Alongshore Variability in the Response of a Mixed Sand and Gravel Beach to Bimodal Wave Direction
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Calculation of Wave Parameters
- mean deep-water significant wave height measured in meters (Hs);
- 95th percentile of Hs;
- mean wave power (Wp), calculated using Equation (1) [43], where Tp is the peak period measured in seconds,Wp = Hs2·Tp
- percentage of time of northerly waves (DirP: 300–60°);
- percentage of time of southerly waves (DirP: 120–240°);
- percentage of time wave heights exceeded 2.5 m, following a storm threshold suggested by [44];
- percentage of time wave heights exceeding 2.5 m approached from the north (300–60°); and
- percentage of time wave heights exceeding 2.5 m approached from the south (120–240°).
3.2. Beach Topography
- Transect A (EA profile TN007) is located at the north end of the study area crossing the gravel ridges of the ness (Figure 3a).
- Transect B (EA profile TN013) crosses the south flank of the ness, where a gravel berm is often prominent and backed by a vegetated and eroding cliff talus (Figure 3b).
- Transect C (EA profile TN017) is characterised by the presence of a rapidly retreating soft cliff (Figure 3c), a gravel upper beach, and a sandy lower beach (although temporal variations occur).
- Transect D (EA profile TN021) crosses a local erosion “hot spot”, where the beach profile is influenced by gabions, geobags, and gravel nourishment. The gabions were placed in the 1970s and the geobags in 2011, after a storm exposed and damaged the gabions in the spring of 2010 (Figure 3f). These structures are periodically exposed during storms, with gravel nourishment occasionally used to restore the beach profile and cover the structures.
- Transect E (EA profile TN026) is located south of the coastal protection structures, approximately at the centre of the village’s seafront housing.
3.3. Statistical Analysis
4. Results
4.1. Alongshore Variations in Beach Mobility
4.2. Temporal Changes in Beach Morphology
4.3. The Influence of Bimodal Wave Direction
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brooks, S.M.; Spencer, T.; Christie, E.K. Storm impacts and shoreline recovery: Mechanisms and controls in the southern North Sea. Geomorphology 2017, 283, 48–60. [Google Scholar] [CrossRef]
- Prieto-Campos, A.; Díaz-Cuevas, P.; Fernandez-Nunez, M.; Ojeda-Zújar, J. Methodology for Improving the Analysis, Interpretation, and Geo-Visualisation of Erosion Rates in Coastal Beaches—Andalusia, Southern Spain. Geosciences 2018, 8, 335. [Google Scholar] [CrossRef]
- Wadey, M.P.; Haigh, I.D.; Nicholls, R.J.; Brown, J.M.; Horsburgh, K.; Carroll, B.; Gallop, S.L.; Mason, T.; Bradshaw, E. A comparison of the 31 January–1 February 1953 and 5–6 December 2013 coastal flood events around the UK. Front. Mar. Sci. 2015, 2, 84. [Google Scholar] [CrossRef]
- Burvingt, O.; Masselink, G.; Russell, P.; Scott, T. Classification of beach response to extreme storms. Geomorphology 2017, 295, 722–737. [Google Scholar] [CrossRef]
- Loureiro, C.; Ferreira, Ó.; Cooper, J.A.G. Geologically constrained morphological variability and boundary effects on embayed beaches. Mar. Geol. 2012, 329–331, 1–15. [Google Scholar] [CrossRef]
- Almeida, L.P.; Ferreira, Ó.; Vousdoukas, M.I.; Dodet, G. Historical variation and trends in storminess along the Portuguese South Coast. Nat. Hazards Earth Syst. Sci. 2011, 11, 2407–2417. [Google Scholar] [CrossRef] [Green Version]
- Castelle, B.; Marieu, V.; Bujan, S.; Splinter, K.D.; Robinet, A.; Sénéchal, N.; Ferreira, S. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 2015, 238, 135–148. [Google Scholar] [CrossRef]
- Almeida, L.P.; Masselink, G.; Russell, P.E.; Davidson, M.A. Observations of gravel beach dynamics during high energy wave conditions using a laser scanner. Geomorphology 2015, 228, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Buscombe, D.; Masselink, G. Concepts in gravel beach dynamics. Earth-Sci. Rev. 2006, 79, 33–52. [Google Scholar] [CrossRef]
- McCall, R.T.; Masselink, G.; Poate, T.G.; Roelvink, J.A.; Almeida, L.P.; Davidson, M.; Russell, P.E. Modelling storm hydrodynamics on gravel beaches with XBeach-G. Coast. Eng. 2014, 91, 231–250. [Google Scholar] [CrossRef] [Green Version]
- Kirk, R.M. Mixed sand and gravel beaches: Morphology, processes and sediments. Prog. Phys. Geogr. 1980, 4, 189–210. [Google Scholar] [CrossRef]
- Ashton, A.D.; Murray, A.B. High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. J. Geophys. Res. 2006, 111, F04011. [Google Scholar] [CrossRef]
- Bayram, A.; Larson, M.; Hanson, H. A new formula for the total longshore sediment transport rate. Coast. Eng. 2007, 54, 700–710. [Google Scholar] [CrossRef]
- Esteves, L.S.; Williams, J.J.; Lisniowski, M.A. Measuring and modelling longshore sediment transport. Estuar. Coast. Shelf Sci. 2009, 83, 47–59. [Google Scholar] [CrossRef]
- Limber, P.W.; Adams, P.N.; Murray, A.B. Modeling large-scale shoreline change caused by complex bathymetry in low-angle wave climates. Mar. Geol. 2017, 383, 55–64. [Google Scholar] [CrossRef]
- Van Rijn, L.; Walstra, D.J.; Grasmeijer, B.; Sutherland, J.; Pan, S.; Sierra, J. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based Profile models. Coast. Eng. 2003, 47, 295–327. [Google Scholar] [CrossRef]
- Jamal, M.H.; Simmonds, D.J.; Magar, V. Modelling gravel beach dynamics with XBeach. Coast. Eng. 2014, 89, 20–29. [Google Scholar] [CrossRef]
- Williams, J.J.; de Alegría-Arzaburu, A.R.; McCall, R.T.; Van Dongeren, A. Modelling gravel barrier profile response to combined waves and tides using XBeach: Laboratory and field results. Coast. Eng. 2012, 63, 62–80. [Google Scholar] [CrossRef]
- Bergillos, R.J.; Rodríguez-Delgado, C.; Ortega-Sánchez, M. Advances in management tools for modeling artificial nourishments in mixed beaches. J. Mar. Syst. 2017, 172, 1–13. [Google Scholar] [CrossRef]
- Spencer, T.; Brooks, S.M.; Evans, B.R.; Tempest, J.A.; Möller, I. Southern North Sea storm surge event of 5 December 2013: Water levels, waves and coastal impacts. Earth-Sci. Rev. 2015, 146, 120–145. [Google Scholar] [CrossRef]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Effects of storm clustering on beach/dune evolution. Mar. Geol. 2015, 370, 63–75. [Google Scholar] [CrossRef]
- Karunarathna, H.; Pender, D.; Ranasinghe, R.; Short, A.D.; Reeve, D.E. The effects of storm clustering on beach profile variability. Mar. Geol. 2014, 348, 103–112. [Google Scholar] [CrossRef]
- Gomes, M.; Santos, L.; Pinho, J.L.; do Carmo, J.S.A. Hazard Assessment of Storm Events for the Portuguese Northern Coast. Geosciences 2018, 8, 178. [Google Scholar] [CrossRef]
- Hegermiller, C.A.; Rueda, A.; Erikson, L.H.; Barnard, P.L.; Antolinez, J.A.A.; Mendez, F.J. Controls of Multimodal Wave Conditions in a Complex Coastal Setting. Geophys. Res. Lett. 2017, 44, 12315–12323. [Google Scholar] [CrossRef]
- Coates, T.T.; Hawkes, P.J. Beach Recharge Design and Bi-modal Wave Spectra. Coast. Eng. Proc. 1998, 1, 3036–3045. [Google Scholar]
- Mason, T.; Dhoop, T. Occurrence of Bimodal Seas around the English Coastline: Technical Note TN 02; Channel Coast Observatory; National Oceanography Centre: Southampton, UK, 2018. [Google Scholar]
- Adams, P.N.; Inman, D.L.; Lovering, J.L. Effects of climate change and wave direction on longshore sediment transport patterns in Southern California. Clim. Chang. 2011, 109, 211–228. [Google Scholar] [CrossRef]
- McSweeney, S.; Shulmeister, J. Variations in wave climate as a driver of decadal scale shoreline change at the Inskip Peninsula, southeast Queensland, Australia. Estuar. Coast. Shelf Sci. 2018, 209, 56–69. [Google Scholar] [CrossRef]
- Burningham, H.; French, J. Shoreline—Shoreface Dynamics on the Suffolk Coast; The Crown Estate: London, UK, 2016; ISBN 978-1-906410-76-6. [Google Scholar]
- Kirk, R.M. Aspects of Surf and Runup Processes on Mixed Sand and Gravel Beaches. Geogr. Ann. Ser. A Phys. Geogr. 1975, 57, 117–133. [Google Scholar] [CrossRef]
- Matthews, E.R. Measurements of beach pebble attrition in Palliser Bay, southern North Island, New Zealand. Sedimentology 1983, 30, 787–799. [Google Scholar] [CrossRef]
- McLean, R.F. Variations in grain-size and sorting on two Kaikoura beaches. N. Z. J. Mar. Freshw. Res. 1970, 4, 141–164. [Google Scholar] [CrossRef]
- Bergillos, R.J.; Ortega-Sánchez, M.; Masselink, G.; Losada, M.A. Morpho-sedimentary dynamics of a micro-tidal mixed sand and gravel beach, Playa Granada, southern Spain. Mar. Geol. 2016, 379, 28–38. [Google Scholar] [CrossRef]
- Dornbusch, U. Design requirement for mixed sand and gravel beach defences under scenarios of sea level rise. Coast. Eng. 2017, 124, 12–24. [Google Scholar] [CrossRef]
- McFarland, S.; Whitcombe, L.; Collins, M. Recent shingle beach renourishment schemes in the UK: Some preliminary observations. Ocean Coast. Manag. 1994, 25, 143–149. [Google Scholar] [CrossRef]
- Horn, D.P.; Walton, S.M. Spatial and temporal variations of sediment size on a mixed sand and gravel beach. Sediment. Geol. 2007, 202, 509–528. [Google Scholar] [CrossRef]
- Mason, T.; Coates, T.T. Sediment Transport Processes on Mixed Beaches: A Review for Shoreline Management. J. Coast. Res. 2001, 17, 645–657. [Google Scholar]
- Zarkogiannis, S.D.; Kontakiotis, G.; Vousdoukas, M.I.; Velegrakis, A.F.; Collins, M.B.; Antonarakou, A. Scarping of artificially-nourished mixed sand and gravel beaches: Sedimentological characteristics of Hayling Island beach, Southern England. Coast. Eng. 2018, 133, 1–12. [Google Scholar] [CrossRef]
- Stark, N.; Hay, A.E. Pebble and cobble transport on a steep, mega-tidal, mixed sand and gravel beach. Mar. Geol. 2016, 382, 210–223. [Google Scholar] [CrossRef]
- Long, P.E.; Zalasiewicz, J.A. The molluscan fauna of the Coralline Crag (Pliocene, Zanclean) at Raydon Hall, Suffolk, UK: Palaeoecological significance reassessed. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 53–72. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J. Coastal Processes and Morphological Change in the Dunwich-Sizewell Area, Suffolk, UK. J. Coast. Res. 2006, 223, 453–473. [Google Scholar] [CrossRef]
- Carr, A.P. Sizewell-Dunwich Banks Field Study, Long-Term Changes in the Coastline and Offshore Banks Report No. 89; Institute of Oceanographic Sciences: Godalming, UK, 1979. [Google Scholar]
- Davidson, M.A.; Splinter, K.D.; Turner, I.L. A simple equilibrium model for predicting shoreline change. Coast. Eng. 2013, 73, 191–202. [Google Scholar] [CrossRef]
- Bennett, W.; Karunarathna, H.; Mori, N.; Reeve, D. Climate Change Impacts on Future Wave Climate around the UK. J. Mar. Sci. Eng. 2016, 4, 78. [Google Scholar] [CrossRef]
- Williams, J.J.; Herbert, L. Thorpeness Coastal Protection Options Appraisal; Mott MacDonald: London, UK, 2015. [Google Scholar]
- Angnuureng, D.B.; Almar, R.; Senechal, N.; Castelle, B.; Addo, K.A.; Marieu, V.; Ranasinghe, R. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology 2017, 290, 265–276. [Google Scholar] [CrossRef]
- Short, A.D. Three Dimensional Beach-Stage Model. J. Geol. 1979, 87, 553–571. [Google Scholar] [CrossRef]
- McCall, R.T.; Masselink, G.; Poate, T.G.; Roelvink, J.A.; Almeida, L.P. Modelling the morphodynamics of gravel beaches during storms with XBeach-G. Coast. Eng. 2015, 103, 52–66. [Google Scholar] [CrossRef]
- Ruiz de Alegria-Arzaburu, A.; Masselink, G. Storm response and beach rotation on a gravel beach, Slapton Sands, U.K. Mar. Geol. 2010, 278, 77–99. [Google Scholar] [CrossRef]
- HR Wallingford. Sandscaping Feasibility Assessment: Suffolk Shingle Engine, Slaughden Site; HR Wallingford Report DDR5443-RT001 for The Crown Estate; HR Wallingford: Oxfordshire, UK, 2016. [Google Scholar]
- She, K.; Horn, D.P.; Canning, P. Influence of Permeability on the Performance of Shingle and Mixed Beaches, R&D Technical Report FD1923/TR—Defra EA; Environment Agency and Defra: London, UK, 2007.
- López de San Román-Blanco, B.; Coates, T.T.; Holmes, P.; Chadwick, A.J.; Bradbury, A.; Baldock, T.E.; Pedrozo-Acuña, A.; Lawrence, J.; Grüne, J. Large scale experiments on gravel and mixed beaches: Experimental procedure, data documentation and initial results. Coast. Eng. 2006, 53, 349–362. [Google Scholar] [CrossRef]
- Mason, T. Hydrodynamics and Sediment Transport on a Macro-Tidal, Mixed (Sand and Shingle) Beach. Unpublished. Ph.D. Thesis, Department of Oceanography, University of Southampton, Southampton, UK, 1997. [Google Scholar]
Date | Dataset 1 | Dataset 2 |
---|---|---|
07-Jan-2009 | x | |
27-Jul-2009 | x | |
07-Jan-2010 | x | |
20-Jul-2010 | x | |
27-Jan-2011 | x | |
22-Jun-2011 | x a | |
22-Dec-2011 | x | |
26-Jul-2012 | x | |
06-Feb-2013 | x | |
18-Jul-2013 | x | |
08-Feb-2014 | x | |
05-Aug-2014 | x | |
29-Jan-2015 | x | |
05-Aug-2015 | x | |
02-Feb-2016 | x | |
26-Jul-2016 | x | x |
03-Aug-2016 | x | |
22-Oct-2016 | x b | |
06-Dec-2016 | x | |
09-Jan-2017 | x c | |
19-Jan-2017 | x | |
13-Feb-2017 | x | x |
21-Mar-2017 | x | |
27-Jun-2017 | x | |
20-Jul-2017 | x | x |
27-Sep-2017 | x | |
16-Jan-2018 | x | |
26-Feb-2018 | x | x |
07-Mar-2018 | x | |
27-Mar-2018 | x |
Transects | A | B | C | D | E |
---|---|---|---|---|---|
Beach width at MWL (m) | |||||
Mean | 91.1 | 67.8 | 70.2 | 32.6 | 67.3 |
Range | 42.3 | 48.8 | 41.8 | 31.0 | 18.0 |
Minimum | 76.0 8-Feb-2014 | 40.8 13-Feb-2017 | 47.8 20-Jul-2017 | 19.3 21-Jul-2010 | 61.3 22-Dec-2011 |
Maximum | 118.3 2-Feb-2016 | 89.5 20-Jul-2010 | 89.5 27-Jan-2011 | 50.3 26-Jul-2016 | 79.3 27-Jul-2009 |
Largest beach growth | 29.8 Aug 2015–Feb 2016 | 12.8 Feb 2013–Jul 2013 | 26.5 Feb 2010–Jul 2010 | 10.0 Feb 2016–Jul 2016 | 5.75 Feb 2016–Jul 2016 |
Largest retreat | −11.0 Feb 2016–Jul 2016 | −14.0 Jul 2016–Feb 2017 | −15.5 Feb 2016–Jul 2016 | −12.0 Jul 2009–Feb 2010 | −5.75 Jul 2010–Jan 2011 |
Area above MLWS (m2) | |||||
Mean | 214.5 | 207.9 | 271.1 | 88.3 | 134.0 |
Range | 116.9 | 194.2 | 221.1 | 101.9 | 75.4 |
Minimum | 169.7 8–Feb-2014 | 90.1 13-Feb-2017 | 119.7 13-Feb-2017 | 42.1 21-Jul-2010 | 106.2 8-Feb-2014 |
Maximum | 286.7 2-Feb-2016 | 284.4 20-Jul-2010 | 340.8 27-Jan-2011 | 144.1 26-Jul-2016 | 181.6 27-Jul-2009 |
Largest accretion | 78.4 Aug 2015–Feb 2016 | 36.1 Jan 2010–Jul 2010 | 67.4 Feb 2010–Jul 2010 | 27.8 Feb 2016–Jul 2016 | 17.7 Feb16–Jul16 |
Largest erosion | −35.5 Jul 2017–Feb 2018 | −66.3 Jul 2016–Feb 2017 | −87.6 Jul 2016–Feb 2017 | −46.5 Jul 2009–Feb 2010 | −23.2 Jul 2010–Jan 2011 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atkinson, J.; Esteves, L.S. Alongshore Variability in the Response of a Mixed Sand and Gravel Beach to Bimodal Wave Direction. Geosciences 2018, 8, 488. https://doi.org/10.3390/geosciences8120488
Atkinson J, Esteves LS. Alongshore Variability in the Response of a Mixed Sand and Gravel Beach to Bimodal Wave Direction. Geosciences. 2018; 8(12):488. https://doi.org/10.3390/geosciences8120488
Chicago/Turabian StyleAtkinson, John, and Luciana S. Esteves. 2018. "Alongshore Variability in the Response of a Mixed Sand and Gravel Beach to Bimodal Wave Direction" Geosciences 8, no. 12: 488. https://doi.org/10.3390/geosciences8120488
APA StyleAtkinson, J., & Esteves, L. S. (2018). Alongshore Variability in the Response of a Mixed Sand and Gravel Beach to Bimodal Wave Direction. Geosciences, 8(12), 488. https://doi.org/10.3390/geosciences8120488