Response of Soils and Soil Ecosystems to the Pennsylvanian–Permian Climate Transition in the Upper Fluvial Plain of the Dunkard Basin, Southeastern Ohio, USA
Abstract
:1. Introduction
2. Geologic Setting
Monongahela and Dunkard Groups
3. Methods
3.1. Field Methods
3.2. Laboratory Methods
4. Results
4.1. Sedimentology and Stratigraphy
4.1.1. Upper Monongahela Group
4.1.2. Lower Dunkard Group
4.2. Continental Ichnofossils
4.2.1. Rhizoliths
4.2.2. Passively Filled Burrows
4.3. Pedotypes
4.3.1. Pedotype 1 (PT1) Monongahela and Dunkard Groups (Protosol)
4.3.2. Pedotype 2 (PT2) Monongahela Group (Calcic Protosol)
4.3.3. Pedotype 3 (PT3) Dunkard Group (Ferric Vertisol)
4.3.4. Pedotype 4 (PT4) Monongahela and Dunkard Groups (Calcic Vertisol)
4.3.5. Pedotype 5 (PT5) Monongahela and Dunkard Groups (Gleyed Calcic Vertisol)
4.3.6. Pedotype 6 (PT6) Dunkard Group (Histosol)
5. Discussion
5.1. Paleosol Interpretations
5.1.1. Pedotype 1 (PT1) Landscapes
5.1.2. Pedotype 2 (PT2) Landscapes
5.1.3. Pedotype 3 (PT3) Landscapes
5.1.4. Pedotype 4 (PT4) Landscapes
5.1.5. Pedotype 5 (PT5) Landscapes
5.1.6. Pedotype 6 (PT6) Landscapes
5.2. Vegetation and Soil Ecosystems
5.3. Paleoclimatic Significance
5.4. Autogenic vs. Allogenic Controls
5.5. Comparison with Contemporaneous Paleosols
5.5.1. Dunkard Basin
5.5.2. Contemporaneous Basins
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; McGraw-Hill Book Company: New York, NY, USA, 1941; 281p. [Google Scholar]
- Kraus, M.J. Paleosols in clastic sedimentary rocks: Their geologic applications. Earth-Sci. Rev. 1999, 47, 41–70. [Google Scholar] [CrossRef]
- Retallack, G.J. Soils of the Past: An Introduction to Paleopedology; Blackwell Science: Oxford, UK, 2001; 404p. [Google Scholar]
- Buol, S.W.; Southard, R.J.; Graham, R.C.; McDaniel, P.A. Soil Genesis and Classification, 5th ed.; Iowa State University Press: Ames, IA, USA, 2003; 494p. [Google Scholar]
- Cecil, C.B. An overview and interpretation of the autocyclic and allocyclic processes and the accumulation of strata during the Pennsylvanian-Permian transition in the central Appalachian Basin, USA. Int. J. Coal Geol. 2013, 119, 21–31. [Google Scholar] [CrossRef]
- Hembree, D.I.; Nadon, G.C. A paleopedologic and ichnologic perspective of the terrestrial Pennsylvanian landscape in the distal Appalachian Basin, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 312, 138–166. [Google Scholar] [CrossRef]
- Rosenau, N.A.; Tabor, N.J.; Elrick, S.D.; Nelson, W.J. Polygenetic history of paleosols in Middle-Upper Pennsylvanian cyclothems of the Illinois Basin, USA: Part I. Characterization of paleosol types and interpretation of pedogenic processes. J. Sediment. Res. 2013, 83, 606–636. [Google Scholar] [CrossRef]
- Hembree, D.I.; Bowen, J. Paleosols and ichnofossils of the Upper Pennsylvanian-Lower Permian Monongahela and Dunkard groups: A multi-proxy approach to unraveling complex variability in ancient terrestrial landscapes. PALAIOS 2017, 32, 295–320. [Google Scholar] [CrossRef]
- Tabor, N.J.; Montañez, I.P. Morphology and distribution of fossil soils in the Permo-Pennsylvanian Wichita and Bowie Groups, north-central Texas, USA: Implications for western equatorial Pangean palaeoclimate during icehouse–greenhouse transition. Sedimentology 2004, 51, 851–884. [Google Scholar] [CrossRef]
- Giles, J.M.; Soreghan, M.J.; Benison, K.C.; Soreghan, G.S.; Hasiotis, S.T. Lakes, loess, and paleosols in the Permian Wellington Formation of Oklahoma, USA: Implications for paleoclimate and paleogeography of the Midcontinent. J. Sediment. Res. 2013, 83, 825–846. [Google Scholar] [CrossRef]
- Counts, J.W.; Hasiotis, S.T. Distribution, paleoenvironmental implications, and stratigraphic architecture of paleosols in Lower Permian continental deposits of western Kansas, USA. J. Sediment. Res. 2014, 84, 144–167. [Google Scholar] [CrossRef]
- Martin, W.D. Geology of the Dunkard Group (Upper Pennsylvanian-Lower Permian) in Ohio, West Virginia, and Pennsylvania. Ohio Dep. Nat. Resour. Div. Geol. Surv. Bull. 1998, 73, 1–49. [Google Scholar]
- Sturgeon, M.T. The geology and mineral resources of Athens County, Ohio. Ohio Dep. Nat. Resour. Div. Geol. Surv. Bull. 1958, 57, 1–598. [Google Scholar]
- Fedorko, N.; Skema, V. A review of the stratigraphy and stratigraphic nomenclature of the Dunkard Group in West Virginia and Pennsylvania, USA. Int. J. Coal Geol. 2013, 119, 2–20. [Google Scholar] [CrossRef]
- Lucas, S.G. Vertebrate biostratigraphy and biochronology of the upper Paleozoic Dunkard Group, Pennsylvania-West Virginia-Ohio, USA. Int. J. Coal Geol. 2013, 119, 79–87. [Google Scholar] [CrossRef]
- Schneider, J.W.; Lucas, S.G.; Barrick, J.E. The Early Permian age of the Dunkard Group, Appalachian basin, USA, based on spiloblattinid insect biostratigraphy. Int. J. Coal Geol. 2013, 119, 88–92. [Google Scholar] [CrossRef]
- Clendening, J.A. Stratigraphic placement of the Dunkard according to palynological assemblages. Castanea 1972, 37, 258–287. [Google Scholar]
- Clendening, J.A.; Gillespie, W.H. Stratigraphic placement of the Dunkard: A review of the paleobotanical and other evidence. Castanea 1972, 37, 26–48. [Google Scholar]
- Eble, C.F.; Grady, W.C.; Blake, B.M. Dunkard Group coal beds: Palynology, coal petrography and geochemistry. Int. J. Coal Geol. 2013, 119, 32–40. [Google Scholar] [CrossRef]
- DiMichele, W.A.; Tabor, N.J.; Chaney, D.S.; Nelson, J.W. From wetlands to wet spots: Environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. Geol. Soc. Am. Spec. Pap. 2006, 399, 223–248. [Google Scholar]
- Tabor, N.J.; Poulsen, C.J. Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 268, 293–310. [Google Scholar] [CrossRef]
- De La Horra, R.; Benito, M.I.; López-Gómez, J.; Arche, A.; Barrenechea, J.F.; Luque, J. Paleoenvironmental significance of Late Permian paleosols in the South-Eastern Iberian Ranges, Spain. Sedimentology 2008, 55, 1849–1873. [Google Scholar] [CrossRef] [Green Version]
- Tibert, N.E.; Rygel, M.C.; Sanders, S.C.; Elrick, S.D.; Nelson, J. Temporal and spatial distribution of ostracodes across the Pennsylvanian-Permian boundary interval in eastern North America. Int. J. Coal Geol. 2013, 119, 93–105. [Google Scholar] [CrossRef]
- Munsell Color. Munsell Soil Color Charts; Munsell Color: Baltimore, MD, USA, 1975; 24p. [Google Scholar]
- Sheldon, N.D.; Retallack, G.J.; Tanaka, S. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. J. Geol. 2002, 110, 687–696. [Google Scholar] [CrossRef]
- Sheldon, N.D.; Tabor, N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev. 2009, 95, 1–52. [Google Scholar] [CrossRef]
- Nordt, L.; Driese, S. New weathering index improves paleorainfall estimates from Vertisols. Geology 2010, 38, 407–410. [Google Scholar] [CrossRef]
- McCarthy, P.J.; Martini, I.P.; Leckie, D.D. Pedosedimentary history and floodplain dynamics of the Lower Cretaceous upper Blairmore Group, southwestern Alberta, Canada. Can. J. Earth Sci. 1997, 34, 598–617. [Google Scholar] [CrossRef]
- McCarthy, P.J.; Plint, A.G. Recognition of interfluve sequence boundaries: Integrating paleopedology and sequence stratigraphy. Geology 1998, 26, 387–390. [Google Scholar] [CrossRef]
- McCarthy, P.J.; Plint, A.G. Spatial variability of palaeosols across Cretaceous interfluves in the Dunvegan Formation, NE British Columbia, Canada: Palaeohydrological, palaeogeomorphological and stratigraphic implications. Sedimentology 2003, 50, 1187–1220. [Google Scholar] [CrossRef]
- Kraus, M.J. Lower Eocene alluvial paleosols: Pedogenic development, stratigraphic relationships, and paleosol/landscape associations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 129, 387–406. [Google Scholar] [CrossRef]
- Hembree, D.I.; Hasiotis, S.T. Paleosols and ichnofossils of the White River Formation of Colorado: Insight into soil ecosystems of the North American Midcontinent during the Eocene-Oligocene transition. PALAIOS 2007, 22, 123–142. [Google Scholar] [CrossRef]
- PiPujol, M.D.; Buurman, A.P. The distinction between ground-water gley and surface-water gley phenomena in Tertiary paleosols of the Ebro basin, NE Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 110, 103–113. [Google Scholar] [CrossRef]
- Kraus, M.J.; Hasiotis, S.T. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: Examples from Paleogene paleosols, Bighorn Basin, Wyoming, USA. J. Sediment. Res. 2006, 76, 633–646. [Google Scholar] [CrossRef]
- Mack, G.H.; James, W.C.; Monger, H.C. Classification of paleosols. Geol. Soc. Am. Bull. 1993, 105, 129–139. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; U.S. Government Printing Office: Washington, DC, USA, 2014; 324p.
- Hurst, V.J. Visual estimation of iron in saprolite. Geol. Soc. Am. Bull. 1977, 88, 174–176. [Google Scholar] [CrossRef]
- Birkeland, P.W. Soils and Geomorphology, 3rd ed.; Oxford University Press: New York, NY, USA, 1999; 430p. [Google Scholar]
- Marriott, S.B.; Wright, V.P. Palaeosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites, South Wales. J. Geol. Soc. 1993, 150, 1109–1120. [Google Scholar] [CrossRef]
- Retallack, G.J.; Germán-Heins, J. Paleosol evidence for the geological antiquity of rain forests. Science 1994, 265, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Driese, S.G.; Ober, E.G. Paleopedologic and paleohydrologic records of precipitation seasonality from Early Pennsylvanian “underclay” paleosols, USA. J. Sediment. Res. 2005, 75, 997–1010. [Google Scholar] [CrossRef]
- Lavelle, P.; Spain, A.V. Soil Ecology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; 654p. [Google Scholar]
- Fontaine, W.M.; White, I.C. The Permian or Upper Carboniferous Flora of West Virginia and S.W. Pennsylvania, 2nd ed.; Geological Survey of Pennsylvania: Harrisburg, PA, USA, 1880; 143p.
- DiMichele, W.A.; Kerp, H.; Sirmons, R.; Fedorko, N.; Skema, V.; Blake, B.M., Jr.; Cecil, C.B. Callipterid peltasperms of the Dunkard Group, Central Appalachian Basin. Int. J. Coal Geol. 2013, 119, 56–78. [Google Scholar] [CrossRef] [Green Version]
- DiMichele, W.A.; Pfefferkorn, H.W.; Gastaldo, R.A. Response of late Carboniferous and Early Permian plant communities to climate change. Annu. Rev. Earth Planet. Sci. 2001, 29, 461–487. [Google Scholar] [CrossRef]
- Buatois, L.; Mángano, M.G. Ichnology: Organism-Substrate Interactions in Space and Time; Cambridge University Press: New York, NY, USA, 2011; 366p. [Google Scholar]
- Hasiotis, S.T. Continental Trace Fossils; Society for Sedimentary Geology: Tulsa, OK, USA, 2006; 132p. [Google Scholar]
- Schaetzl, R.J.; Anderson, S. Soils: Genesis and Geomorphology; Cambridge University Press: Cambridge, MA, USA, 2005; 817p. [Google Scholar]
- Nordt, L.; Orosz, M.; Driese, S.; Tubbs, J. Vertisol carbonate properties in relation to mean annual precipitation: Implications for paleoprecipitation estimates. J. Geol. 2006, 119, 501–510. [Google Scholar] [CrossRef]
- Retallack, G.J. Untangling the effects of burial alteration and ancient soil formation. Annu. Rev. Earth Planet. Sci. 1991, 19, 183–206. [Google Scholar] [CrossRef]
- Hembree, D.I.; Blair, M.G. A paleopedological and ichnological approach to interpreting spatial and temporal variability in Early Permian fluvial deposits of the lower Dunkard Group, West Virginia, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 454, 246–266. [Google Scholar] [CrossRef]
Weathering Proxy | Equation | Significance |
---|---|---|
Base Loss | Al2O3/(CaO + MgO + Na2O + K2O) | Accumulation of alumina relative to base cations |
Hydrolysis (Clayeyness) | Al2O3/SiO2 | Al accumulates as clay minerals form |
Salinization | NA2O + K2O/Al2O3 | Accumulation of salts in the subsurface |
Calcification | (CaO + MgO)/Al2O3 | Accumulation of Ca, Mg in the subsurface |
Leaching (CaO, MgO, Na2O, K2O) | (CaO, MgO, Na2O, K2O)/TiO2 | Base cations leached during weathering and Ti accumulated in normal conditions |
CIA-K | [(Al2O3)/(Al2O3 + CaO + Na2O)] × 100 | Weathering of feldspars and the formation of clay minerals |
MAP (CIA-K) | 14.265(CIA-K) − 37.632 | Estimate of precipitation |
CALMAG | [(Al2O3)/(Al2O3 + CaO + MgO)] × 100 | Flux of Ca and Mg from CaCO3, detrital clays, and exchangeable Ca2+ and Mg2+ |
MAP (CALMAG) | 22.69(CALMAG) − 435.8 | Estimate of precipitation specific to Vertisols |
Pedotype | Color and Lithology | Pedogenic Features | Ichnofossils/Fossils | Plasmic and Grain Microfabrics | Dominant Molecular Weathering Ratios | Dominant Clay Mineralogy | Horizons | Classification (Mack) | Classification (Soil Survey) | Paleoenvironment | Vegetation/Ecosystem |
---|---|---|---|---|---|---|---|---|---|---|---|
PT1 | dusky red, platy mudstone, reddish-brown and grayish-green, variegated, platy mudstone, and olive gray and black, laminated claystone | small (<1 mm) micritic carbonate nodules, some relict bedding and/or stringers of coal | Palaeophycus and cf. Palaeophycus, plant body fossils (small ferns, horsetails, and woody/fibrous stem material), horizontal, grayish-green rhizohaloes, abundant organic matter | skelsepic and mosepic to argillasepic; porphyroskelic | base loss | kaolinite, illite, and mica and contain lesser quantities of mixed layer illite-smectite | AC | Protosols | Ustifluvents and Epiaquents (Entisols) | levee or proximal floodplain | early successional vegetation |
PT2 | reddish-brown, dark olive gray, and variegated (reddish-brown and olive green), platy to angular blocky, silty mudstones and blueish green-gray and reddish-brown, variegated sandstone and mudstone | small (~1–40 mm) carbonate nodules and very small (~1–2 cm) slickensides and poorly developed argillans which vary from rare to common | gray green rhizohaloes and uncommonly yellow rhizohaloes (patchy distribution) which are sometimes associated with carbonate nodules, root casts (rare) | silasepic (uncommon), insepic, and mosepic to masepic; porphyroskelic to uncommonly granular or intertextic | variable | kaolinite, illite and mica, and uncommonly chlorite and contain lesser amounts of mixed layer illite-smectite | Bssk, Bsskg, Bkss, and BC | calcic Protosols | Calciusteps and Quartzipsamments (Inceptisols and Entisols) | proximal floodplain | early successional vegetation to early brakeland establishment |
PT3 | dark olive gray to reddish-brown and red to reddish-brown and dusky red, silty, angular blocky mudstone | abundant slickensides ranging from a few mm to 15 cm, argillans and weakly-developed metallic argillans, small (<1 mm) nodules of hematite and iron stippling (thin section) | vertical to subvertical, purple, grayish purple, grayish-green, and yellow (less common) rhizohaloes are evenly distributed | argillasepic (uncommon), skelsepic, mosepic (most common), masepic and bimasepic; porphyroskelic | greater base loss and increased hydrolysis in the bottoms of profiles | kaolinite and chlorite and by lesser amounts of illite and mica and mixed layer illite-smectite throughout the profiles | Bss, Bssg, Bsskg, BssC, and BC | ferric Vertisols | Haplusterts (Vertisols) | proximal to distal floodplain | brakeland |
PT4 | reddish-brown to dusky red, subangular to angular blocky mudstones | abundant small- (~1–5 cm) to large-scale (>20–50 cm) slickensides,, abundant small (<1–10 mm) to large (~2–4 cm) carbonate nodules; argillans | purple and reddish purple, yellow, and gray green, vertical to subhorizontal, small to large rhizohaloes (clustered or diffuse); rhizoconcretions; Cf. Palaeophycus | mosepic to masepic, calciasepic and crystic or uncommonly argillasepic, isotic, or bimasepic; porphyroskelic to agglomeroplasmic (less common) | leaching of bases (greater leaching where lacking carbonate nodules) | illite and mica as well as kaolinite; less common are mixed layer illite-smectite and chlorite | Bss, Bssk, Bsskg, Bkss, Bkg, BkssC, and BC | calcic Vertisols | Calciusterts (Vertisols) | distal floodplain | open brakeland or shrubland |
PT5 | olive gray green and olive gray, platy to angular blocky mudstones that grade downward into red to reddish-brown mudstone or, rarely silty, olive brown to reddish-brown, angular blocky mudstone | abundant small- (<3 cm) to large-scale (~3–>30 cm) slickensides; abundant small (~1–2 mm) to large (~10–40 mm) carbonate nodules coalescent along slickenside surfaces; argillans | vertical to subhorizontal, grayish-green and dusky red rhizohaloes and yellow and olive brown mottles; rhizoconcretions; small (<1 mm) bone fragments | skelsepic, mosepic and masepic and, less commonly, argillasepic or calciasepic; porphyroskelic | base loss in the tops of profiles, calcification increases downward, leaching of bases in tops profiles | mixed layer illite-smectite and illite and mica with lesser amounts of kaolinite and chlorite | Bssg, Bssk, Bsskg, Bkss, and Bkssg | gleyed calcic Vertisols | Calciusterts that transition to Calciaquerts (Vertisols) | distal floodplain transitioned to marsh or fen | open brakeland that transitions to a marsh or fen |
PT6 | black to gray black coal and olive gray, platy, carbonaceous mudstone | coalified organic matter | plant body fossils (small ferns and fibrous stem material) | not observed | not observed | not observed | O | Histosols | Hemists (Histosols) | marshes or swamps on the proximal to distal floodplain | extensive marsh |
Site 1 | Site 2 | Site 3 | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Paleosol | Pedotype | Horizon | CIA-K | CALMAG | MAP (CIA-K) | MAP (CALMAG) | Sample | Paleosol | Pedotype | Horizon | CIA-K | CALMAG | MAP (CIA-K) | MAP (CALMAG) | Sample | Paleosol | Pedotype | Horizon | CIA-K | CALMAG | MAP (CIA-K) | MAP (CALMAG) | |
Zone 3 | S1Z3-2-4 | S1 n | PT4 | Bssk | 42.7 | 37.5 | 415 | S2Z3-1b-4 | S2 l | PT4 | Bssk | 29.1 | 26.6 | 168 | S3Z3-1-1t | S3 d | PT4 | Bsskg | 91.8 | 79.1 | 1359 | |||
S1Z3-2-9 | S1 o | PT4 | Bkss | 40.1 | 35.9 | 379 | S2Z3-1b-11 | S2 m | Pt4 | Bkss | 68.6 | 57.3 | 865 | S3Z3-1-4b | S3 e | PT4 | Bss | 92.0 | 82.1 | 1427 | ||||
S1Z3-1-1 | S1 l | PT4 | Bss | 89.6 | 75.0 | 1267 | S2Z3-1b-13 | S2 m | Pt4 | Bssk | 68.6 | 57.7 | 872 | S3Z3-1-6t | S3 e | PT4 | Bss | 87.1 | 72.8 | 1217 | ||||
S1Z3-1-10 | S1 l | PT4 | Bssk | 77.0 | 63.8 | 1012 | S2Z3-1-3 | S2 j | PT4 | Bssk | 89.9 | 76.6 | 1303 | |||||||||||
S2Z3-1-1 | S2 j | PT4 | Bss | 95.6 | 80.2 | 1384 | ||||||||||||||||||
S2Z3-1-11 | S2 k | PT4 | Bkss | 80.5 | 66.4 | 1070 | ||||||||||||||||||
S2Z3-1-9 | S2 k | PT4 | Bssk | 70.0 | 58.5 | 891 | ||||||||||||||||||
Zone 2 | S1Z2-2-1 | S1 j | PT3 | Bss | 87.6 | 76.4 | 1297 | S2Z2-2-5 | S2 f | PT3 | Bssg | 95.6 | 87.3 | 1545 | S3Z2-2-3 | S3 a | PT4 | Bssk | 58.3 | 51.3 | 728 | |||
S1Z2-2-6 | S1 k | PT3 | Bssg | 93.9 | 86.0 | 1515 | S2Z2-2-3 | S2 g | PT3 | Bss | 96.0 | 86.0 | 1515 | S3Z2-2-6 | S3 b | PT5 | Bsskg | 67.3 | 59.6 | 917 | ||||
S1Z2-1-2 | S1g, h | PT5 | Bssg | 91.7 | 1271 | S2Z2-1-3 | S2 h, i | PT5 | Bssg | 69.7 | 957 | S3Z2-2-8 | S3 b | PT5 | Bsskg | 82.0 | 71.7 | 1192 | ||||||
S1Z2-1-10 | S1 i | PT5 | Bssk | 51.0 | 44.2 | 567 | S2Z2-1-5 | S2 h, i | PT5 | Bsskg | 52.1 | 705 | S3Z2-1-4 | S3 c | PT4 | Bssk | 85.9 | 74.7 | 1260 | |||||
S2Z2-1-13 | S2 i | PT5 | Bssk | 55.7 | 47.8 | 648 | S3BZ2-2-1 | S3B b | PT1 | AC | 96.6 | 1340 | ||||||||||||
S2Z2-1b-1 | S2 d | PT5 | AO | 95.3 | 1322 | |||||||||||||||||||
S2Z2-1b-6 | S2 e | PT5 | Bssk | 47.6 | 41.7 | 510 | ||||||||||||||||||
Zone 1 | S1Z1-4-1 | S1 f | PT2 | Bkss | 94.7 | 1313 | S2Z1-3-1 | S2 c | PT2 | Bss | 66.1 | 905 | ||||||||||||
S1Z1-2-2 | S1 d | PT4 | Bss | 93.0 | 81.4 | 1411 | S2Z1-2-1 | S2 b | PT2 | AC | 77.8 | 1073 | ||||||||||||
S1Z1-1-6 | S1 b | PT4 | Bssk | 60.3 | 52.1 | 746 | S2Z1-1-1 | S2 a | PT2 | Bk | 94.7 | 1314 | ||||||||||||
S1Z1-1-8 | S1 b | PT4 | Bssk | 69.9 | 59.3 | 910 | ||||||||||||||||||
S1Z1-1-10 | S1 b | PT4 | Bssk | 66.0 | 55.6 | 826 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hembree, D.I.; Carnes, J.L. Response of Soils and Soil Ecosystems to the Pennsylvanian–Permian Climate Transition in the Upper Fluvial Plain of the Dunkard Basin, Southeastern Ohio, USA. Geosciences 2018, 8, 203. https://doi.org/10.3390/geosciences8060203
Hembree DI, Carnes JL. Response of Soils and Soil Ecosystems to the Pennsylvanian–Permian Climate Transition in the Upper Fluvial Plain of the Dunkard Basin, Southeastern Ohio, USA. Geosciences. 2018; 8(6):203. https://doi.org/10.3390/geosciences8060203
Chicago/Turabian StyleHembree, Daniel I., and Jennifer L. Carnes. 2018. "Response of Soils and Soil Ecosystems to the Pennsylvanian–Permian Climate Transition in the Upper Fluvial Plain of the Dunkard Basin, Southeastern Ohio, USA" Geosciences 8, no. 6: 203. https://doi.org/10.3390/geosciences8060203
APA StyleHembree, D. I., & Carnes, J. L. (2018). Response of Soils and Soil Ecosystems to the Pennsylvanian–Permian Climate Transition in the Upper Fluvial Plain of the Dunkard Basin, Southeastern Ohio, USA. Geosciences, 8(6), 203. https://doi.org/10.3390/geosciences8060203