Next Article in Journal
Slope Stability in a Multi-Hazard Eruption Scenario (Santorini, Greece)
Previous Article in Journal
Tsunami Vulnerability Criteria for Fishery Port Facilities in Japan
Previous Article in Special Issue
Accuracy Assessment of Deep Learning Based Classification of LiDAR and UAV Points Clouds for DTM Creation and Flood Risk Mapping
Open AccessArticle

Spectral Index-Based Monitoring (2000–2017) in Lowland Forests to Evaluate the Effects of Climate Change

1
Department of Physical Geography and Geoinformatics, University of Szeged, Egyetem str. 2-6, 6722 Szeged, Hungary
2
Department of Physical Geography and Geoinformatics, Doctoral School of Earth Sciences, University of Szeged, Egyetem str. 2-6, 6722 Szeged, Hungary
*
Author to whom correspondence should be addressed.
Geosciences 2019, 9(10), 411; https://doi.org/10.3390/geosciences9100411
Received: 16 August 2019 / Revised: 11 September 2019 / Accepted: 19 September 2019 / Published: 23 September 2019
(This article belongs to the Special Issue Remote Sensing used in Environmental Hydrology)
In the next decades, climate change will put forests in the Hungarian Great Plain in the Carpathian Basin to the test, e.g., changing seasonal patterns, more intense storms, longer dry periods, and pests are expected to occur. To aid in the decision-making process for the conservation of ecosystems depending on forestry, how woods could adapt to changing meso- and microclimatic conditions in the near future needs to be defined. In addition to trendlike warming processes, calculations show an increase in climate extremes, which need to be monitored in accordance with spatial planning, at least for medium-scale mappings. We can use the MODIS sensor dataset if up-to-date terrestrial conditions and multi-decadal geographical processes are of interest. For geographic evaluations of changes, we used vegetation spectral indices; Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI), based on the summer half year, 16-day MODIS data composites between 2000 and 2017 in an intensively forested study area in the Hungarian Great Plain. We delineated forest areas on the Danube–Tisza Interfluve using Corine Land Cover maps (2000, 2006, and 2012). Mid-year changes over the nearly two-decade-long period are currently in balance; however, based on their reactions, forests are highly sensitive to abrupt changes caused by extreme climatic events. The higher occurrence of years or periods with extreme water shortages marks an observable decrease in biomass production, even in shorter index time series, such as that between 2004 and 2012. In the drought-stricken July-August periods, the effect of a dry year, subsequent to years with more precipitation, immediately pushes back the green mass and the reduction in the biomass production could become persistent, according to climatology predictions. The changes of specific sub-periods in the vegetation period can be evaluated even in a relatively short, 18-year data series, including the change in the growing values of the vegetative growth in spring or the increase in the summertime biomass production. Standardized differences highlight spatial differences in the biomass production; in response to years with the highest (negative) biomass difference; typically, the northern and southwestern parts of the Danube–Tisza Interfluve in the study area have longer lasting losses in biomass production. A comparison of NDVI and EVI values with the PaDI drought index and the vegetation indices of LANDSAT Operational Land Imager sensor respectively confirms our results. View Full-Text
Keywords: climate change; drought; forest monitoring; NDVI; EVI; MODIS climate change; drought; forest monitoring; NDVI; EVI; MODIS
Show Figures

Figure 1

MDPI and ACS Style

Kovács, F.; Gulácsi, A. Spectral Index-Based Monitoring (2000–2017) in Lowland Forests to Evaluate the Effects of Climate Change. Geosciences 2019, 9, 411.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop