Landslide Event on 24 June in Sichuan Province, China: Preliminary Investigation and Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Preliminary Investigation
- Part A was the source of the landslide. The slope exposed after the landslide mainly ranged from 55 to 70 degrees, and the depth of the sliding interface reached about 60 m. A width of 350 m, a length of 450 m, and an average depth of about 23 m made up a volume of 3.6 million cubic meters.
- Part B slid down under the influence of Part A, and it has a relatively gentler slope angle ranging from 25 to 35 degrees. An average width of 360 m, a length of 945 m, and an average depth of about 14 m made up a volume of 4.8 million cubic meters.
2.2. Data Source
3. Rescue Effort
4. Analysis and Discussions
4.1. Rainfall and Topography
4.2. Seismic Fracture Zone in Sichuan
4.3. Recommendations
- (1)
- Firstly, key geological disaster monitoring areas should be investigated. In fact, the investigation is one of the major difficulties for geological disaster prevention. It has been reported that, in China, in 2010, one-third of geological disasters occurred outside monitored areas [50]. Therefore, GIS and other methods should be applied to a more extensive range. The analysis combined with topography, geology, direct economic losses, and potential losses should be used for the division of landslide-prone areas. The geomorphology of landslide areas can also be reconstructed based on GIS or GPS data [51]. Moreover, artificial intelligence can also be used [52,53]. These technologies can aid in predicting geological disasters.
- (2)
- (3)
- For continuous monitoring areas, an EWS is necessary. Local weather stations and satellites should be used for continuous rainfall monitoring and displacement monitoring. A threshold should also be established based on rainfall and displacement, considering topography, geology, potential losses, and degree of risk.
- (4)
- Displacement measuring devices such as GPS, distributed optic fibers and 3D laser scanners, should be deployed in small key continuous monitoring areas. The cost of a monitoring system with a range of kilometers can been economically controlled to be in the order of tens of thousands US dollars.
5. Conclusions
- 1
- A large-scale landslide event, with about 8 million cubic meters of earth and rocks, occurred at Xinmo, resulting in 10 fatalities and 73 people reported as missing. The debris flow hurled cobbles and gravels that weighed more than 100 kN into the valley, clogging a 2 km section of the Minjiang river. In preliminary investigations, the debris flow’s horizontal and vertical trajectory was projected as 3000 m and 1250 m, respectively.
- 2
- The combined effects of large amounts of rainwater, steep topography, deep-seated sliding interface, and significant altitude difference between the highest point of the mountain and the Xinmo villagers’ houses enhanced the power of the debris flow, leading to severe casualties and environmental impacts.
- 3
- Early warning systems and continuous monitoring by cost-effective strain sensing technology should be deployed for geological disaster-prone areas. Villagers who live in geological disaster-prone areas should be educated on planned evacuation routes, thereby reducing casualties in future similar incidents.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wu, Y.; Liu, X.; Wang, J.; Liu, L.; Shi, P. Landslide and Debris Flow Disasters in China. In Natural Disasters in China; Shi, P., Ed.; IHDP/Future Earth-Integrated Risk Governance Project Series 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Xu, Y.S.; Zhang, D.X.; Shen, S.L.; Chen, L.Z. Geo-hazards with characteristics and prevention measures along the coastal regions of China. Nat. Hazards 2009, 49, 479–500. [Google Scholar] [CrossRef]
- Bai, S.B.; Wang, J.; Lv, G.N.; Zhou, P.G.; Hou, S.S.; Xu, S.N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Qi, S.W.; Xu, Q.; Lan, H.X.; Zhang, B.; Liu, J.Y. Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China. Eng. Geol. 2010, 116, 95–108. [Google Scholar] [CrossRef]
- Shen, S.L.; Xu, Y.S. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotech. J. 2011, 48, 1378–1392. [Google Scholar] [CrossRef]
- Xu, Y.S.; Shen, S.L.; Ren, D.J.; Wu, H.N. Factor analysis of land subsidence in Shanghai: A view based on Strategic Environmental Assessment. Sustainability 2016, 8, 573. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Yuan, D.J. Characteristics of dewatering induced drawdown curve under barrier effect of retaining wall in aquifer. J. Hydrol. 2016, 539, 554–566. [Google Scholar] [CrossRef]
- Shen, S.L.; Wu, H.N.; Cui, Y.J.; Yin, Z.Y. Long-term settlement behavior of the metro tunnel in Shanghai. Tunn. Undergr. Space Technol. 2014, 40, 309–323. [Google Scholar] [CrossRef]
- Cui, Q.L.; Wu, H.N.; Shen, S.L.; Xu, Y.S.; Ye, G.L. Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves. Nat. Hazards 2015, 77, 129–152. [Google Scholar] [CrossRef]
- MLR (Ministry of Land and Resources of the Peoples’ Republic of China). National Geological Disaster Bulletin; MLR (Ministry of Land and Resources of the Peoples’ Republic of China): Beijing, China, 2016. (In Chinese)
- MLR (Ministry of Land and Resources of the Peoples’ Republic of China). National Geological Disaster Bulletin; MLR (Ministry of Land and Resources of the Peoples’ Republic of China): Beijing, China, 2014. (In Chinese)
- Caracciolo, D.; Arnone, E.; Conti, F.L.; Noto, L.V. Exploiting historical rainfall and landslide data in a spatial database for the derivation of critical rainfall thresholds. Environ. Earth Sci. 2017, 76, 222. [Google Scholar] [CrossRef]
- Yu, F.C.; Chen, T.C.; Lin, M.L.; Chen, C.Y.; Yu, W.H. Landslides and Rainfall Characteristics Analysis in Taipei City during the Typhoon Nari Event. Nat. Hazards 2006, 37, 153–167. [Google Scholar] [CrossRef]
- Ciurleo, M.; Cascini, L.; Calvello, M. A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Eng. Geol. 2017, 223, 71–81. [Google Scholar] [CrossRef]
- Cascini, L.; Ciurleo, M.; Di Nocera, S. Soil depth reconstruction for the assessment of the susceptibility to shallow landslides in fine-grained slopes. Landslides 2017, 14, 459–471. [Google Scholar] [CrossRef]
- Romeo, S.; Di Matteo, L.; Melelli, L.; Cencetti, C.; Dragoni, W.; Fredduzzi, A. Seismic-induced rockfalls and landslide dam following the October 30, 2016 earthquake in Central Italy. Landslide 2017, 14, 1457–1465. [Google Scholar] [CrossRef]
- Qi, S.W.; Lan, H.X.; Dong, J.Y. An analytical solution to slip buckling slope failure triggered by earthquake. Eng. Geol. 2014, 194, 4–11. [Google Scholar] [CrossRef]
- Shi, Z.M.; Wang, Y.Q.; Peng, M.; Chen, J.F.; Yuan, J. Characteristics of the landslide dams induced by the 2008 Wenchuan earthquake and dynamic behavior analysis using large-scale shaking table tests. Eng. Geol. 2014, 194, 25–37. [Google Scholar] [CrossRef]
- Tang, H.M.; Liu, X.; Hu, X.L.; Griffiths, D.V. Evaluation of landslide mechanisms characterized by high-speed mass ejection and long-run-out based on events following the Wenchuan earthquake. Eng. Geol. 2014, 194, 12–24. [Google Scholar] [CrossRef]
- Yin, Y.P.; Li, B.; Wang, W.P.; Zhan, L.T.; Xue, Q.; Gao, Y.; Zhang, N.; Chen, H.Q.; Liu, T.K.; Li, A. Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization. J. Eng. 2016, 2, 230–249. [Google Scholar] [CrossRef]
- Listo, F.L.R.; Vieira, B.C. Mapping of risk and susceptibility of shallow-landslide in the city of Sao Paulo, Brazil. Geomorphology 2012, 169–170, 30–44. [Google Scholar] [CrossRef]
- Antronico, L.; Borrelli, L.; Coscarelli, R.; Gullà, G. Time evolution of landslide damages to buildings: The case study of Lungro (Calabria, southern Italy). Bull. Eng. Geol. Environ. 2015, 74, 47–59. [Google Scholar] [CrossRef]
- Schuster, R.L.; Fleming, R.W. Economic losses and fatalities due to landslides. Bull. Assoc. Eng. Geol. 1986, 23, 11–28. [Google Scholar] [CrossRef]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Klose, M.; Damn, B.; Terhorst, B. Landslide cost modeling for transportation infrastructures: A methodological approach. Landslides 2015, 12, 321–334. [Google Scholar] [CrossRef]
- Del Soldato, M.; Bianchini, S.; Calcaterra, D.; De Vita, P.; Martire, D.D.; Tomas, R.; Casagli, N. A new approach for landslide-induced damage assessment. Geomat. Nat. Hazards Risk 2017, 8, 1524–1537. [Google Scholar] [CrossRef]
- Antronico, L.; Borrelli, L.; Coscarelli, R.; Pasqua, A.A.; Petrucci, O.; Gullà, G. Slope movements induced by rainfalls damaging an urban area: The Catanzaro case study (Calabria, southern Italy). Landslides 2013, 10, 801–814. [Google Scholar] [CrossRef]
- Huang, J.; Ju, N.P.; Liao, Y.J.; Liu, D.D. Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method. Nat. Hazards Earth Syst. Sci. 2015, 15, 2715–2723. [Google Scholar] [CrossRef]
- Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N. An operational landslide early warning system at regional scale based on space-time-variable rainfall thresholds. Nat. Hazards Earth Syst. Sci. 2015, 15, 853–861. [Google Scholar] [CrossRef]
- Salciarini, D.; Fanelli, G.; Tamagnini, C. A probabilistic model for rainfall-induced shallow landslide prediction at the regional scale. Landslides 2017, 14, 1731–1746. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Jin, Y.F.; Shen, S.L.; Hicher, P.Y. Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 70–94. [Google Scholar] [CrossRef]
- Shen, S.L.; Wang, Z.F.; Yang, J.; Ho, E.C. Generalized approach for prediction of jet grout column diameter. J. Geotech. Geoenviron. Eng. 2017, 139, 2060–2069. [Google Scholar] [CrossRef]
- Wu, H.N.; Shen, S.L.; Liao, S.M.; Yin, Z.Y. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings. Tunn. Undergr. Space Technol. 2015, 317–323. [Google Scholar] [CrossRef]
- Shen, S.L.; Cui, Q.L.; Ho, E.C.; Xu, Y.S. Ground response to multiple parallel microtunneling operations in cemented silty clay and sand. J. Geotech. Geoenviron. Eng. 2016, 142, 1–11. [Google Scholar] [CrossRef]
- Gullà, G.; Peduto, D.; Borrelli, L.; Antronico, L.; Fornaro, G. Geometric and kinematic characterization of landslides affecting urban areas: The Lungro case study (Calabria, Southern Italy). Landslides 2017, 14, 171–188. [Google Scholar] [CrossRef]
- Traglia, F.D.; Nolesini, T.; Ciampalini, A.; Solari, L.; Frodella, W.; Bellotti, F.; Fumagalli, A.; Rosa, G.D.; Casagli, N. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data. Geomorphology 2017, 300, 95–112. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Stefanelli, C.T.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of Tuscany(Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2017. [Google Scholar] [CrossRef]
- Bianchini, S.; Solari, L.; Casagli, N. A Gis-based procedure for landslide intensity evaluation and specific risk analysis supported by persistent scatterers interferometry (PSI). Remote Sens. 2017, 9, 1093. [Google Scholar] [CrossRef]
- Chimidi, G.; Raghuvanshi, T.K.; Suryabhagavan, K.V. Landslide hazard evaluation and zonation in and around Gimbi town, western Ethiopia—A GIS-based statistical approach. Appl. Geomat. 2017, 9, 219–236. [Google Scholar] [CrossRef]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Conte, S.D.; Farina, P.; Allievi, J.; Ferretti, A.; Casagli, N. The Maoxian landslide as seen from space: Detecting precursors of failure with Sentinel-1 data. Landslides 2017. [Google Scholar] [CrossRef]
- Ferlisi, S.; Peduto, D.; Gullà, G.; Nicodemo, G.; Borrelli, L.; Fornaro, G. The Use of DInSAR Data for the Analysis of Building Damage Induced by Slow-Moving Landslides. Eng. Geol. Soc. Territ. 2015, 2, 1835–1839. [Google Scholar] [CrossRef]
- Antronico, L.; Borrelli, L.; Peduto, D.; Fornaro, G.; Gullà, G.; Paglia, L.; Zeni, G. Conventional and innovative techniques for the monitoring of displacements in landslide affected area. In Landslide Science and Practice: Early Warning, Instrumentation and Monitoring; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 2, pp. 125–131. [Google Scholar]
- Chen, Q.C.; Feng, C.J.; Meng, W.; Qin, X.H.; An, Q.M. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake. Chin. J. Geophys. 2012, 55, 3923–3932. [Google Scholar] [CrossRef]
- Chai, J.C.; Shen, J.S.L.; Liu, M.D.; Yuan, D.J. Predicting performance of embankments on PVD improved subsoils. Comput. Geotech. 2018, 93, 222–231. [Google Scholar] [CrossRef]
- Shen, S.L.; Wang, Z.F.; Cheng, W.C. Estimation of lateral displacement induced by jet grouting in clayey soils. Geotechnique 2017, 67, 621–630. [Google Scholar] [CrossRef]
- Xu, Y.S.; Shen, S.L.; Wu, H.N.; Zhang, N. Risk and impacts on the environment of free-phase biogas in Quaternary deposits along the coastal region of Shanghai. Ocean Eng. 2017, 137, 129–137. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, J.S.; Cheng, W.C.; Hino, T. Semi-analytical solution to pumping test data with barrier, wellbore storage, and partial penetration effects. Eng. Geol. 2017, 226, 44–51. [Google Scholar] [CrossRef]
- Ouyang, C.J.; Zhao, W.; He, S.M.; Wang, D.P.; Zhou, S.; An, H.C.; Wang, Z.W.; Cheng, D.X. Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian Country, China. J. Mt. Sci. 2017, 14, 1701–1711. [Google Scholar] [CrossRef]
- Su, L.J.; Hu, K.H.; Zhang, W.F.; Wang, J.; Lei, Y.; Zhang, C.L.; Cui, P.; Alessandro, P.; Zheng, Q.H. Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China. J. Mt. Sci. 2017, 14, 1689–1700. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, M.S.; Xue, Q.; Bi, J.B. Landslide monitoring and early-warning: An overview. Geol. Rev. 2012, 3, 533–541. [Google Scholar] [CrossRef]
- Soldato, M.D.; Riquelme, A.; Tomas, R.; Vita, P.D.; Moretti, S. Geomorphological investigation based on 3D historical reconstruction. In Geosciences on a Changing Planet: Learning from the Past, Exploring the Future; Società Geologica Italiana: Roma, Italy, 2016. [Google Scholar]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landsldie spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Arulrajah, A. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Sci. Total Environ. 2018. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. Appendix C. Introduction to Landslide Stabilization and Mitigation. In The Landslide Handbook—A Guide to Understanding Landslides; USGS: Ritton, WV, USA, 2008. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, W.; Xu, Y.; Cheng, W.-C.; Arulrajah, A. Landslide Event on 24 June in Sichuan Province, China: Preliminary Investigation and Analysis. Geosciences 2018, 8, 39. https://doi.org/10.3390/geosciences8020039
Meng W, Xu Y, Cheng W-C, Arulrajah A. Landslide Event on 24 June in Sichuan Province, China: Preliminary Investigation and Analysis. Geosciences. 2018; 8(2):39. https://doi.org/10.3390/geosciences8020039
Chicago/Turabian StyleMeng, Wanlin, Yeshuang Xu, Wen-Chieh Cheng, and Arul Arulrajah. 2018. "Landslide Event on 24 June in Sichuan Province, China: Preliminary Investigation and Analysis" Geosciences 8, no. 2: 39. https://doi.org/10.3390/geosciences8020039
APA StyleMeng, W., Xu, Y., Cheng, W. -C., & Arulrajah, A. (2018). Landslide Event on 24 June in Sichuan Province, China: Preliminary Investigation and Analysis. Geosciences, 8(2), 39. https://doi.org/10.3390/geosciences8020039