Realistic Paleobathymetry of the Cenomanian–Turonian (94 Ma) Boundary Global Ocean
Abstract
:1. Introduction
- Major carbon cycle acceleration and biogeochemical perturbation in the form of a major global marine carbon isotope excursion [38];
- Dramatic global warming from mantle-plume volcanism (main phase Caribbean and Madagascar, late phase High Arctic and Ongtong Java LIPs) [39];
- Extensive mid-ocean ridge formation, high crustal heat flow and rapid ocean basin expansion [15];
- Major change in ocean circulation from eddy-dominant with widespread cosmopolitan biogeography in the Cenomanian to thermohaline with restricted marine biogeographic zones in the Turonian [40];
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Reconstructed C–T Shelf-Slope-Rise Regions
3.2. Reconstructed C–T Open Ocean Region
4. Discussion
5. Conclusions
- Parameterized shelf-slope-rise structures result in a much shallower mean ocean depth than other available C–T bathymetry reconstructions.
- C–T ocean crust was on average 40.29 million years old whereas modern ocean crust has a mean age of 63.39 million years.
- The OES C–T ocean has an average depth of 3262 m, while the modern ocean average depth is 3388 m. Despite that the OES C–T Ocean is about 125 m shallower, the overall ocean bathymetric pattern matches with the modern bathymetric values as both have similar standard deviations (within 1%) despite significantly different maximum and average depths.
- Seafloor roughness is provided from mid-ocean ridges, and oceanic LIPS and sea mounts rotated to their C–T positions (using known features).
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Markwick, P.J.; Valdes, P.J. Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: A Maastrichtian (late Cretaceous) example. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 213, 37–63. [Google Scholar] [CrossRef]
- Sewall, J.O.; Van De Wal, R.S.W.; Van Der Zwan, K.; Van Oosterhout, C.; Dijkstra, H.A.; Scotese, C.R. Climate model boundary conditions for four Cretaceous time slices. Clim. Past 2007, 3, 647–657. [Google Scholar] [CrossRef]
- Lunt, D.J.; Huber, M.; Anagnostou, E.; Baatsen, M.L.J.; Caballero, R.; DeConto, R.; Dijkstra, H.A.; Donnadieu, Y.; Evans, D.; Feng, R.; et al. The DeepMIP contribution to PMIP4: Experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geosci. Model Dev. 2017, 10, 889–901. [Google Scholar] [CrossRef]
- Barron, E.J.; Washington, W.M. The role of geographic variables in explaining paleoclimates: Results from Cretaceous climate model sensitivity studies. J. Geophys. Res. Atmos. 1984, 89, 1267–1279. [Google Scholar] [CrossRef]
- Barron, E.J. Explanations of the Tertiary global cooling trend. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1985, 50, 45–61. [Google Scholar] [CrossRef]
- Chandler, M.A.; Rind, D.; Ruedy, R. Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate. Geol. Soc. Am. Bull. 1992, 104, 543–559. [Google Scholar] [CrossRef]
- Barron, E.J.; Fawcett, P.J.; Pollard, D.; Thompson, S. Model simulations of Cretaceous climates: The role of geography and carbon dioxide. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1993, 341, 307–316. [Google Scholar] [CrossRef]
- Barron, E.J.; Moore, G.T. Climate Model Application in Paleoenvironmental Analysis; Society for Sedimentary Geology (SEPM): Tulsa, OK, USA, 1994. [Google Scholar]
- Price, G.D.; Sellwood, B.W.; Valdes, P.J. Sedimentological evaluation of general circulation model simulations for the “greenhouse” Earth: Cretaceous and Jurassic case studies. Sediment. Geol. 1995, 100, 159–180. [Google Scholar] [CrossRef]
- Poulsen, C.J.; Barron, E.J.; Peterson, W.H.; Wilson, P.A. A reinterpretation of Mid-Cretaceous shallow marine temperatures through model-data comparison. Paleoceanography 1999, 14, 679–697. [Google Scholar] [CrossRef]
- Upchurch, G.R.; Otto-Bliesner, B.L.; Scotese, C.R. Terrestrial Vegetation and Its Effects on Climate during the Latest Cretaceous; Special Papers; Geological Society of America: Boulder, CO, USA, 1999; pp. 407–426. [Google Scholar]
- DeConto, R.M.; Brady, E.C.; Bergengren, J.; Hay, W.W. Late Cretaceous climate, vegetation, and ocean interactions. In Warm Climates in Earth History; Cambridge University Press: Cambridge, UK, 2000; pp. 275–296. [Google Scholar]
- Poulsen, C.J.; Gendaszek, A.S.; Jacob, R.L. Did the rifting of the Atlantic Ocean cause the Cretaceous thermal maximum? Geology 2003, 31, 115–118. [Google Scholar] [CrossRef]
- Hay, W.W.; Floegel, S. New thoughts about the Cretaceous climate and oceans. Earth-Sci. Rev. 2012, 115, 262–272. [Google Scholar] [CrossRef]
- Müller, R.D.; Sdrolias, M.; Gaina, C.; Roest, W.R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 2008, 9, 1–19. [Google Scholar] [CrossRef]
- Müller, R.D.; Sdrolias, M.; Gaina, C.; Steinberger, B.; Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 2008, 319, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.R.; Allison, P.A.; Piggott, M.D.; Hampson, G.J.; Pain, C.C.; Gorman, G.J. Tidal modeling of an ancient tide-dominated seaway, part 1: Model validation and application to global early Cretaceous (Aptian) tides. J. Sediment. Res. 2010, 80, 393–410. [Google Scholar] [CrossRef]
- Bice, K.L.; Barron, E.J.; Peterson, W.H. Reconstruction of realistic early Eocene paleobathymetry and ocean GCM sensitivity to specified basin configuration. Oxf. Monogr. Geol. Geophys. 1998, 39, 227–250. [Google Scholar]
- Sclater, J.G.; Abbott, D.; Thiede, J. Paleobathymetry and sediments of the Indian Ocean. In Indian Ocean Geology and Biostratigraphy; Wiley: New York, NY, USA, 1977; pp. 25–59. [Google Scholar]
- Sclater, J.G.; Hellinger, S.; Tapscott, C. The paleobathymetry of the Atlantic Ocean from the Jurassic to the present. J. Geol. 1977, 85, 509–552. [Google Scholar] [CrossRef]
- Herkat, M. Application of correspondence analysis to palaeobathymetric reconstruction of Cenomanian and Turonian (Cretaceous) rocks of Eastern Algeria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 583–605. [Google Scholar] [CrossRef]
- Sageman, B.B.; Arthur, M.A. Early Turonian paleogeographic/paleobathymetric map, western interior, US. In Mesozoic Systems of the Rocky Mountain Region; Society for Sedimentary Geology (SEPM): Tulsa, OK, USA, 1994. [Google Scholar]
- Kyrkjebø, R.; Kjennerud, T.; Gillmore, G.K.; Faleide, J.I.; Gabrielsen, R.H. Cretaceous-Tertiary palaeo-bathymetry in the northern North Sea; integration of palaeo-water depth estimates obtained by structural restoration and micropalaeontological analysis. Nor. Pet. Soc. Spec. Publ. 2001, 10, 321–345. [Google Scholar]
- Butt, A. Micropaleontological bathymetry of the Cretaceous of Western Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982, 37, 235245265–242261275. [Google Scholar] [CrossRef]
- Topper, R.P.M.; Trabucho Alexandre, J.; Tuenter, E.; Meijer, P.T. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: Implications for black shale formation. Clim. Past 2011, 7, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Krupitsky, A.; Kamenkovich, V.M.; Naik, N.; Cane, M.A. A linear equivalent barotropic model of the Antarctic Circumpolar Current with realistic coastlines and bottom topography. J. Phys. Oceanogr. 1996, 26, 1803–1824. [Google Scholar] [CrossRef]
- Wright, J.D.; Miller, K.G. Control of North Atlantic deep water circulation by the Greenland-Scotland Ridge. Paleoceanography 1996, 11, 157–170. [Google Scholar] [CrossRef]
- Simmons, H.L.; Jayne, S.R.; Laurent, L.C.S.; Weaver, A.J. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model. 2004, 6, 245–263. [Google Scholar] [CrossRef]
- Sijp, W.P.; England, M.H. Role of the Drake Passage in controlling the stability of the ocean’s thermohaline circulation. J. Clim. 2005, 18, 1957–1966. [Google Scholar] [CrossRef]
- Parsons, B.; Sclater, J.G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 1977, 82, 803–827. [Google Scholar] [CrossRef]
- Müller, R.D.; Roest, W.R.; Royer, J.-Y.; Gahagan, L.M.; Sclater, J.G. Digital isochrons of the world’s ocean floor. J. Geophys. Res. Solid Earth 1997, 102, 3211–3214. [Google Scholar] [CrossRef]
- Xu, X.; Lithgow-Bertelloni, C.; Conrad, C.P. Global reconstructions of Cenozoic seafloor ages: Implications for bathymetry and sea level. Earth Planet. Sci. Lett. 2006, 243, 552–564. [Google Scholar] [CrossRef]
- Hochmuth, K.; Gohl, K. Paleobathymetry of the Southern Ocean and its role in paleoclimate and paleo-ice sheet variations–A call for a sequence of community paleobathymetric grids. In Proceedings of the SCAR Open Science Conference, Kuala Lumpur, Malaysia, 10–20 August 2016. [Google Scholar]
- Hayes, D.E.; Zhang, C.; Weissel, R.A. Modeling paleobathymetry in the Southern Ocean. Eos Trans. Am. Geophys. Union 2009, 90, 165–166. [Google Scholar] [CrossRef]
- Goswami, A.; Olson, P.L.; Hinnov, L.A.; Gnanadesikan, A. OESbathy version 1.0: A method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures. Geosci. Model Dev. 2015, 8, 2735–2748. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Klemme, H.D.; Ulmishek, G.F. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors. AAPG Bull. 1991, 75, 1809–1851. [Google Scholar]
- Jarvis, I.; Lignum, J.S.; Gröcke, D.R.; Jenkyns, H.C.; Pearce, M.A. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography 2011, 26. [Google Scholar] [CrossRef]
- Bryan, S.E.; Ferrari, L. Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. Geol. Soc. Am. Bull. 2013, 125, 1053–1078. [Google Scholar] [CrossRef] [Green Version]
- Linnert, C.; Mutterlose, J.; Herrle, J.O. Late Cretaceous (Cenomanian–Maastrichtian) calcareous nannofossils from Goban Spur (DSDP Sites 549, 551): Implications for the palaeoceanography of the proto North Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 299, 507–528. [Google Scholar] [CrossRef]
- Scotese, C.R. Atlas of Late Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS, Volume 2, The Cretaceous, Maps 16–22, Mollweide Projection, PALEOMAP Project, Evanston, IL; Technical Report for PALEOMAP Project: Evanston, IL, USA, 2014. [Google Scholar]
- Granot, R.; Dyment, J. The Cretaceous opening of the South Atlantic Ocean. Earth Planet. Sci. Lett. 2015, 414, 156–163. [Google Scholar] [CrossRef]
- Pérez-Díaz, L.; Eagles, G. A new high-resolution seafloor age grid for the South Atlantic. Geochem. Geophys. Geosyst. 2017, 18, 457–470. [Google Scholar] [CrossRef]
- Channell, J.E.T.; Horvath, F. The African/Adriatic promontory as a palaeogeographical premise for Alpine orogeny and plate movements in the Carpatho-Balkan region. Tectonophysics 1976, 35, 71–101. [Google Scholar] [CrossRef]
- Rosenbaum, G.; Lister, G.S.; Duboz, C. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 2002, 359, 117–129. [Google Scholar] [CrossRef]
- Basilone, L.; Perri, F.; Sulli, A.; Critelli, S. Paleoclimate and extensional tectonics of short-lived lacustrine environments. Lower Cretaceous of the Panormide Southern Tethyan carbonate platform (NW Sicily). Mar. Pet. Geol. 2017, 88, 428–439. [Google Scholar] [CrossRef]
- Basilone, L.; Sulli, A. Basin analysis in the Southern Tethyan margin: Facies sequences, stratal pattern and subsidence history highlight extension-to-inversion processes in the Cretaceous Panormide carbonate platform (NW Sicily). Sediment. Geol. 2018, 363, 235–251. [Google Scholar] [CrossRef]
- Ogg, J.G.; Ogg, G.; Gradstein, F.M. A Concise Geologic Time Scale: 2016; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Gradstein, F.M.; Agterberg, F.P.; Ogg, J.G.; Hardenbol, J.; Veen, P.; Thierry, J.; Huang, Z. A Mesozoic time scale. J. Geophys. Res. Solid Earth 1994, 99, 24051–24074. [Google Scholar] [CrossRef]
- Divins, D.L. Total Sediment Thickness of the World’s Oceans and Marginal Seas; NOAA National Geophysical Data Center: Boulder, CO, USA, 2003.
- Whittaker, J.M.; Goncharov, A.; Williams, S.E.; Müller, R.D.; Leitchenkov, G. Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean. Geochem. Geophys. Geosyst. 2013, 14, 3297–3305. [Google Scholar] [CrossRef]
- Ogg, J.G.; Hinnov, L.A.; Huang, C. Cretaceous. In The Geologic Time Scale; Chapter 27; Elsevier: Amsterdam, The Netherlands, 2012; pp. 793–853. [Google Scholar]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; Marine Geology and Geophysics Division: Boulder, CO, USA, 2009. [Google Scholar]
- Coffin, M.F.; Duncan, R.A.; Eldholm, O.; Fitton, J.G.; Frey, F.A.; Larsen, H.C.; Mahoney, J.J.; Saunders, A.D.; Schlich, R.; Wallace, P.J. Large igneous provinces and scientific ocean drilling: Status quo and a look ahead. Oceanography 2006, 19, 150–160. [Google Scholar] [CrossRef]
- Kim, S.-S.; Wessel, P. New global seamount census from altimetry-derived gravity data. Geophys. J. Int. 2011, 186, 615–631. [Google Scholar] [CrossRef]
- Celerier, B. Paleobathymetry and geodynamic models for subsidence. Palaios 1988, 3, 454–463. [Google Scholar] [CrossRef]
- Crough, S.T. The correction for sediment loading on the seafloor. J. Geophys. Res. Solid Earth 1983, 88, 6449–6454. [Google Scholar] [CrossRef]
- Sykes, T.J. A correction for sediment load upon the ocean floor: Uniform versus varying sediment density estimations—Implications for isostatic correction. Mar. Geol. 1996, 133, 35–49. [Google Scholar] [CrossRef]
- Niu, Y.; Zhao, Z.; Zhu, D.-C.; Mo, X. Continental collision zones are primary sites for net continental crust growth—A testable hypothesis. Earth-Sci. Rev. 2013, 127, 96–110. [Google Scholar] [CrossRef]
- Encyclopedia Britannica | Britannica.com. Available online: https://www.britannica.com/ (accessed on 12 December 2017).
- Chatterjee, S.; Goswami, A.; Scotese, C.R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 2013, 23, 238–267. [Google Scholar] [CrossRef]
- Schlanger, S.O.; Jenkyns, H.C. Cretaceous oceanic anoxic events: Causes and consequences. Geol. Mijnb. 1976, 55, 179–184. [Google Scholar]
- Schlanger, S.O.; Arthur, M.A.; Jenkyns, H.C.; Scholle, P.A. The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. Geol. Soc. Lond. Spec. Publ. 1987, 26, 371–399. [Google Scholar] [CrossRef]
- Arthur, M.A.; Schlanger, S.T.; Jenkyns, H.C. The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. Geol. Soc. Lond. Spec. Publ. 1987, 26, 401–420. [Google Scholar] [CrossRef]
- Thurow, J.; Brumsack, H.-J.; Rullkötter, J.; Littke, R.; Meyers, P. The Cenomanian/Turonian boundary event in the Indian Ocean: A key to understand the global picture. In Synthesis of Results from Scientific Drilling in the Indian Ocean; Geophysical Monograph Series; Wiley: New York, NY, USA, 1992; Volume 70, pp. 253–273. [Google Scholar]
- Damsté, J.S.S.; Köster, J. A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet. Sci. Lett. 1998, 158, 165–173. [Google Scholar] [CrossRef]
- Tsikos, H.; Jenkyns, H.C.; Walsworth-Bell, B.; Petrizzo, M.R.; Forster, A.; Kolonic, S.; Erba, E.; Silva, I.P.; Baas, M.; Wagner, T. Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: Correlation and implications based on three key localities. J. Geol. Soc. 2004, 161, 711–719. [Google Scholar] [CrossRef]
- Parente, M.; Frijia, G.; Di Lucia, M. Carbon-isotope stratigraphy of Cenomanian–Turonian platform carbonates from the southern Apennines (Italy): A chemostratigraphic approach to the problem of correlation between shallow-water and deep-water successions. J. Geol. Soc. 2007, 164, 609–620. [Google Scholar] [CrossRef]
- Parente, M.; Frijia, G.; Di Lucia, M.; Jenkyns, H.C.; Woodfine, R.G.; Baroncini, F. Stepwise extinction of larger foraminifers at the Cenomanian-Turonian boundary: A shallow-water perspective on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event). Geology 2008, 36, 715–718. [Google Scholar] [CrossRef]
- Gebhardt, H.; Friedrich, O.; Schenk, B.; Fox, L.; Hart, M.; Wagreich, M. Paleoceanographic changes at the northern Tethyan margin during the Cenomanian–Turonian Oceanic Anoxic Event (OAE-2). Mar. Micropaleontol. 2010, 77, 25–45. [Google Scholar] [CrossRef]
- Owens, J.D.; Lyons, T.W.; Li, X.; Macleod, K.G.; Gordon, G.; Kuypers, M.M.M.; Anbar, A.; Kuhnt, W.; Severmann, S. Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2). Paleoceanography 2012, 27. [Google Scholar] [CrossRef]
- Zheng, X.-Y.; Jenkyns, H.C.; Gale, A.S.; Ward, D.J.; Henderson, G.M. Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian–Turonian): Evidence from Nd-isotopes in the European shelf sea. Earth Planet. Sci. Lett. 2013, 375, 338–348. [Google Scholar] [CrossRef]
- Zhou, X.; Jenkyns, H.C.; Owens, J.D.; Junium, C.K.; Zheng, X.-Y.; Sageman, B.B.; Hardisty, D.S.; Lyons, T.W.; Ridgwell, A.; Lu, Z. Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE2. Paleoceanography 2015, 30, 510–526. [Google Scholar] [CrossRef]
- Friedrich, O.; Erbacher, J.; Mutterlose, J. Paleoenvironmental changes across the Cenomanian/Turonian boundary event (oceanic anoxic event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207). Rev. Micropaléontol. 2006, 49, 121–139. [Google Scholar] [CrossRef]
- Gertsch, B.; Keller, G.; Adatte, T.; Berner, Z.; Kassab, A.S.; Tantawy, A.A.A.; El-Sabbagh, A.M.; Stueben, D. Cenomanian–Turonian transition in a shallow water sequence of the Sinai. Egypt. Int. J. Earth Sci. 2008, 99, 165–182. [Google Scholar] [CrossRef]
- Gertsch, B.; Adatte, T.; Keller, G.; Tantawy, A.A.A.M.; Berner, Z.; Mort, H.P.; Fleitmann, D. Middle and late Cenomanian oceanic anoxic events in shallow and deeper shelf environments of western Morocco. Sedimentology 2010, 57, 1430–1462. [Google Scholar] [CrossRef]
- Hay, W.W. Toward understanding Cretaceous climate—An updated review. Sci. China Earth Sci. 2017, 60, 5–19. [Google Scholar] [CrossRef]
- Hay, W.W. Evolving ideas about the Cretaceous climate and ocean circulation. Cretac. Res. 2008, 29, 725–753. [Google Scholar] [CrossRef]
- Cronin, T.M. Paleoclimates: Understanding Climate Change Past and Present; Columbia University Press: New York, NY, USA, 2009. [Google Scholar]
- DeConto, R.M.; Hay, W.W.; Thompson, S.L.; Bergengren, J. Late Cretaceous Climate and Vegetation Interactions: Cold Continental Interior Paradox; Special Papers; Geological Society of America: Boulder, CO, USA, 1999; pp. 391–406. [Google Scholar]
- Sellwood, B.W.; Valdes, P.J. Mesozoic climates: General circulation models and the rock record. Sediment. Geol. 2006, 190, 269–287. [Google Scholar] [CrossRef]
- Jayne, S.R.; St Laurent, L.C.; Gille, S.T. Connections between ocean bottom topography and Earth’s climate. Oceanography 2004, 17, 65–74. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H.; Gille, S.; Kappel, E.; Jayne, S.; Soofi, K.; Coakley, B.; Géli, L. Bathymetry from space: Rationale and requirements for a new, high-resolution altimetric mission. C. R. Geosci. 2006, 338, 1049–1062. [Google Scholar] [CrossRef]
GTS2012 | GTS2016 | Müller GTS | |
---|---|---|---|
Top C34 age | 83.64 Ma | 84.2 Ma | 83.5 Ma |
Base M0 age | 126.3 Ma | 126.3 Ma | 120.4 Ma |
Top C34 to base M0 duration | 42.66 m.y. | 42.1 m.y. | 36.9 m.y. |
Top C34 to C–T boundary duration | 8.875 m.y. | 8.5 m.y. | 8.875 a m.y. or 8.5 b m.y. |
C–T boundary age | 93.9 Ma | 93.9 Ma | 92.375 a Ma or 92.0 b Ma |
Modern World 1 | C–T World 2 | C–T/Modern | |
---|---|---|---|
Continents | 29.00% | 24.98% | −13.86% |
Ocean | 71.00% | 75.02% | 5.66% |
Continental shelf * | 5.68% | 8.60% | 51.47% |
Continental slope and rise * | 11.72% | 13.70% | 16.93% |
Combined shelf, slope and rise * | 17.40% | 22.31% | 28.20% |
Open Ocean | 53.60% | 52.71% | −1.66% |
Variable | Max | Min | Mean | Mean % 9 | Median | Median % 9 | Mode | Std.Dev. | Std.Dev. % 9 | Variance | Variance % 9 |
---|---|---|---|---|---|---|---|---|---|---|---|
C–T OC1 Age 2 | 190.00 | 0.00 | 40.29 | 63.56% | 36.20 | 65.94% | 190.00 | 32.51 | 72.66% | 1057.17 | 52.81% |
Modern OC1 Age 2 | 280.00 | 0.00 | 63.39 | 100.00% | 54.90 | 100.00% | 0.00 | 44.74 | 100.00% | 2001.77 | 100.00% |
OES D2B 3 | −2662.69 | −5554.11 | −4464.67 | 131.79% | −4592.02 | 118.87% | −5554.11 | 604.00 | 34.69% | 364,819.64 | 12.03% |
OES D2B3 + Sediment | −1385.96 | −4920.04 | −4024.87 | 118.81% | −4084.91 | 105.74% | −4671.99 | 527.11 | 30.27% | 277,844.40 | 9.17% |
OES Base4 Bathymetry | 677.31 | −5758.30 | −3303.11 | 97.51% | −4128.30 | 106.87% | −6.52 | 1769.18 | 101.61% | 3,129,987.14 | 103.25% |
OES Bathymetry 5 | 5087.88 | −5758.30 | −3229.23 | 95.32% | −4005.90 | 103.70% | −6.52 | 1764.88 | 101.36% | 3,114,784.82 | 102.75% |
OES Difference 6 | 2283.91 | −5551.14 | −385.27 | − | −48.74 | − | −676.01 | 1018.68 | - | 1,037,718.60 | - |
OES Interpolated Bathymetry | 0.00 | −5758.30 | −3233.20 | 95.44% | −4005.90 | 103.70% | −6.52 | 1756.50 | 100.88% | 3,085,309.63 | 101.77% |
Modern Ocean Bathymetry 7 | −1.00 | −10,714.00 | −3387.63 | 100.00% | −3863.00 | 100.00% | −1.00 | 1741.13 | 100.00% | 3,031,539.27 | 100.00% |
OES Interpolated EB08 Extent 8 | 0.00 | −5753.00 | −4070.70 | 120.16% | −4394.60 | 113.76% | −4878.10 | 995.00 | 57.15% | 990,018.77 | 32.66% |
EB08 D2B 3 | 2290.43 | −5638.43 | −4520.08 | 133.43% | −4724.14 | 122.29% | −5638.43 | 803.68 | 46.16% | 645,909.44 | 21.31% |
EB08 Bathymetry | 2402.45 | −5266.97 | −4269.14 | 126.02% | −4423.02 | 114.50% | −5150.16 | 753.15 | 43.26% | 567,234.14 | 18.71% |
EB08 Difference 6 | −96.22 | −733.19 | −250.94 | − | −204.79 | − | −488.27 | 140.55 | - | 19,753.06 | - |
SW07 C–T Ocean | 0.00 | −5755.90 | −3442.90 | 101.63% | −4508.39 | 116.71% | −5040.00 | 1970.61 | 113.18% | 3,883,318.54 | 128.10% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goswami, A.; Hinnov, L.; Gnanadesikan, A.; Young, T. Realistic Paleobathymetry of the Cenomanian–Turonian (94 Ma) Boundary Global Ocean. Geosciences 2018, 8, 21. https://doi.org/10.3390/geosciences8010021
Goswami A, Hinnov L, Gnanadesikan A, Young T. Realistic Paleobathymetry of the Cenomanian–Turonian (94 Ma) Boundary Global Ocean. Geosciences. 2018; 8(1):21. https://doi.org/10.3390/geosciences8010021
Chicago/Turabian StyleGoswami, Arghya, Linda Hinnov, Anand Gnanadesikan, and Taylor Young. 2018. "Realistic Paleobathymetry of the Cenomanian–Turonian (94 Ma) Boundary Global Ocean" Geosciences 8, no. 1: 21. https://doi.org/10.3390/geosciences8010021
APA StyleGoswami, A., Hinnov, L., Gnanadesikan, A., & Young, T. (2018). Realistic Paleobathymetry of the Cenomanian–Turonian (94 Ma) Boundary Global Ocean. Geosciences, 8(1), 21. https://doi.org/10.3390/geosciences8010021