Morphological Variability of Submarine Mass Movements in the Tectonically–Controlled Calabro–Tyrrhenian Continental Margin (Southern Italy)
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Submarine Mass Movements on Submarine Canyons
3.2. Submarine Mass Movements on Tectonically–Controlled Escarpments
3.3. Submarine Mass Movements on Open Slopes
4. Discussion
4.1. Distribution and Variability of Submarine Mass Movements and Related Controlling Factors
4.1.1. Disintegrative–like Landslides along Canyons and Tectonically–Controlled Scarps
4.1.2. Large–Size and Isolated Landslides on the Open Slopes
4.2. Preliminary Considerations on the Potential Geohazard Associated with the Submarine Mass Movements in the Calabro–Tyrrhenian Continental Margin
4.3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masson, D.G.; Harbitz, C.B.; Wynn, R.B.; Pedersen, G.; Løvholt, F. Submarine landslides: Processes, triggers and hazard prediction. Philos. Trans. R. Soc. A 2006, 364, 2009–2039. [Google Scholar] [CrossRef] [PubMed]
- Urlaub, M.; Talling, P.J.; Masson, D.G. Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard. Quat. Sci. Rev. 2013, 72, 63–82. [Google Scholar] [CrossRef]
- Moscardelli, L.; Wood, L. Morphometry of mass transport deposits as a predictive tool. Geol. Soc. Am. Bull 2016, 128, 47–80. [Google Scholar] [CrossRef]
- Locat, J.; Lee, H.J. Submarine landslides: Advances and challenges. Can. Geotech. J. 2002, 39, 193–212. [Google Scholar] [CrossRef]
- Harbitz, C.B.; Løvholt, F.; Bungum, H. Submarine landslide tsunamis: How extreme and how likely? Nat. Hazards 2014, 72, 1341–1374. [Google Scholar] [CrossRef]
- Longva, O.; Janbu, N.; Blikra, L.H.; Bøe, R. The 1996 Finneidfjord slide: Seafloor failure and slide dynamics. In Submarine Mass Movements and Their Consequences; Locat, J., Mienert, J., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 531–538. [Google Scholar]
- Casalbore, D.; Bosman, A.; Chiocci, F.L. Study of recent small-scale landslides in geologically active marine areas through repeated multibeam surveys: Examples from the Southern Italy. In Submarine Mass Movement and Their Consequences, Advances in Natural and Technological Hazards Research; Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M., Eds.; Springer: Heidelberg, Germany; Cham, Switzerland, 2012; Volume 31, pp. 573–582. [Google Scholar]
- Sultan, N.; Savoye, B.; Jouet, G.; Leynaud, D.; Cochonat, P.; Henry, P.; Stegmann, S.; Kopf, A. Investigation of a possible submarine landslide at the Var delta front (Nice continental slope, southeast France). Can. Geotech. J. 2010, 47, 486–496. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Romagnoli, C.; Tommasi, P.; Bosman, A. Stromboli 2002 tsunamigenic submarine slide: Characteristics and possible failure mechanisms. J. Geophys. Res. 2008, 113, B10102. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Casalbore, D. Unexpected fast rate of morphological evolution of geologically-active continental margins during Quaternary: Examples from selected areas in the Italian seas. Mar. Petrol. Geol. 2017, 82, 154–162. [Google Scholar] [CrossRef]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Fabbri, A.; Ghisetti, F.; Vezzani, L. The Peloritani-Calabria range and the Gioia basin in the Calabrian arc (Southern Italy): Relationships between land and marine data. Geol. Romana 1980, 19, 131–150. [Google Scholar]
- Gamberi, F.; Marani, M. Hinterland geology and continental margin growth: The case of the Gioia Basin (Southeastern Tyrrhenian Sea). Geol. Soc. Lond. Spec. Publ. 2006, 262, 349–363. [Google Scholar] [CrossRef]
- CPTI Working Group. Catalogo Parametrico dei Terremoti Italiani, version 2004 (CPTI04). INGV: Bologna, Italy. Available online: http://emidius.mi.ingv.it/CPTI (accessed on 10 October 2018).
- Casas, D.; Chiocci, F.; Casalbore, D.; Ercilla, G.; de Urbina, J.O. Magnitude-frequency distribution of submarine landslides in the Gioia Basin (southern Tyrrhenian Sea). Geo-Mar. Lett. 2016, 36, 405–414. [Google Scholar] [CrossRef]
- Tortorici, G.; Bianca, M.; de Guidi, G.; Monaco, C.; Tortorici, L. Fault activity and marine terracing in the Capo Vaticano area (southern Calabria) during the Middle–Late Quaternary. Quat. Int. 2003, 101–102, 269–278. [Google Scholar] [CrossRef]
- Lentini, F.; Carbone, S.; Guarnieri, P. Collisional and post-collisional tectonics of the Apenninic-Maghrebian Orogen (Southern Italy). In Postcollisional Tectonics and Magmatism in the Eastern Mediterranean Region; Dilek, Y., Pavlides, S., Eds.; Geological Society American: Boulder, CO, USA, 2006; Volume 409, pp. 57–81. [Google Scholar]
- Antonioli, F.; Ferranti, L.; Lambeck, K.; Kershaw, S.; Verrubbi, V.; DaiPra, G. Late Pleistocene to Holocene record of changing uplift rates in southern Calabria and northeastern Sicily (southern Italy, Central Mediterranean Sea). Tectonophysics 2006, 422, 23–40. [Google Scholar] [CrossRef]
- Sabato, L.; Tropeano, M. Fiumara: A kind of high hazard river. Phys. Chem. Earth A/B/C 2004, 29, 707–715. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Casalbore, D. Submarine gullies on Italian upper slopes and their relationship with volcanic activity revisited 20 years after Bill Normark’s pioneering work. Geosphere 2011, 7, 1–11. [Google Scholar] [CrossRef]
- Casalbore, D.; Chiocci, F.L.; Scarascia Mugnozza, G.; Tommasi, P.; Sposato, A. Flash-flood hyperpycnal flows generating shallow-water landslides at Fiumara mouths in Western Messina Straits (Italy). Mar. Geophys. Res. 2011, 32, 257–271. [Google Scholar] [CrossRef]
- Casalbore, D.; Ridente, D.; Bosman, A.; Chiocci, F.L. Depositional and erosional bedforms in Late Pleistocene-Holocene pro-delta deposits of the Gulf of Patti (southern Tyrrhenian margin, Italy). Mar. Geol. 2017, 385, 216–227. [Google Scholar] [CrossRef]
- Gamberi, F.; Rovere, M.; Marani, M. Mass-transport complex evolution in a tectonically active margin (Gioia Basin, Southeastern Tyrrhenian Sea). Mar. Geol. 2011, 279, 98–110. [Google Scholar] [CrossRef]
- Bozzano, F.; Lenti, L.; Martino, S.; Montagna, A.; Pacielloc, A. Earthquake triggering of landslides in highly jointed rock masses: Reconstruction of the 1783 Scilla rock avalanche (Italy). Geomorphology 2011, 129, 294–308. [Google Scholar] [CrossRef]
- Casalbore, D.; Bosman, A.; Ridente, D.; Chiocci, F. Coastal and submarine landslides in the tectonically-active Tyrrhenian Calabrianmargin (Southern Italy): Examples and geohazard implications. In Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research; Krastel, S., Ed.; Springer: Heidelberg, Germany; Cham, Switzerland, 2016; Volume 37, pp. 261–269. [Google Scholar] [CrossRef]
- Casalbore, D.; Falcini, F.; Martorelli, E.; Morelli, E.; Bosman, A.; Calarco, M.; Chiocci, F.L. Characterization of overbanking features on the lower reach of the Gioia-Mesima canyon-channel system (southern Tyrrhenian Sea) through integration of morpho-stratigraphic data and physical modelling. Prog. Oceanogr. 2018. [Google Scholar] [CrossRef]
- Bosman, A.; Casalbore, D.; Dominici, R. Cyclic Steps at the Head of Channelized Features Along the Calabrian Margin (Southern Tyrrhenian Sea, Italy). In Atlas of Bedforms in the Western Mediterranean; Guillén, J., Acosta, J., Chiocci, F., Palanques, A., Eds.; Springer: Heidelberg, Germany; Cham, Switzerland, 2017; pp. 229–233. [Google Scholar] [CrossRef]
- Casalbore, D.; Martorelli, E.; Bosman, A.; Morelli, E.; Latino Chiocci, F. Failure dynamics of landslide scars on the lower continental slope of the Tyrrhenian Calabrian margin: Insights from an integrated morpho-bathymetric and seismic analysis. In Subaqueous Mass Movements and Their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides; Lintern, D.G., Mosher, D.C., Moscardelli, L.G., Bobrowsky, P.T., Campbell, C., Chaytor, J.D., Clague, J.J., Georgiopoulou, A., Lajeunesse, A., Normandeau, A., et al., Eds.; Geological Society, Special Publications: London, UK, 2018; Volume 477, p. 416. [Google Scholar] [CrossRef]
- Martorelli, E.; Bosman, A.; Casalbore, D.; Falcini, F. Interaction of down-slope and along-slope processes off Capo Vaticano (southern Tyrrhenian Sea, Italy), with particular reference to contourite-related landslides. Mar. Geol. 2016, 378, 43–55. [Google Scholar] [CrossRef]
- Booth, J.S.; O’Leary, D.W.; Popenoe, P.; Danforth, W.W. U.S. Atlantic continental slope landslides: Their distribution, general attributes, and implications. In Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone; Schwab, W.C., Lee, H.J., Twichell, D.C., Eds.; U.S. Geological Survey Bulletin: Mount Spurr Volcano, AK, USA, 1993; pp. 14–22. [Google Scholar]
- McAdoo, B.G.; Pratson, L.F.; Orange, D.L. Submarine landslide geomorphology, US continental slope. Mar. Geol. 2000, 169, 103–136. [Google Scholar] [CrossRef]
- Hühnerbach, V.; Masson, D.G. Landslides in the North Atlantic and its adjacent seas: An analysis of their morphology, setting and behaviour. Mar. Geol. 2004, 213, 343–362. [Google Scholar] [CrossRef]
- Charalampakis, M.; Stefatos, A.; Hasiotis, T.; Ferentinos, G. Submarine Mass Movements on an active fault system in the Central Gulf of Corinth. In Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Springer: Dordrecht, The Netherlands; Cham, Switzerland, 2007; Volume 27. [Google Scholar]
- Goswami, R.; Mitchell, N.C.; Argnani, A.; Brocklehurst, S.H. Geomorphology of the western Ionian Seabetween Sicily and Calabria, Italy. Geomar. Lett. 2014, 34, 419–433. [Google Scholar]
- Alberico, I.; Budillon, F.; Casalbore, D.; Di Fiore, V.; Iavarone, R. A critical review of potential tsunamigenic sources as first step towards the tsunami hazard assessment for the Napoli Gulf (Southern Italy) highly populated area. Nat. Hazards 2018, 92, 43–76. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Martorelli, E.; Bosman, A. Cannibalization of a continental margin by regional scale mass wasting: An example from the central Tyrrhenian Sea. In Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research; Locat, J., Miniert, J., Eds.; Springer: Dordrecht, The Netherlands; Cham, Switzerland, 2003; Volume 19, pp. 409–416. [Google Scholar]
- Casalbore, D.; Bosman, A.; Martorelli, E.; Sposato, A.; Chiocci, F.L. Mass wasting features on the submarine flanks of Ventotene volcanic edifice (Tyrrhenian Sea, Italy). In Submarine Mass Movements and Their Consequences, 6th International Symposium. Advances in Natural and Technological Hazards Research; Krastel, S., Behrmann, J.-H., Völker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., Harbitz, C.B., Eds.; Springer: Dordrecht, The Netherlands; Cham, Switzerland, 2016; Volume 37, pp. 285–293. [Google Scholar]
- Paull, C.K.; Ussler, W., III; Caress, D.W.; Lundsten, E.; Barry, J.; Covault, J.A.; Maier, K.L.; Xu, J.P.; Augenstein, S. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon. Geosphere 2010, 6, 755–774. [Google Scholar] [CrossRef]
- Hughes Clarke, J.E.; VidieraMarques, C.R.; Pratomo, D. Imaging active mass-wasting and sediment flows on a Fjord Delta, Squamish, British Columbia. In Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research; Mosher, D.C., Shipp, C., Moscardelli, L., Chaytor, J., Baxter, C., Lee, H., Urgeles, R., Eds.; Springer: Dordrecht, The Netherlands; Cham, Switzerland, 2014; Volume 37, pp. 249–260. [Google Scholar]
- Casalbore, D.; Bosman, A.; Chiocci, F.L.; Ingrassia, M.; Macelloni, L.; Sposato, A.; Martorelli, E. New insights on failure and post-failure dynamics of submarine landslides on the intra-slope Palmarola ridge (Central Tyrrhenian Sea). In Submarine Mass Movements and Their Consequences, 6th International Symposium. Advances in Natural and Technological Hazards Research; Krastel, S., Behrmann, J.-H., Völker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., Harbitz, C.B., Eds.; Springer: Dordrecht, The Netherlands; Cham, Switzerland, 2016; Volume 37, pp. 93–101. [Google Scholar]
- Frey-Martínez, J.; Cartwright, J.; James, D. Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation. Mar. Pet. Geol. 2006, 23, 585–604. [Google Scholar] [CrossRef]
- Minisini, D.; Trincardi, F.; Asioli, A.; Canu, M.; Foglini, F. Morphologic variability of exposed mass-transport deposits on the eastern slope of Gela Basin (Sicily channel). Basin Res. 2007, 19, 217–240. [Google Scholar] [CrossRef]
- Moernaut, J.; De Batist, M. Frontal emplacement and mobility of sublacustrine landslides: Results from morphometric and seismostratigraphic analysis. Mar. Geol. 2011, 285, 29–45. [Google Scholar] [CrossRef]
- Morgenstern, N.R. Submarine slumping and the initiation of turbidity currents. In Marine Geotechnique; Richards, A., Ed.; University of Illinois Press: Urbana, IL, USA, 1967; pp. 189–210. [Google Scholar]
- Casalbore, D.; Romagnoli, C.; Bosman, A.; Chiocci, F.L. Potential tsunamigenic landslides at Stromboli Volcano (Italy): Insight from marine DEM analysis. Geomorphology 2011, 126, 42–50. [Google Scholar] [CrossRef]
- Watts, P.; Grilli, S.T.; Kirby, J.T.; Fryer, G.J.; Tappin, D.R. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat. Hazards Earth Syst. Sci. 2003, 3, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Colantoni, P.; Gennesseaux, M.; Vanney, J.R.; Ulzega, A.; Melegari, G.; Trombetta, A. Processi dinamici del canyon sottomarino di gioia tauro (Mare Tirreno). Giorn. Geol. 1992, 3, 199–213. [Google Scholar]
Setting | Diameter min. (m) | Diameter max. (m) | Area min. (km2) | Area max. (km2) | Slope Gradients Range (°) | Average Slope Gradients (°) |
---|---|---|---|---|---|---|
Canyon (headwall) | 50 | 200 | 0.004 | 0.3 | (10–19) | 14 |
Canyon (flank) | 130 | 1150 | 0.02 | 0.7 | (4–23) | 8 |
SW flank of Cape Vaticano Ridge | 200 | 1800 | 0.05 | 1.56 | (6–18) | 11 |
Tectonically–controlled Scarp 1 | 520 | 1900 | 0.05 | 3.2 | (8–20) | 13 |
Tectonically–controlled scarp 2 | 350 | 1764 | 0.03 | 2 | (6–11) | 10 |
Tectonically–controlled scarp 3 | 150 | 1400 | 0.06 | 1 | (5–14) | 9 |
Open slope | 720 | 3700 | 0.1 | 14 | (2–5) | 3 |
CVSC | 290 | 1400 | 0.03 | 0.8 | (3–6) | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casalbore, D.; Bosman, A.; Casas, D.; Chiocci, F.; Martorelli, E.; Ridente, D. Morphological Variability of Submarine Mass Movements in the Tectonically–Controlled Calabro–Tyrrhenian Continental Margin (Southern Italy). Geosciences 2019, 9, 43. https://doi.org/10.3390/geosciences9010043
Casalbore D, Bosman A, Casas D, Chiocci F, Martorelli E, Ridente D. Morphological Variability of Submarine Mass Movements in the Tectonically–Controlled Calabro–Tyrrhenian Continental Margin (Southern Italy). Geosciences. 2019; 9(1):43. https://doi.org/10.3390/geosciences9010043
Chicago/Turabian StyleCasalbore, Daniele, Alessandro Bosman, David Casas, Francesco Chiocci, Eleonora Martorelli, and Domenico Ridente. 2019. "Morphological Variability of Submarine Mass Movements in the Tectonically–Controlled Calabro–Tyrrhenian Continental Margin (Southern Italy)" Geosciences 9, no. 1: 43. https://doi.org/10.3390/geosciences9010043
APA StyleCasalbore, D., Bosman, A., Casas, D., Chiocci, F., Martorelli, E., & Ridente, D. (2019). Morphological Variability of Submarine Mass Movements in the Tectonically–Controlled Calabro–Tyrrhenian Continental Margin (Southern Italy). Geosciences, 9(1), 43. https://doi.org/10.3390/geosciences9010043