRef]
- Westall, F. Life on the Early Earth: A Sedimentary View. Science 2005, 308, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Tice, M.M.; Lowe, D.R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 2004, 431, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Schieber, J.; Bose, P.K.; Eriksson, P.G.; Banerjee, S.; Sarkar, S.; Altermann, W.; Catuneanu, O. (Eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2. [Google Scholar]
- Chauvel, C.; Bureau, S.; Poggi, C. Comprehensive Chemical and Isotopic Analyses of Basalt and Sediment Reference Materials. Geostand. Geoanal. Res. 2011, 35, 125–143. [Google Scholar] [CrossRef]
- Ledevin, M.; Arndt, N.; Simionovici, A.; Jaillard, E.; Ulrich, M. Silica precipitation triggered by clastic sedimentation in the Archean: New petrographic evidence from cherts of the Kromberg type section, South Africa. Precambrian Res. 2014, 255, 316–334. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Hallam, A., Ed.; Blackwell Scientific Publications: Hoboken, NJ, USA, 1985; p. 312. [Google Scholar]
- Alibo, D.S.; Nozaki, Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta 1999, 63, 363–372. [Google Scholar] [CrossRef]
- Douville, E.; Bienvenu, P.; Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Appriou, P.; Gamo, T. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim. Cosmochim. Acta 1999, 63, 627–643. [Google Scholar] [CrossRef]
- Stefurak, E.J.T.; Lowe, D.R.; Zentner, D.; Fischer, W.W. Primary silica granules – A new mode of early Archean sedimentation. Geology 2014, 42, 283–286. [Google Scholar] [CrossRef]
- Duchac, K.C.; Hanor, J.S. Origin and timing of the metasomatic silicification of an early archean komatiite sequence, barberton mountain land, South Africa. Precambrian Res. 1987, 37, 125–146. [Google Scholar] [CrossRef]
- Hanor, J.S.; Duchac, K.C. Isovolumetric silicification of early Archean Komatities: geochemical mass balances and constraints on origin. J. Geol. 1990, 98, 863–877. [Google Scholar] [CrossRef]
- Hofmann, A.; Harris, C. Silica alteration zones in the Barberton greenstone belt: A window into subseafloor processes 3.5–3.3 Ga ago. Chem. Geol. 2008, 257, 221–239. [Google Scholar] [CrossRef]
- Orberger, B.; Rouchon, V.; Westall, F.; De Vries, S.T.; Pinti, D.L.; Wagner, C.; Wirth, R.; Hashizume, K. Microfacies and origin of some Archean cherts (Pilbara, Australia), Special Paper 405. Process. Early Earth 2006, 405, 133–156. [Google Scholar]
- Rouchon, V.; Orberger, B. Origin and mechanisms of K–Si-metasomatism of ca. 3.4–3.3Ga volcaniclastic deposits and implications for Archean seawater evolution: Examples from cherts of Kittys Gap (Pilbara craton, Australia) and Msauli (Barberton Greenstone Belt, South Africa). Precambrian Res. 2008, 165, 169–189. [Google Scholar] [CrossRef]
- Krapež, B.; Barley, M.E.; Pickard, A.L. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 2003, 50, 979–1011. [Google Scholar] [CrossRef] [Green Version]
- Lascelles, D.F. Black smokers and density currents: A uniformitarian model for the genesis of banded iron-formations. Ore Geol. Rev. 2007, 32, 381–411. [Google Scholar] [CrossRef]
- Bekker, A.; Slack, J.F.; Planavsky, N.; Krapez, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Econ. Geol. 2010, 105, 467–508. [Google Scholar] [CrossRef]
- Murray, R.W.; Brink, M.R.B.T.; Gerlach, D.C.; Russ, G.P.; Jones, D.L. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis. Geochim. Cosmochim. Acta 1992, 56, 2657–2671. [Google Scholar] [CrossRef]
- Egglseder, M.; Cruden, A.; Tomkins, A.; Wilson, S.; Langendam, A. Colloidal origin of microbands in banded iron formations. Geochem. Perspect. Lett. 2018, 6, 43–49. [Google Scholar] [CrossRef]
- Dhuime, B.; Hawkesworth, C.J.; Cawood, P.A.; Storey, C.D. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science 2012, 335, 1334–1336. [Google Scholar] [CrossRef]
- Bounama, C.; Franck, S.; von Bloh, W. The fate of the Earth’s ocean. Hydrol. Earth Syst. Sci. 2001, 5, 569–575. [Google Scholar] [CrossRef]
- Bolhar, R.; Kamber, B.S.; Moorbath, S.; Fedo, C.M.; Whitehouse, M.J. Characterization of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 2004, 222, 43–60. [Google Scholar] [CrossRef]
- Kamber, B.S.; E Webb, G. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim. Cosmochim. Acta 2001, 65, 2509–2525. [Google Scholar] [CrossRef]
- Klein, C.; Beukes, N.J. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol. 1989, 84, 1733–1774. [Google Scholar] [CrossRef]
- Arndt, N.T.; Nisbet, E.G. Processes on the Young Earth and the Habitats of Early Life. Annu. Rev. Earth Planet. Sci. 2012, 40, 521–549. [Google Scholar] [CrossRef] [Green Version]
- Hren, M.T.; Tice, M.M.; Chamberlain, C.P. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 2009, 462, 205–208. [Google Scholar] [CrossRef]
- De Vries, S.T.; Touret, J.L. Early Archaean hydrothermal fluids; a study of inclusions from the ∼3.4 Ga Buck Ridge Chert, Barberton Greenstone Belt, South Africa. Chem. Geol. 2007, 237, 289–302. [Google Scholar] [CrossRef]
- Bau, M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 1999, 63, 67–77. [Google Scholar] [CrossRef]
- Heinrichs, T. Lithostratigraphische Untersuchungen in der Fig Tree Gruppe des Barberton Greenstone Belt zwischen Umsoli und Lomati (Südafrika). Göttinger Arb. Geol. Paläont. 1980, 22, 118. [Google Scholar]
- Nocita, B.W.; Lowe, D.R. Foreland basin sedimentation in the Mapepe Formation, southern-facies Fig Tree Group. In Geologic Evolution of the Barberton Greenstone Belt, South Africa; Special Paper 329; Geological Society of America: Boulder, CO, USA, 1999; pp. 233–258. [Google Scholar]
- Nijman, W.; de Bruijne, K.C.; Valkering, M.E. Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambrian Res. 1998, 88, 25–52. [Google Scholar] [CrossRef]
- Herzig, P.M.; Becker, K.P.; Stoffers, P.; Backer, H.; Blum, N. Hydrothermal silica chimney fields in the Galapagos spreading center at 86 degrees W. Earth Planet. Sci. Lett. 1988, 89, 261–272. [Google Scholar] [CrossRef]
- Stüben, D.; Taibi, N.; McMurtry, G.M.; Scholten, J.; Stoffers, P.; Zhang, D. Growth history of a hydrothermal silica chimney from the Mariana backarc spreading center (southwest Pacific, 18°13′N). Chem. Geol. 1994, 113, 273–296. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D.; Wang, D.; Yan, D.; Zhou, X.; Wang, Q. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran–Cambrian transition. Sedimentology 2012, 59, 809–829. [Google Scholar] [CrossRef]
- De Wit, M.J.; Furnes, H. 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt—Paleoarchean crust in cold environments. Sci. Adv. 2016, 2, e1500368. [Google Scholar] [CrossRef] [PubMed]
- Binns, R.; Barriga, F.; Miller, D. Leg 193 Synthesis: Anatomy of an Active Felsic-Hosted Hydrothermal System, Eastern Manus Basin, Papua New Guinea. In Proceedings of the Proceedings of the Ocean Drilling Program, 194 Scientific Results; International Ocean Discovery Program (IODP): College Station, TX, USA, 2007; Volume 193. [Google Scholar]
- Abraham, K.; Hofmann, A.; Foley, S.; Cardinal, D.; Harris, C.; Barth, M.; Andre, L.; Foley, S.; Barth, M. Coupled silicon–oxygen isotope fractionation traces Archaean silicification. Earth Planet. Sci. Lett. 2011, 301, 222–230. [Google Scholar] [CrossRef]
- Boorn, S.H.V.D.; Van Bergen, M.J.; Nijman, W.; Vroon, P.Z. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: Evidence from silicon isotopes. Geology 2007, 35, 939. [Google Scholar] [CrossRef]
- Grosch, E.; Košler, J.; McLoughlin, N.; Drost, K.; Sláma, J.; Pedersen, R.; Grosch, E. Paleoarchean detrital zircon ages from the earliest tectonic basin in the Barberton Greenstone Belt, Kaapvaal craton, South Africa. Precambrian Res. 2011, 191, 85–99. [Google Scholar] [CrossRef]
- Cloud, P. Paleoecological Significance of the Banded Iron-Formation. Econ. Geol. 1973, 68, 1135–1143. [Google Scholar] [CrossRef]
- Laschet, C. On the origin of cherts. Facies 1984, 10, 257–289. [Google Scholar] [CrossRef]
- Hamade, T.; Konhauser, K.O.; Raiswell, R.; Goldsmith, S.; Morris, R.C. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology 2003, 31, 35. [Google Scholar] [CrossRef]
- Basile-Doelsch, I.; Meunier, J.D.; Parron, C. Another continental pool in the terrestrial silicon cycle. Nature 2005, 433, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.W.; Bau, M.; Andersson, P.; Dulski, P. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9Ga Pongola Supergroup, South Africa. Geochim. Cosmochim. Acta 2008, 72, 378–394. [Google Scholar] [CrossRef]
- Hannington, M.D.; Scott, S.D. Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Can. Mineral. 1988, 26, 603–625. [Google Scholar]
- Halbach, M.; Halbach, P.; Lüders, V. Sulfide-impregnated and pure silica precipitates of hydrothermal origin from the Central Indian Ocean. Chem. Geol. 2002, 182, 357–375. [Google Scholar] [CrossRef]
- Trendall, A.F.; Blockley, J.G. The Iron Formations of the Precambrian Hamersley Group, Western Australia; Geological Survey of Western Australia: Perth, Australia, 1970; Bulletin 119; p. 366. [Google Scholar]
- Williams, G.E. Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev. Geophys. 2000, 38, 37–59. [Google Scholar] [CrossRef]
- Barley, M.E.; Pickard, A.L.; Sylvester, P.J. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 1997, 385, 55–58. [Google Scholar] [CrossRef]
- Pickard, A.L.; Barley, M.E.; Krapež, B. Deep-marine depositional setting of banded iron formation: sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia. Sediment. Geol. 2004, 170, 37–62. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Newman, D.K.; Kappler, A. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 2005, 3, 167–177. [Google Scholar] [CrossRef]
- Lantink, M.L.; Davies, J.H.F.L.; Mason, P.R.D.; Schaltegger, U.; Hilgen, F.J. Climate control on banded iron formations linked to orbital eccentricity. Nat. Geosci. 2019, 12, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Hüneke, H.; Mulder, T. Deep-Sea Sediments. Dev. Sedimentol. 2011, 63, 849. [Google Scholar]
- Konhauser, K.O.; Phoenix, V.R.; Bottrell, S.H.; Adams, D.G.; Head, I.M. Microbial-silica interactions in Icelandic hot spring sinter: Possible analogues for some Precambrian siliceous stromatolites. Sedimentology 2001, 48, 415–433. [Google Scholar] [CrossRef]
- Blake, R.E.; Chang, S.J.; Lepland, A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archean ocean. Nature 2010, 464, 1029–1032. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, P.; Condie, K.; Tirsgaard, H.; Mueller, W.; Altermann, W.; Miall, A.; Aspler, L.; Catuneanu, O.; Chiarenzelli, J. Precambrian clastic sedimentation systems. Sediment. Geol. 1998, 120, 5–53. [Google Scholar] [CrossRef]
- Ohmoto, H. Archean atmosphere, hydrosphere, and biosphere. In The Precambrian Earth: Tempos and Events; Eriksson, P.A., Altermann, D.R., Nelson, D.R., Mueller, W.U., Catuneanu, O., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 361–387. [Google Scholar]
- Hessler, A.M.; Lowe, D.R. Weathering and sediment generation in the Archean: An integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res. 2006, 151, 185–210. [Google Scholar] [CrossRef]
- Von Brunn, V.; Gold, D.J.D. Diamictite in the Archean Pongola sequence of southern Africa. J. Afr. Earth Sci. 1993, 16, 367–374. [Google Scholar] [CrossRef]
- Simonson, B.M.; Hassler, S.W. Was the Deposition of Large Precambrian Iron Formations Linked to Major Marine Transgressions? J. Geol. 1996, 104, 665–676. [Google Scholar] [CrossRef]
- Hofmann, A.; Dirks, P.H.G.M.; Jelsma, H.A. Shallowing-upward carbonate cycles in the Bellingwe greenstone belt, Zimbabwe: A record of Archean sea-level oscillations. J. Sediment. Res. 2004, 74, 64–81. [Google Scholar] [CrossRef]
- Huybers, P.; Curry, W. Links between annual, Milankovitch and continuum temperature variability. Nature 2006, 441, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 2007, 317, 793–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kienert, H.; Feulner, G.; Petoukhov, V. Albedo and heat transport in 3-D model simulations of the early Archean climate. Clim. Past 2013, 9, 1841–1862. [Google Scholar] [CrossRef] [Green Version]
- Bakun, A.; Black, B.A.; Bograd, S.J.; García-Reyes, M.; Miller, A.J.; Rykaczewski, R.R.; Sydeman, W.J. Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Curr. Clim. Chang. Rep. 2015, 1, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gouhier, T.C.; Menge, B.A.; Ganguly, A.R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 2015, 518, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, G.; Okura, T.; Goto, K. Properties of Silica in Water. Geochim. Cosmochim. Acta 1957, 12, 123–132. [Google Scholar] [CrossRef]
- Loucaides, S.; Van Cappellen, P.; Behrends, T. Dissolution of biogenic silica from land to ocean: Role of salinity and pH. Limnol. Oceanogr. 2008, 53, 1614–1621. [Google Scholar] [CrossRef] [Green Version]
- Tartèse, R.; Chaussidon, M.; Gurenko, A.; Delarue, F.; Robert, F. Warm Archean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem. Persp. Let. 2017, 3, 55–65. [Google Scholar] [CrossRef]
- Krissansen-Totton, J.; Arney, G.N.; Catling, D.C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl. Acad. Sci. 2018, 115, 4105–4110. [Google Scholar] [CrossRef] [Green Version]
- Anbar, A.D.; Knoll, A.H. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science 2002, 297, 1137–1142. [Google Scholar] [CrossRef] [Green Version]
- Knauth, L.P. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Geobiol. Object. Concept. Perspect. 2005, 219, 53–69. [Google Scholar]
- Satkoski, A.M.; Beukes, N.J.; Li, W.; Beard, B.L.; Johnson, C.M. A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 2015, 430, 43–53. [Google Scholar] [CrossRef]
- Marty, B.; Avice, G.; Bekaert, D.V.; Broadley, M.W. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. Comptes Rendus Geosci. 2018, 350, 154–163. [Google Scholar] [CrossRef]
- Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 1992, 56, 3265–3272. [Google Scholar] [CrossRef]
- Maliva, R.G.; Knoll, A.H.; Simonson, B.M. Secular change in the Precambrian silica cycle: Insights from chert petrology. GSA Bull. 2005, 117, 835. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.F. Astronomical forcing through geological time. Spec. Publis Int. Ass. Sediment. 1994, 19, 15–24. [Google Scholar]
- Ito, T.; Kumazawa, M.; Hamano, Y.; Matsui, T.; Masuda, K. Long Term Evolution of the Solar Insolation Variation over 4Ga. Proc. Jpn. Acad. Ser. B 1993, 69, 233–237. [Google Scholar] [CrossRef]
BHVO-1 Values Used to Calibrate the Signal | Average BIR (n = 2) | BIR Réf | Reproduc- Ibility (%) | Accuracy (%) | AGV1 | AGV-1 Réf | Accuracy (%) | Average DTS-2 (n = 4) | Reproduc- ibility (%) | |
---|---|---|---|---|---|---|---|---|---|---|
(wt%) | (wt%) | |||||||||
SiO2 | 49.9 | |||||||||
TiO2 | 2.73 | |||||||||
Al2O3 | 13.5 | |||||||||
Fe2O3 t | 12.3 | |||||||||
MnO | 0.17 | |||||||||
MgO | 7.23 | |||||||||
CaO | 11.4 | |||||||||
Na2O | 2.22 | |||||||||
K2O | 0.52 | |||||||||
LOI | ||||||||||
Sum | 99.97 | |||||||||
(ppm) | ||||||||||
Ti | 16300 | 5709.5 | 5630 | 2 | 3 | 6221 | 6080 | 2 | 41.8 | 2 |
Cs | 0.1 | 0.00543 | 1.35 | 1.29 | 5 | |||||
Rb | 9.11 | 0.179 | 0.239 | 2 | -24 | 70.9 | 66.8 | 6 | 0.04925 | 27 |
Ba | 131 | 6.03 | 6.47 | 2 | -6 | 1253 | 1230 | 2 | 11.7 | 2 |
Li | 4.8 | 3.6 | 3.37 | 2 | 8 | 10.7 | 10.9 | -2 | 2.025 | 2 |
Pb | 1.54 | 2.875 | 3.01 | 2 | -3 | 39.9 | 35.9 | 11 | 3.795 | 1 |
Sr | 396 | 109.5 | 106 | 2 | 5 | 695 | 657 | 6 | 0.4225 | 1 |
Th | 1.22 | 0.02745 | 0.0299 | 2 | -7 | 6.33 | 6.35 | 0 | 0.00375 | |
U | 0.403 | 0.00898 | 0.00981 | 2 | -7 | 1.86 | 1.83 | 2 | 0.00181 | 5 |
Nb | 18.1 | 0.5275 | 0.521 | 2 | 3 | 14.4 | 13.9 | 4 | 0.01468 | 4 |
Ta | 1.14 | 0.0373 | 0.0384 | 2 | -2 | 0.85 | 0.825 | 3 | ||
Zr | 172 | 13.5 | 13.8 | 2 | -1 | 237 | 237 | 0 | ||
Hf | 4.36 | 0.5795 | 0.574 | 2 | 2 | 5.06 | 5.05 | 0 | ||
Sc | 32 | 43.4 | 42.4 | 2 | 4 | 12.7 | 12.8 | -1 | 2.64 | 1 |
V | 317 | 324.5 | 319 | 2 | 3 | 121 | 117 | 3 | 18.8 | 1 |
Cr | 280 | 384 | 368 | 2 | 6 | 7.54 | 8.05 | -6 | 12283 | 1 |
Co | 45.0 | 53.2 | 51.1 | 2 | 5 | 15.9 | 15.3 | 4 | 104 | 2 |
Ni | 119 | 172.5 | 165 | 2 | 6 | 14.9 | 14.5 | 3 | 2646 | 2 |
Cu | 127 | 120.5 | 115 | 2 | 6 | 58 | 57.2 | 1 | 1.535 | 15 |
Zn | 103 | 68.5 | 68.4 | 2 | 1 | 95.9 | 91.7 | 5 | 39.2 | 2 |
(ppt) | (ppm) | |||||||||
La | 15.2 | 0.606 | 0.598 | 2 | 3 | 38.1 | 38 | 0 | 0.0127 | 8 |
Ce | 37.5 | 1.835 | 1.87 | 2 | -1 | 70.3 | 69 | 2 | 0.02363 | 8 |
Pr | 5.35 | 0.375 | 0.374 | 2 | 2 | 8.52 | 8.47 | 1 | 0.00303 | 21 |
Nd | 24.5 | 2.355 | 2.36 | 2 | 1 | 32.3 | 31.8 | 2 | 0.01283 | 8 |
Sm | 6.07 | 1.075 | 1.1 | 2 | -1 | 5.85 | 5.77 | 1 | 0.0035 | 14 |
Eu | 2.07 | 0.516 | 0.523 | 2 | 0 | 1.63 | 1.61 | 1 | 0.0011 | 39 |
Gd | 6.24 | 1.835 | 1.83 | 2 | 2 | 4.78 | 4.69 | 2 | 0.00503 | 7 |
Tb | 0.92 | 0.358 | 0.355 | 2 | 2 | 0.639 | 0.632 | 1 | 0.00065 | 15 |
Dy | 5.31 | 2.515 | 2.56 | 2 | 0 | 3.64 | 3.55 | 3 | 0.00487 | 7 |
Ho | 0.98 | 0.567 | 0.571 | 2 | 1 | 0.682 | 0.675 | 1 | 0.001305 | 7 |
Y | 26 | 15.4 | 15.1 | 2 | 3 | 20.1 | 19.5 | 3 | 0.0292 | 4 |
Er | 2.54 | 1.695 | 1.72 | 2 | 0 | 1.88 | 1.84 | 2 | 0.005303 | 6 |
Yb | 2 | 1.66 | 1.65 | 2 | 2 | 1.7 | 1.65 | 3 | 0.010375 | 2 |
Lu | 0.274 | 0.2445 | 0.244 | 2 | 2 | 0.244 | 0.241 | 1 | 0.002255 | 3 |
Black Chert | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Massive Layer | Matrix in Conglomerates | |||||||||
BRC20 | BRC21 | BRC22 | BRC2a | BRC2b | BRC4 | BRC1 | BRC5 | BRC6 | BRC15 | |
Height (m) | 52 | 43 | 116 | 31 | 31 | 29 | 34 | 23 | 17 | 164 |
(wt%) | ||||||||||
SiO2 | 100 | 100 | 100 | 100 | 100.9 | 100.8 | 100.2 | 99.99 | ||
TiO2 | ||||||||||
Al2O3 | 0.156 | 0.204 | 0.151 | 0.194 | 0.178 | |||||
Fe2O3 t | 0.215 | 0.293 | 0.233 | 0.152 | 0.149 | 0.269 | ||||
MnO | ||||||||||
MgO | ||||||||||
CaO | ||||||||||
Na2O | ||||||||||
K2O | 0.055 | 0.051 | ||||||||
LOI | 0.48 | 0.33 | 0.05 | 0.35 | 0.49 | 0.37 | 0.24 | 0.39 | ||
Sum | 100.9 | 100.9 | 100.4 | 100.3 | 101.8 | 101.2 | 100.8 | 100.6 | ||
(ppm) | ||||||||||
Ti | 23.9 | 39.8 | 7.79 | 33.7 | 18.1 | 0.883 | 36.6 | 30.1 | 32.3 | 5.65 |
Cs | 0.129 | 0.131 | 0.0743 | 0.0757 | 0.0754 | 0.0396 | 0.0566 | 0.0696 | 0.067 | 0.0761 |
Rb | 0.855 | 0.824 | 0.454 | 0.196 | 0.268 | 0.0587 | 0.995 | 0.183 | 0.801 | 0.209 |
Ba | 19.8 | 20.3 | 11.5 | 19.3 | 19 | 0.799 | 22.7 | 4.61 | 15.6 | 7.32 |
Li | 0.574 | 0.941 | 3.14 | 0.376 | 0.22 | 0.159 | 1.19 | <l.d. | 0.402 | 0.436 |
Pb | 0.452 | 0.319 | 0.406 | 0.939 | 0.518 | 0.136 | 1.42 | 0.421 | 1.23 | 0.0918 |
Sr | 2.73 | 3.39 | 0.802 | 4.09 | 4.84 | 0.379 | 4.49 | 1 | 4.29 | 1.01 |
Th | 0.0701 | 0.136 | 0.035 | 0.162 | 0.154 | 0.0076 | 0.118 | 0.0714 | 0.164 | 0.0308 |
U | 0.0674 | 0.166 | 0.0323 | 0.107 | 0.0876 | 0.0571 | 0.28 | 0.2 | 0.312 | 0.109 |
Nb | 0.123 | 0.217 | 0.0814 | 0.244 | 0.141 | 0.0075 | 0.151 | 0.262 | 0.271 | 0.096 |
Ta | 0.0087 | 0.0148 | 0.0035 | 0.0149 | 0.00915 | <l.d. | 0.0072 | 0.0076 | 0.0148 | 0.005 |
Zr | 0.894 | 2.82 | 0.413 | 1.74 | 1.47 | 0.185 | 2.39 | 1.88 | 6.17 | 0.444 |
Hf | 0.0221 | 0.0697 | 0.012 | 0.0351 | 0.029 | <l.d. | 0.0459 | 0.0331 | 0.0737 | 0.0082 |
Sc | 0.226 | 0.258 | 0.0639 | <l.d. | <l.d. | <l.d. | <l.d. | 0.176 | 0.578 | 0.0162 |
V | 2.65 | 2.39 | 0.787 | 1.54 | 0.466 | 0.0775 | 0.654 | 1.61 | 4.5 | 0.937 |
Cr | 171 | 210 | 159 | 2.62 | 2.41 | 0.877 | 2.54 | 6.74 | 6.49 | 205 |
Co | 1.72 | 4.22 | 0.549 | 0.496 | 0.677 | 0.0478 | 0.489 | 0.15 | 0.128 | 1.76 |
Ni | 8.48 | 26.1 | 4.11 | 8.44 | 5.64 | 0.896 | 6.17 | 4.93 | 2.22 | 11.3 |
Cu | 5.22 | 2.76 | 2.14 | 4.02 | 3.2 | 2.49 | 1.85 | 4.29 | 2.53 | 1.69 |
Zn | 2.08 | 1.48 | 2.89 | 2.91 | 2.71 | 2.94 | 4.18 | 1.81 | <l.d. | |
(ppt) | ||||||||||
La | 211 | 495 | 1110 | 310 | 338 | 4 | 635 | 162 | 422 | 51 |
Ce | 424 | 1030 | 2160 | 465 | 546 | 10 | 967 | 277 | 616 | 107 |
Pr | 47 | 122 | 251 | 45 | 42 | 1 | 94 | 28 | 59 | 11 |
Nd | 166 | 485 | 928 | 139 | 103 | 4 | 314 | 96 | 208 | 46 |
Sm | 35 | 103 | 165 | 20 | 11 | 2 | 54 | 27 | 74 | 24 |
Eu | 11 | 38 | 67 | 11 | 5 | 1 | 21 | 9 | 53 | 14 |
Gd | 24 | 91 | 162 | 21 | 12 | 3 | 54 | 38 | 176 | 40 |
Tb | 4 | 15 | 27 | 3 | 2 | 1 | 11 | 8 | 38 | 9 |
Dy | 28 | 104 | 190 | 29 | 19 | 4 | 64 | 59 | 286 | 71 |
Ho | 6 | 26 | 40 | 7 | 5 | 1 | 11 | 12 | 63 | 16 |
Y | 154 | 769 | 1010 | 269 | 170 | 30 | 519 | 358 | 2170 | 480 |
Er | 21 | 87 | 124 | 27 | 16 | 3 | 37 | 35 | 185 | 49 |
Yb | 27 | 104 | 125 | 25 | 20 | 3 | 30 | 44 | 189 | 45 |
Lu | 5 | 17 | 18 | 4 | 3 | 0.5 | 4 | 6 | 29 | 7 |
Pr/YbSN a | 0.54 | 0.37 | 0.63 | 0.58 | 0.65 | 0.09 | 1 | 0.2 | 0.1 | 0.08 |
Y/Ho | 24.7 | 29.9 | 25 | 38.6 | 35.8 | 32.6 | 45.9 | 30.6 | 34.3 | 29.6 |
La/La* a | 1.01 | 1.2 | 1.1 | 1.26 | 1.15 | 7.8 | 1.37 | 1.24 | 1.64 | 1.42 |
Ce/Ce* a | 0.98 | 1.05 | 0.99 | 1.01 | 1.1 | 2.15 | 1.06 | 1.05 | 1.15 | 1.21 |
Eu/Eu* a | 2 | 1.95 | 1.87 | 2.16 | 1.5 | 2.44 | 1.76 | 1.37 | 1.91 | 2.3 |
ΣREE + Y b | 1.16 | 3.48 | 6.38 | 1.37 | 1.29 | 0.07 | 2.82 | 1.16 | 4.57 | 0.97 |
ΣLILE b | 24 | 25 | 13.2 | 24.6 | 24.7 | 1.41 | 29.7 | 6.28 | 22 | 8.71 |
ΣHFSE b | 1.19 | 3.42 | 0.577 | 2.3 | 1.89 | 0.26 | 2.99 | 2.45 | 7 | 0.69 |
White Chert | Chert Vein | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Massive Layer | Slab in Conglomerate | ||||||||||
BRC20 | BRC21 | BRC22a | BRC22b | BRC1 | BRC4 | BRC5 | BRC6a | BRC6b | BRC15 | BRC2-V | |
(n = 3) | (n = 3) | (n = 3) | (n = 2) | (n = 2) | (n = 2) | (n = 2) | |||||
Height (m) | 52 | 43 | 116 | 116 | 34 | 29 | 23 | 17 | 17 | 164 | |
(wt%) | |||||||||||
SiO2 | 100 | 100 | 100 | 100 | 100.7 | 101.9 | 101.4 | 100.7 | 100 | ||
TiO2 | |||||||||||
Al2O3 | 0.114 | ||||||||||
Fe2O3 t | 0.224 | 0.329 | 0.237 | 0.237 | 0.202 | ||||||
MnO | |||||||||||
MgO | |||||||||||
CaO | |||||||||||
Na2O | |||||||||||
K2O | |||||||||||
LOI | 0.31 | 0.19 | 0 | 0 | 0.29 | 0.33 | 0.13 | 0.16 | 0 | ||
Sum | 100.5 | 100.5 | 100.2 | 100.2 | 101 | 102.3 | 101.5 | 100.9 | 100.2 | ||
(ppm) | |||||||||||
Ti | 2.11 | 3.57 | 2.66 | 1.36 | 1.98 | 0.86 | <l.d. | <l.d. | 6.97 | 0.811 | 347 |
Cs | 0.0589 | 0.0602 | 0.0538 | 0.0408 | 0.0199 | 0.0274 | 0.0285 | 0.0358 | 0.0636 | 0.0377 | 0.359 |
Rb | 0.386 | 0.48 | 0.266 | 0.198 | 0.163 | 0.0664 | 0.233 | 0.324 | 0.416 | 0.12 | 12.4 |
Ba | 9.8 | 14.5 | 11.2 | 7.51 | 5.09 | 1.74 | 3.76 | 10.8 | 13.9 | 3.47 | 1856 |
Li | 0.3497 | 0.3497 | 0.381 | 0.3 | 0.116 | 0.0845 | <l.d. | 0.183 | 0.237 | 0.257 | 0.72 |
Pb | 0.262 | 0.285 | 7.1 | 0.39 | 0.416 | 0.11 | 0.133 | 0.261 | 0.849 | 0.161 | 1.61 |
Sr | 0.74 | 0.913 | 0.553 | 0.479 | 0.656 | 0.405 | 0.659 | 2.08 | 3.51 | 0.365 | 10 |
Th | 0.0046 | 0.0103 | 0.0065 | 0.0055 | 0.0099 | 0.0071 | 0.0249 | 0.015 | 0.0497 | 0.002 | 0.721 |
U | 0.0081 | 0.0182 | 0.0081 | 0.0093 | 0.0233 | 0.0416 | 0.0151 | 0.0298 | 0.13 | 0.0101 | 0.253 |
Nb | 0.0458 | 0.0565 | 0.0488 | 0.0429 | 0.0089 | 0.0075 | 0.0294 | 0.0246 | 0.0795 | 0.0395 | 1.08 |
Ta | 0.0011 | 0.001 | 0.0022 | 0.0017 | 0.0004 | <l.d. | 0.0032 | 0.0013 | 0.0076 | 0.0006 | 0.0565 |
Zr | 0.159 | 0.377 | 0.214 | 0.191 | <l.d. | 0.153 | <l.d. | <l.d. | 2.16 | 0.111 | 13.3 |
Hf | 0.0032 | 0.0083 | 0.0067 | 0.0027 | <l.d. | <l.d. | <l.d. | <l.d. | 0.0216 | <l.d. | 0.284 |
Sc | 0.0453 | 0.0944 | 0.0467 | 0.0337 | <l.d. | <l.d. | <l.d. | <l.d. | 0.263 | <l.d. | 1.38 |
V | 1.14 | 1.46 | 0.788 | 0.845 | 0.0533 | 0.0447 | 0.271 | 0.926 | 1.39 | 0.762 | 13.5 |
Cr | 225 | 272 | 172 | 190 | <l.d. | 0.36 | 1.02 | 1.78 | 2.67 | 175 | 77.7 |
Co | 0.47 | 1.03 | 0.34 | 0.385 | 0.0614 | 0.0249 | 0.0902 | 0.0376 | 0.0438 | 0.397 | 4.15 |
Ni | 4.42 | 8.11 | 3.12 | 3.245 | 0.742 | 0.579 | 1.14 | 0.544 | 1.01 | 3.21 | 22.8 |
Cu | 1.19 | 1.44 | 0.893 | 2.347 | 3.07 | 0.863 | 1.53 | <l.d. | 2.77 | 0.981 | 17.5 |
Zn | 1.945 | 1.26 | 1.5 | 0.901 | 2.535 | <l.d. | 1.37 | 1.51 | 2.41 | 0.822 | 14.6 |
(ppt) | |||||||||||
La | 19 | 40 | 439 | 50 | 63 | 14 | 138 | 53 | 520 | 7 | 5370 |
Ce | 34 | 75 | 297 | 86 | 80 | 26 | 249 | 76 | 692 | 16 | 6080 |
Pr | 4 | 9 | 46 | 9 | 9 | 3 | 28 | 7 | 70 | 2 | 1120 |
Nd | 14 | 33 | 125 | 36 | 29 | 10 | 94 | 27 | 199 | 6 | 3440 |
Sm | 30 | 29 | 78 | 54 | 5 | 3 | 23 | 8 | 42 | 22 | 543 |
Eu | 3 | 5 | 11 | 6 | 2 | 1 | 7 | 4 | 26 | 1 | 129 |
Gd | 6 | 13 | 29 | 19 | 4 | 3 | 27 | 14 | 56 | 3 | 437 |
Tb | 2 | 3 | 5 | 4 | 1 | 1 | 3 | 2 | 12 | 1 | 52 |
Dy | 9 | 20 | 36 | 32 | 4 | 3 | 25 | 18 | 79 | 4 | 298 |
Ho | 2 | 4 | 8 | 8 | 1 | 1 | 6 | 3 | 18 | 1 | 60 |
Y | 58 | 152 | 205 | 220 | 28 | 25 | 212 | 147 | 674 | 29 | 2060 |
Er | 5 | 14 | 24 | 24 | 2 | 2 | 17 | 11 | 59 | 3 | 166 |
Yb | 5 | 15 | 25 | 23 | 2 | 2 | 13 | 10 | 62 | 4 | 159 |
Lu | 1 | 2 | 4 | 4 | 0.3 | 0.3 | 2 | 2 | 10 | 1 | 25 |
Pr/YbSN a | 0.25 | 0.19 | 0.58 | 0.13 | 1.49 | 0.38 | 0.66 | 0.23 | 0.35 | 0.13 | 2.22 |
Y/Ho | 31.3 | 34.2 | 26.3 | 29.1 | 35 | 34.4 | 33.4 | 43.4 | 36.6 | 31.1 | 34.1 |
La/La* a | 1.19 | 1.09 | 1.52 | 1.4 | 1.57 | 1.65 | 1 | 1.7 | 1.24 | 1.33 | 0.87 |
Ce/Ce* a | 1.01 | 0.96 | 0.58 | 1.07 | 0.99 | 1.3 | 0.92 | 1.14 | 0.92 | 1.26 | 0.53 |
Eu/Eu* a | 2.37 | 2.24 | 1.78 | 1.84 | 1.69 | 2.34 | 1.42 | 1.54 | 2.41 | 2.19 | 1.2 |
ΣREE + Y b | 0.19 | 0.41 | 1.33 | 0.57 | 0.23 | 0.09 | 0.84 | 0.38 | 2.52 | 0.1 | 19.94 |
ΣLILE b | 11.2 | 16.2 | 19.2 | 8.62 | 6.34 | 2.35 | 4.81 | 13.5 | 18.74 | 4.15 | 1880 |
ΣHFSE b | 0.22 | 0.47 | 0.29 | 0.25 | 0.04 | 0.21 | 0.07 | 0.07 | 2.45 | 0.16 | 15.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledevin, M.; Arndt, N.; Chauvel, C.; Jaillard, E.; Simionovici, A. The Sedimentary Origin of Black and White Banded Cherts of the Buck Reef, Barberton, South Africa. Geosciences 2019, 9, 424. https://doi.org/10.3390/geosciences9100424
Ledevin M, Arndt N, Chauvel C, Jaillard E, Simionovici A. The Sedimentary Origin of Black and White Banded Cherts of the Buck Reef, Barberton, South Africa. Geosciences. 2019; 9(10):424. https://doi.org/10.3390/geosciences9100424
Chicago/Turabian StyleLedevin, Morgane, Nicholas Arndt, Catherine Chauvel, Etienne Jaillard, and Alexandre Simionovici. 2019. "The Sedimentary Origin of Black and White Banded Cherts of the Buck Reef, Barberton, South Africa" Geosciences 9, no. 10: 424. https://doi.org/10.3390/geosciences9100424
APA StyleLedevin, M., Arndt, N., Chauvel, C., Jaillard, E., & Simionovici, A. (2019). The Sedimentary Origin of Black and White Banded Cherts of the Buck Reef, Barberton, South Africa. Geosciences, 9(10), 424. https://doi.org/10.3390/geosciences9100424