Migration and Morphology of Asymmetric Barchans in the Central Hexi Corridor of Northwest China
Abstract
:1. Introduction
2. Method and Materials
2.1. Study Area
2.2. Methods
2.2.1. Wind Regime
2.2.2. Dune Migration
2.2.3. Particle Size Distribution
- ▪
- 26 samples from two barchan dunes (see Figure 4c). From these 26 samples, seven were collected over the windward toe, stoss, front of top, middle of top, back of top, crest, and leeward toe of sand dune SD2; moreover, 19 samples were collected at four transacts (Figure 4c,d) of sand dune SD3, 7 sites for SD3T-a (windward toe, stoss, front of top, middle of top, back of top, crest, leeward toe), and 4 sites for SD3T-a, SD3T-b, SD3T-c, and SD3T-d (windward toe, stoss, crest, and leeward toe, respectively);
- ▪
- 4 samples from the inner layer of a barchan dune (surface, on the gravel layer, gravel layer, and under gravel layer);
- ▪
- 3 samples from vegetated dunes (windward, crest, and leeward);
- ▪
- 3 samples from gravel surfaces (2 sites, 2 gravel surfaces, and 1 gravel under layer);
- ▪
- 2 samples from dry lacustrine sediment (one from the surface and one from the under layer).
- ▪
- one designated GD (dunes formed on gravel surface), consisting of gravel and dry lacustrine sediment (Figure 4b,d);
- ▪
- a VD (vegetation dunes) region consisting of vegetated dunes, which were located in the central portion of the study area;
- ▪
- SD1, an upwind sand dune located in the Huahai village (Figure 2);
- ▪
- SD2, a sand dune located near the center of the study area (Figure 2); and
- ▪
- SD3, a downwind sand dune located in the downwind portion of the study area (Figure 4a).
3. Results
3.1. Wind Regime in the Study Area
3.2. Dune Pattern and Movement
3.3. Grain Size Parameters
4. Discussion
4.1. Wind Regimes and Asymmetric Barchan Dunes
4.2. Sand Sources for the Dune Formation and Development
4.3. Collision of Barchan Dunes
4.4. Asymmetric Sediment Supply
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bourke, M.C. Barchan dune asymmetry: Observations from Mars and Earth. Icarus 2010, 205, 183–197. [Google Scholar] [CrossRef]
- Parteli, E.J.R.; Durán, O.; Bourke, M.C.; Tsoar, H.; Pöschel, T.; Herrmann, H. Origins of barchan dune asymmetry: Insights from numerical simulations. Aeolian Res. 2014, 12, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Lv, P.; Dong, Z.; Narteau, C.; Rozier, O. Morphodynamic mechanisms for the formation of asymmetric barchans: Improvement of the Bagnold and Tsoar models. Environ. Earth Sci. 2016, 75, 259. [Google Scholar] [CrossRef]
- Tsoar, H.; Parteli, E.J.R. Bidirectional winds, barchan dune asymmetry and formation of seif dunes from barchans: A discussion. Environ. Earth Sci. 2016, 75, 1237. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; William Morrow & Company: New York, NY, USA, 1941. [Google Scholar]
- Tsoar, H. The formation of seif dunes from barchans-a discussion. Z. Geomorphol. 1984, 28, 99–103. [Google Scholar]
- Wang, N.A.; Li, Z.L.; Li, Y.; Cheng, H.Y. Millennial-scale environmental changes in the Asian monsoon margin during the Holocene, implicated by the lake evolution of Huahai Lake in the Hexi Corridor of northwest China. Quat. Int. 2013, 313–314, 100–109. [Google Scholar] [CrossRef]
- Nottebaum, V.; Lehmkuhl, F.; Stauch, G.; Lu, H.Y.; Yi, S.Q. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor-An example from northern Chinese drylands. Geomorphology 2015, 250, 113–127. [Google Scholar] [CrossRef]
- Fryberger, S.G.; Dean, G. Dune forms and winds regime. In A Study of Global Sand Seas; Geological Survey Professional Paper; McKee, E.D., Ed.; U.S. Geological Survey: Washington, DC, USA, 1979; pp. 137–169. [Google Scholar]
- Bullard, J.E. A note on the use of the ‘Fryberger Method’ for evaluating potential sand transport by wind. J. Sediment. Res. 1997, 67, 499–501. [Google Scholar] [CrossRef]
- Pearce, K.I.; Walker, I.J. Frequency and magnitude biases in the ‘Fryberger’ model, with implications for characterizing geomorphically effective winds. Geomorphology 2005, 68, 39–55. [Google Scholar] [CrossRef]
- Wang, X.M.; Dong, Z.B.; Yan, P.; Zhang, J.W.; Qian, G.Q. Wind energy environments and dune field activity in the Chinese deserts. Geomorphology 2005, 65, 33–48. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Dong, Z.; Qian, G.; Li, J.; Luo, W. Formation and development of dunes in the Northern Qarhan Desert, central Qaidam Basin, China. Geol. J. 2018, 53, 1123–1134. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Dong, Z.B.; Li, C.X. Wind regime and sand transport in China’s Badain Jaran Desert. Aeolian Res. 2015, 17, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Dong, Z.B.; Wen, Q.; Jiang, C.W. Wind regimes and aeolian geomorphology in the western and southwestern Tengger Desert, NW China. Geol. J. 2015, 50, 707–719. [Google Scholar] [CrossRef]
- Hereher, M.E. Sand movement patterns in the Western Desert of Egypt: An environmental concern. Environ. Earth Sci. 2010, 59, 1119–1127. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E. Spatial analysis of sand dunes with a new global topographic dataset: New approaches and opportunities. Earth Surf. Process. Landf. 2010, 35, 986–992. [Google Scholar] [CrossRef]
- Sparavigna, A.C. A Study of Moving Sand Dunes by Means of Satellite Images. Int. J. Sci. 2013, 8, 33–42. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Refaat, A.A.; Wahed, M.A. Morphologic characteristics and migration rate assessment of barcha dunes in the Southeastern Western Desert of Egypt. Geomorphology 2016, 257, 57–74. [Google Scholar] [CrossRef]
- Bailey, S.D.; Bristow, C.S. Migration of parabolic dunes at Aberffraw, Anglesey, north Wales. Geomorphology 2004, 59, 165–174. [Google Scholar] [CrossRef]
- Levin, N.; Ben-Dor, E. Monitoring sand dune stabilization along the coastal dunes of Ashdod-Nizanim, Israel, 1945–1999. J. Arid Environ. 2004, 58, 335–355. [Google Scholar] [CrossRef]
- Levin, N. Climate-driven changes in tropical cyclone intensity shape dune activity on Earth’s largest sand island. Geomorphology 2011, 125, 239–252. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Levin, N.; Barchyn, T.E.; Baddock, M.C. Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook. Earth-Sci. Rev. 2012, 111, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Hugenholtz, C.H.; Barchyn, T.E. Real barchan dune collisions and ejections. Geophys. Res. Lett. 2012, 39, L02306. [Google Scholar] [CrossRef]
- Tsoar, H.; Blumberg, D.G. Formation of parabolic dunes from barchan and transverse dunes along Israel’s Mediterranean coast. Earth Surf. Process. Landf. 2002, 27, 1147–1161. [Google Scholar] [CrossRef]
- Scuderi, L.A.; Weissmann, G.S.; Hartley, A.J.; Yang, X.P.; Lancaster, N. Application of Database Approaches to the Study of Earth’s Aeolian Environments: Community Needs and Goals. Aeolian Res. 2017, 27, 79–109. [Google Scholar] [CrossRef]
- Kroy, K.; Sauermann, G.; Herrmann, H.J. Minimal model for sand dunes. Phys. Rev. Lett. 2002, 88, 054301. [Google Scholar] [CrossRef] [PubMed]
- Durán, O.; Parteli, E.J.R.; Herrmann, H.J. A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields. Earth Surf. Process. Landf. 2010, 35, 1591–1600. [Google Scholar] [CrossRef]
- Cooke, R.; Warren, A.; Goudie, A. Desert Geomorphology; UCL Press: London, UK, 1993; Volume 526, pp. 372–373. [Google Scholar]
- Sauermann, G.; Rognon, P.; Poliakov, A.; Herrmann, H.J. The shape of the barchan dunes of Southern Morocco. Geomorphology 2000, 36, 47–62. [Google Scholar] [CrossRef]
- Kroy, K.; Fischer, S.; Obermayer, B. The shape of barchan dunes. J. Phys. Condens. Matter 2005, 17. [Google Scholar] [CrossRef]
- Hesp, P.A.; Hastings, K. Width, height and slope relationships and aerodynamic maintenance of barchans. Geomorphology 1998, 22, 193–204. [Google Scholar] [CrossRef]
- Hersen, P.; Douady, S. Collision of barchan dunes as a mechanism of size regulation. Geophys. Res. Lett. 2005, 32, L21403. [Google Scholar] [CrossRef]
- Parteli, E.J.R.; Herrmann, H.J. Saltation transport on Mars. Phys. Rev. Lett. 2007, 98, 198001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.C.; Dong, Z.B. Grain size characteristics in the Hexi Corridor Desert. Aeolian Res. 2015, 18, 55–67. [Google Scholar] [CrossRef]
- Lancaster, N. Geomorphology of Desert Dunes; Routledge: New York, NY, USA, 1995. [Google Scholar]
- Livingstone, I.; Warren, A. Aeolian Geomorphology: An Introduction; Longman: Singapore, 1996. [Google Scholar]
- Lancaster, N. Grain size characteristics of Namib Desert linear dunes. Sedimentology 1981, 28, 115–122. [Google Scholar] [CrossRef]
- Lancaster, N. Star dunes. Prog. Phys. Geogr. 1989, 13, 67–92. [Google Scholar] [CrossRef]
- Hasi, E.; Wang, G.Y. Grain-size variation on transverse dune in connection with slope morphology at fringe of Tengger Desert. J. Desert Res. 1996, 16, 216–221. (In Chinese) [Google Scholar]
- Dong, Z.B.; Su, Z.Z.; Qian, G.Q.; Luo, W.Y.; Zhang, Z.C.; Wu, J.F. Aeolian Geomorphology of the Kumtagh Desert; Science Press: Beijing, China, 2011. [Google Scholar]
- Qian, G.Q.; Dong, Z.B.; Luo, W.Y.; Zhang, Z.C.; Xiao, S.C.; Zhao, A.G. Grain size characteristics and spatial variation of surface sediment in the Badain Jaran Desert. J. Desert Res. 2011, 31, 1357–1364. (In Chinese) [Google Scholar]
- Wasson, R.J.; Hyde, R. Factors determining desert dune type. Nature 1983, 304, 337–339. [Google Scholar] [CrossRef]
- Lima, H.P.M.; Parteli, E.J.R.; Andrade, J.S., Jr.; Herrmann, H.J. Linear stability analysis of transverse dunes. Physica A 2012, 391, 4606–4614. [Google Scholar]
- Lucas, A.; Rodriguez, S.; Narteau, C.; Charnay, B.; Courrech du Pont, S.; Tokano, T.; Garcia, A.; Thiriet, M.; Hayes, A.G.; Lorenz, R.D.; et al. Growth mechanisms and dune orientation on Titan. Geophys. Res. Lett. 2014, 41, 6093–6100. [Google Scholar] [CrossRef] [Green Version]
- Courrech du Pont, S.; Narteau, C.; Gao, X. Two modes for dune orientation. Geology 2014, 42, 743–746. [Google Scholar] [CrossRef]
- Lucas, A.; Narteau, C.; Rodriguez, S.; Rozier, O.; Callot, Y.; Garcia, A.; Courrech du Pont, S. Sediment flux from the morphodynamics of elongating linear dunes. Geology 2015, 43, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Rubin, D.M.; Hunter, R.E. Bedform alignment in directionally varying flows. Science 1987, 237, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.M.; Ikeda, H. Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows. Sedimentology 1990, 37, 673–684. [Google Scholar] [CrossRef]
- Rubin, D.M.; Tsoar, H. A second look at western Sinai seif dunes and their lateral migration. Geomorphology 2008, 93, 335–342. [Google Scholar] [CrossRef]
- Parteli, E.J.R.; Durán, O.; Tsoar, H.; Schwämmle, V.; Herrmann, H.J. Dune formation under bimodal winds. Proc. Natl. Acad. Sci. USA 2009, 106, 22085–22089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reffet, E.; Courrech du Pont, S.; Hersen, P.; Douady, S. Formation and stability of transverse and longitudinal sand dunes. Geology 2010, 38, 491–494. [Google Scholar] [CrossRef]
- Bourke, M.C.; Goudie, A.S. Varieties of barchan form in the Namib Desert and on Mars. Aeolian Res. 2009, 1, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Elbelrhiti, H.; Andreotti, B.; Claudin, P. Barchan dune corridors: Field characterization and investigation of control parameters. J. Geophys. Res. 2008, 113, F02S15. [Google Scholar] [CrossRef]
- Elbelrhiti, H. Field evidence of appearance and disappearance of the brink line on barchans. Aeolian Res. 2015, 18, 115–120. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Dong, Z.B. Dune field patterns and wind environments in the middle reaches of the Heihe Basin. J. Desert Res. 2014, 34, 332–341. [Google Scholar]
- Schwämmle, V.; Herrmann, H.J. Solitary wave behaviour of sand dunes. Nature 2003, 426, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Durán, O.; Schwämmle, V.; Herrmann, H.J. Breeding and solitary wave behavior of dunes. Phys. Rev. E 2005, 72, 021308. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.C.; Kocurek, G.A. Aeolian dune interactions and dune-field pattern formation: White Sands Dune Field, New Mexico. Sedimentology 2010, 57, 1199–1219. [Google Scholar] [CrossRef]
- Kocurek, G.A.; Ewing, R.C.; Mohrig, D. How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary condition. Earth Surf. Process. Landf. 2010, 35, 51–63. [Google Scholar] [CrossRef]
- Endo, N.; Taniguchi, K.; Katsuki, A. Observation of the whole process of interaction between barchans by flume experiments. Geophys. Res. Lett. 2004, 31, 12503. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Z.; Bristow, N.; Blois, G.; Christensen, K.T.; Anderson, W. Numerical and experimental study of flow over stages of an offset merger dune interaction. Comput. Fluids 2017, 158, 72–83. [Google Scholar] [CrossRef]
- Rim, M. Simulations by dynamical model, of sand tract morphology occurring in Israel. Bull. Res. Counc. Isr. 1958, 7-G, 123–137. [Google Scholar]
- Selmani, H.; Valance, A.; Ould El Moctar, A.; Dupont, P.; Zegadi, R. Aeolian sand transport in out-of-equilibrium regimes. Geophys. Res. Lett. 2018, 45, 1838–1844. [Google Scholar] [CrossRef]
- Khosronejad, A.; Sotiropoulos, F. On the genesis and evolution of barchan dunes: Morphodynamics. J. Fluid Mech. 2017, 815, 117–148. [Google Scholar] [CrossRef]
- Pähtz, T.; Parteli, E.J.R.; Kok, J.; Herrmann, H.J. Analytical model for flux saturation in sediment transport. Phys. Rev. E 2014, 89, 052213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreotti, B.; Claudin, P. Aeolian and subaqueous bedforms in shear flows. Philos. Trans. R. Soc. A 2013, 371, 20120364. [Google Scholar] [CrossRef] [PubMed]
2002 | 2004 | 2012 | 2015 | |
---|---|---|---|---|
L1/L2 | 288.25 | 183.13 | 117.60 | 111.46 |
W1/W2 | 0.16 | 0.18 | 0.25 | 0.27 |
L3/L4 | 0.13 | 0.14 | 0.12 | 0.18 |
L1 + L2 + L4/W1 + W2 | 2.26 | 2.27 | 2.23 | 2.27 |
W2/L3 | 0.50 | 0.49 | 0.45 | 0.43 |
W1/L4 | 0.65 | 0.63 | 0.96 | 0.64 |
Locations | Dune a | Dune b | Dune c | Dune d | Dune f | |||||
---|---|---|---|---|---|---|---|---|---|---|
MR | D | MR | D | MR | D | MR | D | MR | D | |
WT | 30.2 | 128 | 41.0 | 129 | 57.2 | 116 | 10.0 | 110 | 43.3 | 114 |
LT | 24.4 | 121 | 40.2 | 128 | 53.7 | 118 | 5.0 | 112 | 32.2 | 122 |
H1 | 25.9 | 113 | 33.1 | 124 | 50.4 | 116 | 18.6 | 108 | 33.5 | 101 |
H2 | 24.3 | 135 | 37.2 | 134 | 52.7 | 121 | 5.8 | 116 | 33.4 | 135 |
Mean | 26.2 | 125 | 37.9 | 111 | 53.5 | 119 | 9.8 | 115 | 35.6 | 108 |
2002–2004 | 2004–2012 | |||||||||
L | WT | LT | H1 | H2 | Mean | WT | LT | H1 | H2 | Mean |
MR | 5.8 | 7.4 | 11.4 | 8.2 | 8.2 | 9.8 | 7.1 | 5.2 | 10.5 | 8.1 |
D | 120 | 123 | 123 | 137 | 123 | 133 | 125 | 112 | 134 | 126 |
2012–2015 | 2002–2015 | |||||||||
L | WT | LT | H1 | H2 | Mean | WT | LT | H1 | H2 | Mean |
MR | 20.4 | 10.4 | 28.0 | 19.3 | 19.5 | 11.1 | 7.7 | 11.4 | 12.0 | 10.5 |
D | 115 | 121 | 124 | 110 | 118 | 127 | 120 | 116 | 114 | 118 |
Region | Mz (mm) | References |
---|---|---|
Namib Desert | 0.15–0.29 | Lancaster [38,39] |
Deserts worldwide | 0.11–0.33 | Lancaster [36,39] |
Tengger Desert | 0.17 | Hasi and Wang [40]; Zhang et al. [14] |
Kumutagh Desert | 0.19 | Dong et al. [41] |
Badain Jaran Desert | 0.19 | Qian et al. [42] |
Hexi Corridor Desert | 0.17–0.23 | Zhang et al. [15] |
Hexi Corridor barchan dunes | 0.37 ± 0.14 | This paper |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Dong, Z.; Hu, G.; Parteli, E.J.R. Migration and Morphology of Asymmetric Barchans in the Central Hexi Corridor of Northwest China. Geosciences 2018, 8, 204. https://doi.org/10.3390/geosciences8060204
Zhang Z, Dong Z, Hu G, Parteli EJR. Migration and Morphology of Asymmetric Barchans in the Central Hexi Corridor of Northwest China. Geosciences. 2018; 8(6):204. https://doi.org/10.3390/geosciences8060204
Chicago/Turabian StyleZhang, Zhengcai, Zhibao Dong, Guangyin Hu, and Eric J. R. Parteli. 2018. "Migration and Morphology of Asymmetric Barchans in the Central Hexi Corridor of Northwest China" Geosciences 8, no. 6: 204. https://doi.org/10.3390/geosciences8060204
APA StyleZhang, Z., Dong, Z., Hu, G., & Parteli, E. J. R. (2018). Migration and Morphology of Asymmetric Barchans in the Central Hexi Corridor of Northwest China. Geosciences, 8(6), 204. https://doi.org/10.3390/geosciences8060204