Petrological and Mineralogical Aspects of Epithermal Low-Sulfidation Au- and Porphyry Cu-Style Mineralization, Navilawa Caldera, Fiji
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Local Geology
3. Sampling and Analytical Methods
4. Petrochemistry of Igneous Rocks
4.1. Mineralogy
4.2. Major and Trace Element Whole-Rock Geochemistry
5. Porphyry- and Epithermal-Style Mineralization
5.1. General Description
5.2. Alterations
5.2.1. Porphyry-Style
5.2.2. Epithermal-Style
5.2.3. Phyllosilicate Minerals Associated with Epithermal Veins
5.2.4. Alteration Geochemistry
5.3. Sulfide Mineralogy and Sulfur Isotopes
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richards, J.P. Petrology and geochemistry of alkalic intrusives at the Porgera gold deposit, Papua New Guinea. J. Geochem. Expl. 1990, 35, 141–199. [Google Scholar] [CrossRef]
- Jensen, E.P.; Barton, M.D. Gold deposits related to alkaline magmatism. Rev. Econ. Geol. 2000, 13, 279–314. [Google Scholar]
- Kelley, K.D.; Spry, P.G. Critical metals associated with alkaline-rock related epithermal gold deposits. Rev. Econ. Geol. 2016, 18, 195–216. [Google Scholar]
- Cooke, D.R.; McPhail, D.C. Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, Philippines; numerical simulations of mineral deposition. Econ. Geol. 2001, 96, 109–132. [Google Scholar]
- Richards, J.P. Alkalic-type epithermal gold deposits, a review. Mineral. Assoc. Can. Short Course Ser. 1995, 23, 367–400. [Google Scholar]
- Richards, J.P.; Kerrich, R. The Porgera gold mine, Papua New Guinea: Magmatic hydrothermal to epithermal evolution of an alkalic-type precious metal deposit. Econ. Geol. 1993, 88, 1017–1052. [Google Scholar] [CrossRef]
- Richards, J.P.; Ledlie, I. Alkalic intrusive rocks associated with the Mount Kare gold deposit, Papua New Guinea: Comparison with the Porgera intrusive complex. Econ. Geol. 1993, 88, 755–782. [Google Scholar] [CrossRef]
- Carman, G.D. Geology, mineralization, and hydrothermal evolution of the Ladolam gold deposit, Lihir Island, Papua New Guinea. Soc. Econ. Geol. Spec. Pub. 2003, 10, 247–284. [Google Scholar]
- Ahmad, M.; Solomon, M.; Walsh, J.L. Mineralogical and geochemical studies of the Emperor gold telluride deposit, Fiji. Econ. Geol. 1987, 82, 345–370. [Google Scholar] [CrossRef]
- Scherbarth, N.L.; Spry, P.G. Mineralogical, petrological, stable isotope, and fluid inclusion characteristics of the Tuvatu gold-silver telluride deposit, Fiji: Comparisons with the Emperor deposit. Econ. Geol. 2006, 101, 135–158. [Google Scholar] [CrossRef]
- Begg, G. Genesis of the Emperor Gold Deposit, Fiji: Unpub. Ph.D. Thesis, Monash University, Clayton, Australia, 1996. [Google Scholar]
- Begg, G. Gold and tectonics: A dynamic link. In Proceedings of the Ores and Ore Genesis 2007: Circum-Pacific Tectonics, Geologic Evolution, and Ore Deposits Symposium, Tucson, AZ, USA, 24–30 September 2007. Prog. Abst., No. 108. [Google Scholar]
- Begg, G.C.; Loucks, R.R.; Gray, D.R.; Foster, D.A.; Kent, A.J.; Cooke, D.R. Magmas, fluids, and tectonics: The Emperor story. Geol. Soc. Aust. Abst. 1997, 44, 7. [Google Scholar]
- Begg, G.; Gray, D.R. Arc dynamics and tectonic history of Fiji based on stress and kinematic analysis of dikes and faults of the Tavua Volcano, Viti Levu Island, Fiji. Tectonics 2002, 21, 1–14. [Google Scholar] [CrossRef]
- JICA-MMAJ. Report on the Cooperative Mineral Exploration in the Viti Levu Area, the Republic of Fiji. Phase I; Metal Mining Agency of Japan Report, report number 91-41; Japan International Cooperation Agency: Tokyo, Japan, 1991. [Google Scholar]
- JICA-MMAJ. Report on the Cooperative Mineral Exploration in the Viti Levu Area, the Republic of Fiji. Phase I; Metal Mining Agency of Japan Report, report number 92-082; Japan International Cooperation Agency: Tokyo, Japan, 1992. [Google Scholar]
- Colley, H.; Flint, D.J. Metallic Mineral Deposits of Fiji; Memoir; no. 4; Fiji Mineral Resources Department: Suva, Fiji, 1995. [Google Scholar]
- Setterfield, T.N.; Mussett, A.E.; Oglethorpre, R.D.J. Magmatism and associated hydrothermal activity during the evolution of the Tavua caldera: 40Ar-39Ar dating of the volcanic intrusive, and hydrothermal events. Econ. Geol. 1992, 87, 1130–1140. [Google Scholar] [CrossRef]
- Eaton, P.C.; Setterfield, T.N. The relationship between epithermal and porphyry hydrothermal systems within the Tavua Caldera, Fiji. Econ. Geol. 1993, 88, 1053–1083. [Google Scholar] [CrossRef]
- Parry, W.; Jasumback, M.; Wilson, P. Clay mineralogy of phyllic and intermediate argillic alteration at Bingham, Utah. Econ. Geol. 2002, 97, 221–239. [Google Scholar] [CrossRef]
- Franchini, M.; Impiccini, A.; Meinert, L.; Grathoff, G.; Schalamuk, I.B.A. Clay mineralogy and zonation in the Campana Mahuida porphyry Cu deposit, Neuquén, Argentina: Implications for porphyry Cu exploration. Econ. Geol. 2007, 102, 27–54. [Google Scholar] [CrossRef]
- Gemmell, J.B. Hydrothermal alteration associated with the Gosowong epithermal Au-Ag deposit, Indonesia: Mineralogy, geochemistry, and exploration implications. Econ. Geol. 2007, 102, 893–922. [Google Scholar] [CrossRef]
- Simpson, M.P.; Mauk, J.L. The Favona epithermal gold-silver deposit, Waihi, New Zealand. Econ. Geol. 2007, 102, 817–840. [Google Scholar] [CrossRef]
- Bongiolo, E.M.; Patrier-Mas, P.; Mexias, A.S.; Beaufort, D.; Formoso, M.L.L. Spatial and temporal evolution of hydrothermal alteration at Lavras do Sul, Brazil: Evidence of dioctahedral clay minerals. Clays Clay Min. 2008, 56, 222–243. [Google Scholar] [CrossRef]
- Hamburger, M.W.; Isacks, B.L. Diffuse back-arc deformation in the southwestern Pacific. Nature 1988, 332, 599–604. [Google Scholar] [CrossRef]
- Gill, J.B.; Whelan, P. Early rifting of an oceanic island arc (Fiji) produced shoshonitic to tholeiitic basalts. J. Geophys. Res. 1989, 94, 4561–4578. [Google Scholar] [CrossRef]
- Hathaway, B. The Nadi Basin: Neogene strike-slip faulting and sedimentation in a fragmental arc, Western Viti Levu, Fiji. J. Geol. Soc. Lond. 1993, 150, 563–581. [Google Scholar] [CrossRef]
- Scherbarth, N.L. Petrological, Mineralogical, Fluid Inclusion and Stable Isotope Characteristics of the Tuvatu Gold-Silver Telluride Deposit, Upper Sabeto River, Fiji: Unpub. Master’s Thesis, Iowa State University, Ames, IA, USA, 2002. [Google Scholar]
- Ricketts, C.B.; Johnson, D.W. Annual Report for Period Ending 30 June 1988, SPL 1218: Continental Resources (Fiji) Ltd Report 88/35; Fiji Mineral Resources Department: Suva, Fiji, 1988; Unpublished work. [Google Scholar]
- Hatcher, R. Relation of Structures, Alteration and Mineralisation at the Tuvatu Gold Prospect, Viti Levu, Fiji islands. Unpublished. Bachelor’s Thesis, Queensland Institute of Technology, Brisbane, Australia, 1998. [Google Scholar]
- Rodda, P. Outline of the geology of Viti Levu, Fiji. New Zealand. J. Geol. Geophys. 1967, 10, 1260–1273. [Google Scholar] [CrossRef]
- McDougall, I. Potassium-argon ages of some rocks from Viti Levu, Fiji. Nature 1963, 198, 677. [Google Scholar] [CrossRef]
- A-Izzeddin, D. The Tuvatu Gold Project, Western Viti Levu. In Proceedings of the Pacific Exploration Technology (PET 98) Conference, Nadi, Fiji, September 1998; pp. 29–30. [Google Scholar]
- Ricketts, C.B.; Johnson, D.W.; Lemcke, D.J. Annual Report for the Period to 30 June 1989, SPL 1218: Continental Resources (Fiji) Ltd Report 88/73; Fiji Mineral Resources Department: Suva, Fiji, 1989; Unpublished work. [Google Scholar]
- Meares, R.M.D. Annual Report for the Period 30 June 1990. Continental Resources (Fiji) Ltd Report 90/28. Fiji Mineral Resources Department Exploration Report 1218-9; Fiji Mineral Resources Department: Suva, Fiji, 1990. [Google Scholar]
- Yanagisawa, F.; Sakai, H. Thermal decomposition of barium sulfate-vanadium pentoxide-silica glass mixtures for preparation of sulfur dioxide isotope ratio measurements. Anal. Chem. 1983, 55, 985–987. [Google Scholar] [CrossRef]
- Brindley, G.W.; Brown, G. Crystal Structures of Clay Minerals and Their X-ray Identification; Mineralogical Society of Great Britain and Ireland: Middlesex, UK, 1980; Volume 5, ISBN 9780903056373. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Streickeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Miyashiro, A. Nature of alkalic volcanic rock series. Contr. Mineral. Petrol. 1978, 66, 91–104. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of the Eocene calc-alkaline volcanic rocks in the Kastamonu area, northern Turkey. Contr. Mineral. Petrol. 1976, 90, 63–81. [Google Scholar] [CrossRef]
- Foley, S.F.; Venturelli, G.; Green, D.H.; Toscani, L. The ultrapotassic rocks: Characterization, classification, and constraints for petrogenetic models. Earth Sci. Rev. 1987, 24, 81–134. [Google Scholar] [CrossRef]
- Rogers, N.W.; Setterfield, T.N. Potassium and incompatible-element enrichment in shoshonitic lavas from the Tavua volcano, Fiji. Chem. Geol. 1994, 118, 43–62. [Google Scholar] [CrossRef]
- Richards, J.P.; Boyce, A.J.; Pringle, M.S. Geologic evolution of the Escondida area, Northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Econ. Geol. 2001, 96, 271–305. [Google Scholar] [CrossRef]
- Spry, P.G.; Scherbarth, N.L. Vanadium silicates and oxides in the Tuvatu gold-silver telluride deposit, Fiji. Mineral. Petrol. 2006, 87, 171–186. [Google Scholar] [CrossRef]
- Morrison, G.W. Characteristics and tectonic setting of the shoshonite rock association. Lithos 1980, 13, 97–108. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W.; Koukouvelas, I.; Dolansky, L.M.; Kokkalas, S. Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece. Geol. Soc. Am. Bull. 2009, 121, 39–54. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundance of elements. Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes. Geol. Soc. London Spec. Pub. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Sawaguchi, T.; Iwaya, S.; Horiuchi, M. Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos. Mining Geol. 1976, 26, 105–117. [Google Scholar]
- Gemmell, J.B.; Large, R.R. Stringer system and alteration zones underlying the Hellyer volcanic-hosted massive sulfide deposit, Tasmania, Australia. Econ. Geol. 1992, 87, 620–649. [Google Scholar] [CrossRef]
- Large, R.R.; Gemmell, J.B.; Paulick, H.; Huston, D.L. The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ. Geol. 2001, 96, 957–971. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. 1986, 16, 491–559. [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 1979; pp. 509–567. [Google Scholar]
- Arribas, A., Jr. Characteristics of high sulfidation epithermal deposits and their relation to magmatic fluid. In Magmas, Fluids, and Ore Deposits; Short Course Series; Thompson, J.F.H., Ed.; Mineralogical Association of Canada: Nepean, ON, Canada, 1995; Volume 23, pp. 419–454. [Google Scholar]
- Simmons, S.F.; Christenson, B.W. Origins of calcite in a boiling geothermal system. Am. J. Sci. 1994, 294, 361–400. [Google Scholar] [CrossRef]
- Averill, S.A. Viable indicators in surficial sediments for two major base metal deposit types: Ni-Cu-PGE and porphyry Cu. In Proceedings of the 24th International Applied Geochemistry Symposium Indicator Mineral Methods in Mineral Exploration, Workshop B, Fredericton, NB, Canada, 1–4 June 2009. [Google Scholar]
- Padilla Garza, R.A.; Titley, S.R.; Pimentil, B.F. Geology of the Escondida porphyry copper deposit, Antofagasta region, Chile. Econ. Geol. 2001, 96, 307–324. [Google Scholar] [CrossRef]
- Fulignati, P.; Malfitano, G.; Sbrana, A. The Pantelleria caldera geothermal system: Data from the hydrothermal minerals. J. Volc. Geoth. Res. 1997, 75, 251–270. [Google Scholar] [CrossRef]
- Vitali, F.; Blanc, G.; Larqué, P.; Duplay, J.; Morvan, G. Thermal diagenesis of clay minerals within volcanogenic material from the Tonga convergent margin. Marine Geol. 1999, 157, 105–125. [Google Scholar] [CrossRef]
- Abad, I.; Jiménez-Millán, J.; Molina, J.M.; Nieto, F.; Vera, J.A. Anomalous reverse zoning of saponite and corrensite caused by contact metamorphism and hydrothermal alteration of marly rocks associated with subvolcanic bodies. Clays Clay Mins. 2003, 51, 543–554. [Google Scholar] [CrossRef]
- Jiménez-Millán, J.; Abad, I.; Nieto, F. Contrasting alteration processes in hydrothermally altered dolerites from the Betic Cordillera, Spain. Clay Mins. 2008, 43, 267–280. [Google Scholar] [CrossRef]
- Mas, A.; Meunier, A.; Beaufort, D.; Patrier, P.; Dudoignon, P. Clay minerals in basalt-hawaiite rocks from Mururora Atoll (French Polynesia). I. Mineralogy. Clays Clay Mins. 2008, 56, 711–729. [Google Scholar] [CrossRef]
- Roberson, H.E.; Reynolds, R.C., Jr.; Jenkins, D.M. Hydrothermal synthesis of corrensite: A study of transformation of saponite to corrensite. Clay Clay Mins. 1999, 47, 212–218. [Google Scholar] [CrossRef]
- Dekayir, A.; Amouric, M.; Olives, J. Clay minerals in hydrothermally altered basalts from Middle Atlas, Morocco. Clay Mins. 2005, 40, 67–77. [Google Scholar] [CrossRef]
Rock Type | Monzonite | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sample | NF2 | NF6 | NF31 | NF73 | NF100 | NF106 | NF108 | NF115 | NF131 |
SiO2 | 47.94 | 48.72 | 48.41 | 50.55 | 47.69 | 48.6 | 47.68 | 48.74 | 46.69 |
TiO2 | 0.7 | 0.62 | 0.66 | 0.53 | 0.79 | 0.62 | 0.73 | 0.55 | 0.64 |
Al2O3 | 15.79 | 19.25 | 16.07 | 17.2 | 16.39 | 15.92 | 15.31 | 17.04 | 15.57 |
Fe2O3 | 10.02 | 6.74 | 10.01 | 7.27 | 10.62 | 10.05 | 10.63 | 7.81 | 9.66 |
MnO | 0.24 | 0.19 | 0.25 | 0.19 | 0.21 | 0.28 | 0.33 | 0.19 | 0.19 |
MgO | 5.21 | 2.69 | 4.97 | 3.15 | 5.79 | 4.74 | 5.07 | 3.67 | 5.11 |
CaO | 7.85 | 7.68 | 9.74 | 8.11 | 10.9 | 7.62 | 10.26 | 8.79 | 7.62 |
Na2O | 1.68 | 2.78 | 1.98 | 1.61 | 2.25 | 2.17 | 1.62 | 1.8 | 2.28 |
K2O | 4.42 | 3.99 | 4.33 | 6.63 | 2.22 | 5.39 | 5.03 | 5.57 | 3.96 |
P2O5 | 0.48 | 0.56 | 0.47 | 0.41 | 0.32 | 0.5 | 0.56 | 0.42 | 0.5 |
LOI | 4.1 | 6.6 | 3 | 4.1 | 2.6 | 3.9 | 2.7 | 5.2 | 7.6 |
TOT/C | 0.1 | 0.68 | 0.12 | 0.3 | 0.22 | 0.41 | 0.34 | 0.54 | 1 |
TOT/S | 0.02 | 0.03 | 0.12 | 0.03 | 0.02 | 0.13 | 0.07 | 1.1 | 2.09 |
Total | 98.43 | 99.83 | 99.9 | 99.76 | 99.8 | 99.81 | 99.93 | 99.79 | 99.83 |
Ba | 566.5 | 595.4 | 481.7 | 592.9 | 395.2 | 767.5 | 569 | 563.9 | 481.7 |
Cs | 0.7 | 0.7 | 0.7 | 0.9 | 1.3 | 0.7 | 0.9 | 0.4 | 0.5 |
Hf | 1.4 | 1.8 | 1.6 | 1.6 | 1.6 | 1.8 | 1.8 | 1.6 | 1.7 |
Nb | 9.6 | 8 | 8.9 | 9.7 | 9.3 | 8.9 | 10.3 | 9.9 | 7.9 |
Ta | <0.1 | 0.1 | 0.1 | 0.1 | <0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
U | 0.9 | 0.7 | 1 | 1.4 | 0.4 | 1.4 | 1 | 1.2 | 1.4 |
V | 359 | 179 | 332 | 276 | 335 | 334 | 370 | 257 | 296 |
W | 1.9 | 0.3 | 0.3 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 |
Y | 18 | 15.2 | 18.3 | 18.1 | 15.5 | 17.1 | 19.7 | 15.9 | 18 |
La | 12.2 | 7.5 | 13.5 | 14.7 | 4.7 | 14.2 | 14.2 | 13.3 | 14.6 |
Ce | 24.5 | 17.1 | 28.5 | 29.8 | 11.2 | 31.2 | 32.2 | 26.7 | 31.2 |
Pr | 3.49 | 2.33 | 3.91 | 4.03 | 1.62 | 4.14 | 4.49 | 3.49 | 4.23 |
Nd | 16.6 | 10.7 | 17.8 | 17.9 | 8.2 | 19.3 | 20.6 | 15.6 | 19.8 |
Sm | 4.1 | 2.7 | 4.6 | 4.2 | 2.3 | 4.8 | 5.4 | 3.8 | 4.7 |
Eu | 1.26 | 0.83 | 1.27 | 1.24 | 0.82 | 1.28 | 1.55 | 1.12 | 1.4 |
Gd | 3.98 | 2.74 | 4.19 | 3.69 | 2.63 | 4.19 | 4.76 | 3.36 | 4.28 |
Tb | 0.64 | 0.47 | 0.68 | 0.61 | 0.51 | 0.66 | 0.76 | 0.54 | 0.67 |
Dy | 3.28 | 2.6 | 3.37 | 3.17 | 2.62 | 3.24 | 3.74 | 2.91 | 3.49 |
Ho | 0.59 | 0.49 | 0.62 | 0.58 | 0.53 | 0.56 | 0.67 | 0.64 | 0.62 |
Er | 1.68 | 1.56 | 1.81 | 1.73 | 1.58 | 1.71 | 1.89 | 1.57 | 1.83 |
Tm | 0.25 | 0.24 | 0.26 | 0.25 | 0.26 | 0.25 | 0.28 | 0.24 | 0.25 |
Yb | 1.59 | 1.58 | 1.72 | 1.71 | 1.52 | 1.61 | 1.77 | 1.55 | 1.69 |
Lu | 0.23 | 0.24 | 0.25 | 0.25 | 0.24 | 0.25 | 0.26 | 0.23 | 0.26 |
Ag | 1.5 | <0.1 | 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.1 | <0.1 |
As | <0.5 | 3.2 | 1.6 | 1.1 | 0.8 | 1.2 | 1.5 | 2.2 | <0.5 |
Bi | <0.1 | <0.1 | 0.2 | <0.1 | <0.1 | 0.1 | <0.1 | 0.1 | 0.5 |
Cd | 0.9 | <0.1 | 0.2 | 0.1 | <0.1 | 0.3 | 0.1 | 0.1 | 0.1 |
Cu | >X | 276.2 | 264.7 | 159.8 | 187.3 | 160.3 | 190.3 | 153.2 | 330.8 |
Ga | 15.1 | 15 | 14.6 | 15.1 | 14.6 | 14.4 | 16.2 | 14.1 | 14.7 |
Hg | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 | 0.01 | <0.01 | 0.02 | 0.01 |
Mo | 0.3 | 1 | 0.7 | 0.2 | 1.1 | 0.5 | 0.4 | 0.3 | 1.4 |
Ni | 9.6 | 6.8 | 10 | 3.4 | 14.8 | 11.3 | 9.3 | 6.5 | 13.2 |
Pb | 3.3 | 3.4 | 4.4 | 8.8 | 1.9 | 10.2 | 7.4 | 4.3 | 8.3 |
Se | 4.2 | <0.5 | 0.9 | 0.5 | <0.5 | 1.2 | <0.5 | <0.5 | 7.7 |
Sn | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tl | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.1 | <0.1 | 0.1 | 0.1 |
Zn | 112 | 69 | 53 | 62 | 67 | 105 | 102 | 52 | 42 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
wt % | NF117 | NF108 | NF106 | NF73 | NF123B | NF21 | NF75 | NF123B |
SiO2 | 37.26 | 36.40 | 48.08 | 49.23 | 37.58 | 38.57 | 30.13 | 31.75 |
TiO2 | 0.15 | 0.08 | 0.23 | 0.47 | 3.21 | 3.86 | 0.05 | 1.53 |
Al2O3 | 22.53 | 23.14 | 1.90 | 4.67 | 15.91 | 16.48 | 17.92 | 15.58 |
V2O3 | 0.92 | 0.00 | 1.18 | 0.09 | 0.39 | 0.00 | 0.00 | 0.17 |
FeO | 12.76 | 13.09 | 4.80 | 7.59 | 14.00 | 12.81 | 18.56 | 25.15 |
MnO | 0.60 | 0.60 | 0.11 | 0.28 | 0.18 | 0.25 | 1.18 | 0.13 |
MgO | 0.12 | 0.05 | 16.67 | 13.03 | 17.67 | 17.07 | 18.85 | 12.86 |
ZnO | 0.07 | 0.01 | 0.00 | 0.03 | 0.12 | 0.06 | 0.10 | 0.04 |
CaO | 25.39 | 24.83 | 25.87 | 25.44 | 0.15 | 0.10 | 0.27 | 0.50 |
K2O | 0.00 | 0.01 | 0.00 | 0.01 | 7.25 | 8.77 | 0.04 | 0.12 |
F | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.01 | 0.00 |
Cl | 0.01 | 0.00 | 0.01 | 0.00 | 0.23 | 0.06 | 0.01 | 0.19 |
Total | 99.79 | 98.21 | 98.84 | 100.83 | 96.64 | 98.02 | 87.11 | 87.97 |
apfu | ||||||||
Si | 5.795 | 5.748 | 7.305 | 7.347 | 5.929 | 5.998 | 5.276 | 5.652 |
Ti | 0.017 | 0.010 | 0.027 | 0.053 | 0.380 | 0.452 | 0.006 | 0.205 |
Al | 4.130 | 4.308 | 0.340 | 0.821 | 2.958 | 3.021 | 3.699 | 3.269 |
V | 0.115 | 0.000 | 0.143 | 0.010 | 0.049 | 0.000 | 0.000 | 0.025 |
Fe | 1.659 | 1.728 | 0.609 | 0.947 | 1.847 | 1.666 | 2.719 | 3.744 |
Mn | 0.080 | 0.080 | 0.014 | 0.036 | 0.024 | 0.034 | 0.176 | 0.019 |
Mg | 0.027 | 0.012 | 3.776 | 2.899 | 4.156 | 3.956 | 4.919 | 3.411 |
Zn | 0.008 | 0.001 | 0.000 | 0.003 | 0.014 | 0.007 | 0.013 | 0.005 |
Ca | 4.231 | 4.202 | 4.211 | 4.067 | 0.026 | 0.017 | 0.051 | 0.095 |
K | 0.000 | 0.001 | 0.001 | 0.001 | 1.458 | 1.740 | 0.009 | 0.028 |
F | 0.002 | 0.000 | 0.000 | 0.000 | 0.015 | 0.002 | 0.003 | 0.000 |
Cl | 0.004 | 0.000 | 0.002 | 0.001 | 0.062 | 0.017 | 0.003 | 0.058 |
Total | 16.066 | 16.090 | 16.428 | 16.185 | 16.917 | 16.910 | 16.873 | 16.510 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forsythe, N.A.; Spry, P.G.; Thompson, M.L. Petrological and Mineralogical Aspects of Epithermal Low-Sulfidation Au- and Porphyry Cu-Style Mineralization, Navilawa Caldera, Fiji. Geosciences 2019, 9, 42. https://doi.org/10.3390/geosciences9010042
Forsythe NA, Spry PG, Thompson ML. Petrological and Mineralogical Aspects of Epithermal Low-Sulfidation Au- and Porphyry Cu-Style Mineralization, Navilawa Caldera, Fiji. Geosciences. 2019; 9(1):42. https://doi.org/10.3390/geosciences9010042
Chicago/Turabian StyleForsythe, Nathan A., Paul G. Spry, and Michael L. Thompson. 2019. "Petrological and Mineralogical Aspects of Epithermal Low-Sulfidation Au- and Porphyry Cu-Style Mineralization, Navilawa Caldera, Fiji" Geosciences 9, no. 1: 42. https://doi.org/10.3390/geosciences9010042
APA StyleForsythe, N. A., Spry, P. G., & Thompson, M. L. (2019). Petrological and Mineralogical Aspects of Epithermal Low-Sulfidation Au- and Porphyry Cu-Style Mineralization, Navilawa Caldera, Fiji. Geosciences, 9(1), 42. https://doi.org/10.3390/geosciences9010042