Kinematic Reconstruction of a Deep-Seated Gravitational Slope Deformation by Geomorphic Analyses
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
- can be found in different rock types and are mostly characterized by poorly defined and/or irregular lateral boundaries [2,6,13]. Subsurface geometry is often unknown, but the absence of a macroscopically well-denoted slip surface cannot be assumed to be a DSGSD diagnostic feature [6]. In fact, many confined landslides [5,8] do not show a clear or complete sliding surface until final collapse, and, on the other hand, many DSGSDs are characterized by basal sliding surfaces [10,14];
- (iv)
- display gravitational morphostructures (e.g., large scarps and counterscarps or up-hill facing scarps, open or infilled trenches, downthrown blocks, ridge top depressions or toe bulging, open tension cracks, grabens, double or multiple ridges) [4,6,10,13,14] and geomorphological evidence of slope deformation and displacements along individual structures and inherited structural features [4]. Nevertheless, it is not yet clear if tectonic features play an active or passive role in DSGSD movements (i.e., DSGSDs occur in zones of high stress or simply in weak rock) [6] and, therefore, whether the sliding surface is occasionally partially coincident to a pre-existing tectonic surface or whether it must be postulated to justify the DSGSD kinematics [10];
- (v)
- (vi)
- trigger sudden and rapid secondary minor landslides (rotational and planar slides, falls, topples and debris flows) from the most superficial part [10,15,16] or can evolve in huge landslides of different types after very long evolutionary phases [1], so that DSGSDs can be considered as preparation stages for huge gravitational collapses that, in any event, do not always complete their evolution [1,2].
2. Study Area
2.1. Geology and Geomorphology
2.2. The 2010 DSGSD Reactivation
3. Materials and Methods
3.1. LiDAR Measurement
3.2. DEM Analysis
3.3. GB-InSAR Analysis
4. Results
- A is the north portion of the landslide near the crown and is characterized by morphological scarps (Figure 7);
- B and C are in the west portion of the landslide and are characterized by scarps, counterscarps and trenches (Figure 7);
- D is in the south-west portion and is mainly characterized by rock avalanche deposits (Figure 7);
- E is in the middle-east portion between the detachment and the dismantling sectors, where there are the minor crow and morphological scarps (Figure 7); and
- F is in the east portion, in an area affected by erosional processes and characterized by lithostructural scarps (Figure 7).
5. Discussion
5.1. DSGSD Re-Activation
5.2. DSGSD Residual Movements
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dramis, F.; Farabollini, P.; Gentili, P.; Pambianchi, G. Neotectonis and large-scale gravitational phenomena in the Umbria-Marche Apennines, Italy. In Steepland Geomorphology; Slaymaker, O., Ed.; J. Wiley & Sons: Chichester, UK, 1995; pp. 199–217. [Google Scholar]
- Hippolyte, J.C.; Brocard, G.; Tardy, M.; Nicoud, G.; Bourlès, D.; Braucher, R.; Ménard, G.; Souffaché, B. The recent fault scarps of the Western Alps (France): Tectonic surface ruptures or gravitational sackung scarps? A combined mapping, geomorphic, levelling, and 10Be dating approach. Tectonophysics 2006, 418, 255–276. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.B.; Frattini, P. Slow rock-slope deformation. In Landslide: Types, Mechanisms and Modelling, 1st ed.; Clague, J.J., Stead, D., Eds.; Cambridge University Press: New York, NY, USA, 2012; pp. 207–221. ISBN 9781107002067. [Google Scholar]
- Crosta, G.B.; Agliardi, F.; Frattini, P. Deep seated gravitational slope deformations in the European Alps. Tectonophysics 2013, 605, 13–33. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation; Turner, A.K., Shuster, R.L., Eds.; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Ambrosi, C.; Crosta, G.B. Large sackung along major tectonic features in the Central Alps. Eng. Geol. 2006, 83, 183–200. [Google Scholar] [CrossRef]
- Zischinsky, U. On the deformation of high slopes. In Proceedings of the First Conference of the International Society for Rock Mechanics, Lisbon, Portugal, 25 September–1 October 1966; Volume 2, pp. 179–185. [Google Scholar]
- Hutchinson, J.N. General Report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; Volume I, pp. 3–35. [Google Scholar]
- Bovis, M. Rock-slope deformation at Affliction Creek, southern Coast Mountains, British Columbia. Can. J. Earth Sci. 1990, 27, 243–254. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.B.; Zanchi, A. Structural constraints on deep-seated slope deformation kinematics. Eng. Geol. 2001, 59, 83–102. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Penna, I.; Pedrazzini, A.; Baroň, I.; Crosta, G.B. An introductory review on gravitational-deformation induced structures, fabrics and modelling. Tectonophysics 2013, 605, 1–12. [Google Scholar] [CrossRef]
- McCalpin, J.P.; Irvine, J.R. Sackungen at Aspen Highlands Ski Area, Pitkin County, Colorado. Environ. Eng. Geosci. 1995, 1, 277–290. [Google Scholar] [CrossRef]
- Varnes, D.J.; Radbruch-Hall, D.; Savage, W.Z. Topographic and structural conditions in areas of gravitational spreading of ridges in the western United States. U. S. Geol. Surv. Prof. Pap. 1989, 1496, 1–28. [Google Scholar]
- Pánek, T.; Klimeš, J. Temporal behavior of deep-seated gravitational slope deformation: A review. Earth Sci. Rev. 2016, 156, 14–38. [Google Scholar] [CrossRef]
- Frodella, W.; Morelli, S.; Fidolini, F.; Pazzi, V.; Fanti, R. Geomorphology of the Rotolon landslide (Veneto region, Italy). J. Maps 2014, 10, 394–401. [Google Scholar] [CrossRef]
- Salvatici, T.; Morelli, S.; Pazzi, V.; Frodella, W.; Fanti, R. Debris flow hazard assessment by means of numerical simulations: Implications for the Rotolon Creek Valley (Northern Italy). J. Mt. Sci. 2017, 14, 636–648. [Google Scholar] [CrossRef]
- Zangerl, C.; Eberhardt, E.; Perzlmaier, S. Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Eng. Geol. 2010, 112, 53–67. [Google Scholar] [CrossRef]
- Frodella, W.; Morelli, S.; Pazzi, V. Infrared thermographic surveys for landslide mapping and characterization: The Rotolon DSGSD (Northern Italy) case study. Int. J. Eng. Geol. Environ. 2017, 1, 77–84. [Google Scholar] [CrossRef]
- Kasai, M.; Ikeda, M.; Asahina, T.; Fujisawa, K. LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 2009, 113, 57–69. [Google Scholar] [CrossRef]
- Crosta, G.B.; di Prisco, C.; Frattini, P.; Frigerio, G.; Castellanza, R.; Agliardi, F. Chasing a complete understanding of the triggering machanisms of a large rapidly evolving rockslide. Landslides 2014, 11, 747–764. [Google Scholar] [CrossRef]
- Barla, G.; Antolini, F.; Barla, M.; Mensi, E.; Piovano, G. Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng. Geol. 2010, 116, 218–235. [Google Scholar] [CrossRef]
- Frigerio, S.; Schenato, L.; Bossi, G.; Cavalli, M.; Mantovani, M.; Marcato, G.; Pasuto, A. A web-based platform for automatic and continuous landslide monitoring: The Rotolon (Eastern Italian Alps) case study. Comput. Geosci. 2014, 63, 96–105. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Casagli, N.; Tofani, V.; Morelli, S.; Frodella, W.; Ciampalini, A.; Raspini, F.; Intrieri, E. Remote sensing techniques in Landslide Mapping and Monitoring, Keynote Lecture. In Advancing Culture of Living with Landslides; Mikos, M., Arbanas, Ž., Yin, Y., Sassa, K., Eds.; Advances in Landslide Technology; Springer International Publishing: Cham, Switzerland, 2017; Volume 3, pp. 1–19. [Google Scholar]
- Frodella, W.; Salvatici, T.; Pazzi, V.; Morelli, S.; Fanti, R. GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events. Nat. Hazards Earth Syst. Sci. 2017, 17, 1779–1793. [Google Scholar] [CrossRef]
- Pazzi, V.; Lotti, A.; Chiara, P.; Lombardi, L.; Nocentini, M.; Casagli, N. Monitoring of the vibration induced on the Arno masonry embankment wall by the conservation works after the 25 May 2016 riverbank landslide. Geoenviron. Disasters 2017, 4, 6. [Google Scholar] [CrossRef]
- Fidolini, F.; Pazzi, V.; Frodella, W.; Morelli, S.; Fanti, R. Geomorphological characterization, monitoring and modeling of the Monte Rotolon complex landslide (Recoaro terme, Italy). In Engineering Geology for Society and Territory—Volume 2; Lollino, G., Giordan, D., Crosta, G., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1311–1315. [Google Scholar]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Lotti, A.; Saccorotti, G.; Fiaschi, A.; Matassoni, L.; Gigli, G.; Pazzi, V.; Casagli, N. Seismic monitoring of rockslide: The Torgiovannetto quarry (Central Apennines, Italy). In Engineering Geology for Society and Territory—Volume 2; Lollino, G., Giordan, D., Crosta, G., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1537–1540. [Google Scholar]
- Pazzi, V.; Tapete, D.; Cappuccini, L.; Fanti, R. An electric and electromagnetic geophysical approach for subsurface investigation of anthropogenic mounds in an urban environment. Geomorphology 2016, 273, 335–347. [Google Scholar] [CrossRef]
- Pazzi, V.; Tanteri, L.; Bicocchi, G.; D’Ambosio, M.; Caselli, A.; Fanti, R. H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: Case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy). Phys. Chem. Earth 2017, 98, 136–153. [Google Scholar] [CrossRef]
- Frodella, W.; Fidolini, F.; Morelli, S.; Pazzi, V. Application of Infrared Thermography for landslide mapping: The Rotolon DSGDS case study. Rend. Online Soc. Geol. Ital. 2015, 35, 144–147. [Google Scholar] [CrossRef]
- Cola, S.; Bossi, G.; Munari, S.; Brezzi, L.; Marcato, G. Applicability of two propagation models to simulate the Rotolon earth-flow occurred in November 2010. In Engineering Geology for Society and Territory—Volume 2; Lollino, G., Giordan, D., Crosta, G., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1683–1687. [Google Scholar]
- Trivelli, G. Storia del Territorio e Delle Genti di Recoaro; Istituto Geografico De Agostini: Novara, Italy, 1991; p. 256. (In Italian) [Google Scholar]
- Altieri, V.; Colombo, P.; Dal Prà, A. Studio per la Valutazione Delle Condizioni di Stabilità dei Versanti e del Fondovalle del Bacino Idrografico del Torrente Rotolon nell’Alta Valle dell’Agno in Comune di Recoaro Terme (Vicenza). Relazione Geologico—Geotecnica; Regione del Veneto Segreteria Regionale per il Territorio—Dipartimento Lavori Pubblici: Venezia, Italy, 1994; p. 97. (In Italian) [Google Scholar]
- Bossi, G.; Cavalli, M.; Crema, S.; Frigerio, S.; Quan Luna, B.; Mantovani, M.; Marcato, G.; Schenato, L.; Pasuto, A. Multi-temporal LiDAR-DTMs as a tool for modelling a complex landslide: A case study in the Rotolon catchment (eastern Italian Alps). Nat. Hazards Earth Syst. Sci. 2015, 15, 715–722. [Google Scholar] [CrossRef]
- Schneuwly-Bollschweiler, M.; Stoffel, M.; Rudolf-Miklau, F. Dating Torrential Processes on Fans and Cones: Methods and Their Application for Hazard and Risk Assessment; Springer: London, UK, 2012; p. 423. ISBN 978-94-007-4336-6. [Google Scholar]
- Gigli, G.; Morelli, S.; Fornera, S.; Casagli, N. Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides 2014, 11, 1–14. [Google Scholar] [CrossRef]
- Gigli, G.; Frodella, W.; Garfagnoli, F.; Morelli, S.; Mugnai, F.; Menna, F.; Casagli, N. 3-D geomechanical rock mass characterization for the evaluation of rockslide susceptibility scenarios. Landslides 2014, 11, 131–140. [Google Scholar] [CrossRef]
- Del Soldato, M.; Segoni, S.; De Vita, P.; Pazzi, V.; Tofani, V.; Moretti, S. Thickness model of pyroclastic soils along mountain slopes of Campania (southern Italy). In Landslides and Engineered Slopes. Experience, Theory and Practice; Aversa, S., Cascini, L., Picarelli, L., Scavia, C., Eds.; Associazione Geotecnica Italaiana: Rome, Italy, 2016; pp. 797–804. ISBN 978-1-138-02988-0. [Google Scholar]
- Morelli, S.; Pazzi, V.; Monroy, V.H.G.; Casagli, N. Residual slope stability in low order streams of Angangueo mining area (Michoacán, Mexico) after the 2010 debris flows. In Advancing Culture of Living with Landslides; Mikos, M., Casagli, N., Yin, Y., Sassa, K., Eds.; Volume 4—Diversity of Landslide Forms; Springer International Publishing: Cham, Switzerland, 2017; pp. 651–660. [Google Scholar]
- Pazzi, V.; Tanteri, L.; Bicocchi, G.; Caselli, A.; D’Ambosio, M.; Fanti, R. H/V technique for the rapid detection of landslide slip surface(s): Assessment of the optimized measurements spatial distribution. In Advancing Culture of Living with Landslides; Mikos, M., Tiwari, B., Yin, Y., Sassa, K., Eds.; Volume 2—Advances in Landslide Science; Springer International Publishing: Cham, Switzerland, 2017; pp. 335–343. [Google Scholar]
- Pazzi, V.; Morelli, S.; Fidolini, F.; Krymi, E.; Casagli, N.; Fanti, R. Testing cost-effective methodologies for flood and seismic vulnerability assessment in communities of developing countries (Dajç northern Albania). Geomat. Nat. Hazards Risk 2016, 7, 971–999. [Google Scholar] [CrossRef]
- Pazzi, V.; Morelli, S.; Pratesi, F.; Sodi, T.; Valori, L.; Gambacciani, L.; Casagli, N. Assessing the safety of schools affected by geo-hydrologic hazards: The geohazard safety classification (GSC). Int. J. Disaster Risk Reduct. 2016, 15, 80–93. [Google Scholar] [CrossRef]
- Evans, I. General geomorphometry. In Geomorphological Techniques, 2nd ed.; Goudie, A., Ed.; Routledge Taylor & Francis Group: New York, NY, USA, 1990; pp. 49–62. ISBN 0-415-11939-1. [Google Scholar]
- Li, Z.; Zhu, Q.; Gold, C. Digital Terrain Modeling—Principles and Methodology; CRC Press: Boca Raton, FL, USA, 2005; p. 319. ISBN 0-415-32462-9. [Google Scholar]
- Kasprzak, M.; Duszyñski, F.; Jancewicz, K.; Michniewicz, A.; Rózycka, M.; Migoñ, P. The Rogowiec Landslide Complex (Central Sudetes, SW Poland)—A case of a collapsed mountain. Geol. Q. 2016, 60, 695–713. [Google Scholar] [CrossRef]
- Jenness, J. DEM Surface Tools for ArcGIS (surface_area.exe). 2013. Jenness Enterprises. Available online: http://www.jennessent.com/arcgis/surface_area.htm (accessed on 9 November 2017).
- Cavalli, M.; Marchi, L. Characterisation of the surface morphology of an alpine alluvial fan using airbone LiDAR. Nat. Hazards Earth Syst. Sci. 2008, 8, 323–333. [Google Scholar] [CrossRef]
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of di erent methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Fleming, M.D.; Hoffer, R.M. Machine Processing of Landsat MSS Data and DMA Topographic Data for Forest Cover Type Mapping; LARS Technical Report 062879; Laboratory for Applications of Remote Sensing, Purdue University: West Lafayette, IN, USA, 1979; p. 17. [Google Scholar]
- Jones, K.H. A comparison of algorithms used to compute hill slope as a property of the DEM. Comput. Geosci. 1998, 24, 315–323. [Google Scholar] [CrossRef]
- Jenness, J. Calculating landscape surface area from digital elevation model. Wildl. Soc. Bull. 2004, 32, 829–839. [Google Scholar] [CrossRef]
- Mark, R. A Multidirectional, Oblique-Weighted, Shaded-Relief Image of the Island of Hawaii; U.S. Geological Survey Open-File Report 92.422; U.S. Geological Survey: Reston, VA, USA, 1992.
- Cavalli, M.; Tarolli, P.; Marchi, L.; Dalla Fontana, G. The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena 2008, 7, 249–260. [Google Scholar] [CrossRef]
- Ventura, G.; Vilardo, G.; Terranova, C.; Bellucci Sessa, E. Trackong and evolution of complex active landslide by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy). Remote Sens. Environ. 2011, 115, 3237–3248. [Google Scholar] [CrossRef]
- Tarchi, D.; Ohlmer, E.; Sieber, A.J. Monitoring of structural changes by radar interferometry. Res. Nondestruct. Eval. 1997, 9, 213–225. [Google Scholar] [CrossRef]
- Schleier, M.; Hermanns, R.L.M.; Krieger, I.; Oppikofer, T.; Eiken, T.; Rønning, J.S.; Rohn, J. Gravitational reactivation of a pre-existing post-Caledonian fault system: The deep-seated gravitational slope deformation at Middagstinden, western Norway. Nor. J. Geol. 2016, 96, 1–23. [Google Scholar] [CrossRef]
- Borrelli, L.; Gullà, G. Tectonic constraints on a deep-seated rock slide in weathered crystalline rocks. Geomorphology 2017, 290, 288–316. [Google Scholar] [CrossRef]
Calculated Features | Total | Detachment Sector | Bulging Sector |
---|---|---|---|
Volume gain [m3] | −232,942.0 | −231,644.0 | −216,543.0 |
Area [%] | 55.9 | 58.0 | 54.0 |
Volume loss [m3] | 411,059.0 | 402,021.0 | 404,250.0 |
Area [%] | 44.0 | 42.0 | 46.0 |
Volume variation [m3] | 178,117.0 | 170,377.0 | 187,707.0 |
2010 debris flow volume [m3] | - | - | 322,220.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morelli, S.; Pazzi, V.; Frodella, W.; Fanti, R. Kinematic Reconstruction of a Deep-Seated Gravitational Slope Deformation by Geomorphic Analyses. Geosciences 2018, 8, 26. https://doi.org/10.3390/geosciences8010026
Morelli S, Pazzi V, Frodella W, Fanti R. Kinematic Reconstruction of a Deep-Seated Gravitational Slope Deformation by Geomorphic Analyses. Geosciences. 2018; 8(1):26. https://doi.org/10.3390/geosciences8010026
Chicago/Turabian StyleMorelli, Stefano, Veronica Pazzi, William Frodella, and Riccardo Fanti. 2018. "Kinematic Reconstruction of a Deep-Seated Gravitational Slope Deformation by Geomorphic Analyses" Geosciences 8, no. 1: 26. https://doi.org/10.3390/geosciences8010026
APA StyleMorelli, S., Pazzi, V., Frodella, W., & Fanti, R. (2018). Kinematic Reconstruction of a Deep-Seated Gravitational Slope Deformation by Geomorphic Analyses. Geosciences, 8(1), 26. https://doi.org/10.3390/geosciences8010026