Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia
Abstract
:1. Introduction
2. Geological Settings
- Pre-caldera period. This period occurred around 0.29 Ma ± 0.003, resulting in a huge stratovolcano. Sequences of layers were pyroclastic flows, pyroclastic fallout deposits, and basaltic flows. Dacite lava flows can be found in the northern side of the caldera rim. Outcrops also can be found at the outside of the southern rim of the caldera, near Songgong village.
- Ijen caldera period. The main process of this period is thought to have occurred between 300,000 and 50,000 years ago. The resulting deposit can be found both inside and outside of the caldera as a thick layer of fall pumice and pumice of pyroclastic flows. At the rim of the caldera, sediment thickness reaches about 100–150 m.
- Post-caldera period. This period is divided into five different periods as follows:
- First period—Post-caldera formation, a lake was established within the caldera. Sediment layers formed in the north–north-east regions of the caldera as interbedded volcanoclastic shales, silts, and lahar were deposited. The presence of volcanic ash shows that the lake was formed during the reactivation process of volcanic activity inside the caldera [10].
- Second period—Consists of volcanic activity inside the caldera and the growth of the lava dome of Mt. Blau [10].
- Third period—This period is characterized by the growth of four volcanoes: Mt. Ringgih, Mt. Jampit, Mt. Ranteh, and Mt. Merapi. The volcanic products vary in chemical composition from basalt to andesite. Fall pumice, pyroclastic flows, lahar, and lahar flows can also be found [11]. Three of the four volcanoes (Mt. Jampit, Mt. Ranteh, and Mt. Merapi) lie along the southern edge of the caldera which suggests a significant fault linked to the formation of the caldera and shallow magma chamber. The sequence also follows a tectonic lineament associated with fault structures. Petrologic studies show that Blau (resurgent dome) and the four volcanoes above are associated with the other magma bodies from the pre-caldera formation period [12].
- Fourth period—About 50,000 years ago, the lake was emptied through the northern part of caldera. Based on existing stratigraphy, drainage of the lake occurred in two different occasions.
- Fifth period—This last period occurred about 25,000 years ago and consisted of the formation of 12 cinder cones in a line oriented east to west. This trend appears to be more or less parallel to the tectonic lineament [13] and shows the migration of volcanic activity from west to east across the caldera. The youngest part of this cinder cone is the Ijen Crater [12].
3. Materials and Methods
4. Results
4.1. Magnetotelluric Analysis
4.2. Geochemical Analysis
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iguchi, M.; Nishimura, T.; Hendrasto, M.; Rosadi, U.; Ohkura, T.; Triastuty, H.; Basuki, A.; Loeqman, A.; Maryanto, S.; et al. Methods for Eruption Prediction and Hazard Evaluation at Indonesian Volcanoes. J. Disaster Res. 2012, 7, 26–36. [Google Scholar]
- Maryanto, S.; Santosa, D.; Mulyana, I.; Hendrasto, M. Preliminary chaos analysis of explosion earthquakes followed by harmonic tremors at Semeru Volcano, East Java, Indonesia. World Acad. Sci. Eng. Technol. 2010, 4, 612–617. [Google Scholar]
- Maryanto, S.; Iguchi, M.; Tameguri, T. Constraints on the source mechanism of harmonic tremors based on seismological, ground deformation, and visual observations at Sakurajima volcano, Japan. J. Volcanol. Geotherm. Res. 2008, 170, 198–217. [Google Scholar] [CrossRef]
- Santoso, D.; Maryanto, S.; Nadhir, A. Application of Single MEMS-accelerometer to measure 3-axis vibrations and 2-axis tilt-angle simultaneously. Telkomnika 2015, 13, 442–450. [Google Scholar] [CrossRef]
- Konstantinuo, K.I.; Perwita, C.A.; Maryanto, S.; Budianto, A.; Hendrasto, M. Maximal Lyapunov exponent variations of volcanic tremor recorded during explosive and effusive activity at Mt. Semeru volcano, Indonesia. Nonlinear Process. Geophys. 2013, 20, 1137–1145. [Google Scholar] [CrossRef]
- Van Hinsberg, V.; Berlo, K.; van Bergen, M.; Jones, A. Extreme alteration by hyperacidic brines at Kawah Ijen volcano, East Java, Indonesia: I. Textural and mineralogical imprint. J. Volcanol. Geotherm. Res. 2010, 198, 253–263. [Google Scholar] [CrossRef]
- Van Bergen, M.; Bernard, A.; Sumarti, S.; Sriwana, T.; Sitorus, K. Crater Lake of Java: Dieng, Kelud, and Ijen. Excursion Guidebook; IAVCEI General Assembly: Bali, Indonesia, 2000. [Google Scholar]
- Karlina, I.; Maryanto, S.; Rachmansyah, A. Distribution of hot springs Blawan-Ijen based on geoelectricity data. J. Nat. B 2013, 2, 164–171. [Google Scholar]
- Mauri, G. Multi-Scale Analysis of Multiparameter Geophysical and Geochemical Data from Active Volcanic Systems. Unpublished Ph.D. Thesis, Simon Fraser University, Burnaby, BC, Canada, 2009. [Google Scholar]
- Sitorus, K. Volcanic Stratigraphy and Geochemistry of the Idjen Caldera Complex, East Java, Indonesia. Unpublished MSc Thesis, University of Wellington, Wellington, New Zealand, 1990. [Google Scholar]
- Van Hisberg, V. Water-Rock Interaction and Element Fluxes in the Kawah Ijen Hyperacid Crater Lake and the Banyu Pahit River, East Java, Indonesia. Unpublished Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2001. [Google Scholar]
- Berlo, K. The Magmatic Evolution of the Ijen Caldera, East Java, Indonesia. Unpublished Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2001. [Google Scholar]
- Carn, S. Application of Synthetic Aperture Radar (SAR) imagery to volcano mapping in the humid tropics: A case study in East Java, Indonesia. Bull. Volcanol. 1999, 61, 92–105. [Google Scholar] [CrossRef]
- Zaennudin, A.; Wahyudin, D.; Surmayadi, M.; Kusdinar, E. Hazard assessment of Ijen volcanic eruption East Java. J. Environ. Geol. Hazard 2012, 3, 109–132. [Google Scholar]
- Raehanayati; Maryanto, S.; Rachmansyah, A. Study of Geothermal Potential in Blawan-Ijen, East Java Based On Gravity Method. J. Neutrino 2013, 6, 31–39. (in Indonesian). [Google Scholar]
- Afandi, A.; Maryanto, S.; Rachmansyah, A. Identification of Geothermal Reservoir based on Magnetic Method for Blawan Area, Bondowoso. J. Neutrino 2013, 6, 1–10. (in Indonesian). [Google Scholar]
- Vozoff, K. The Magnetotelluric method. In Electromagnetic Methods in Applied Geophysics. Volume 2, Application, Parts A and B; Nabighian, M.N., Ed.; Society of Exploration Geophysicists: Tulsa, OK, USA, 1991; pp. 641–711. [Google Scholar]
- Gamble, T.; Goubau, W.; Clarke, J. Magnetotellurics with a remote magnetic reference. Geophysics 1979, 44, 53–86. [Google Scholar] [CrossRef]
- Tikhonov, A.; Arsenin, V. Solutions of Ill-Posed Problems. John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Xiao, W. Magnetotelluric Exploration in the Rocky Mountain Foothills. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2004. [Google Scholar]
- Sukhyar, R.; Gurusinga, C.; Widodo, S.; Munandar, A.; Dahlan, H.M.; Wahyuningsih, R. Potential and Development of Indonesia Geothermal Resources; Geological Agency of Indonesia: Bandung, Indonesia, 2014. (In Indonesian) [Google Scholar]
- Ellis, A.J.; Mahon, W.A. Chemistry and Geothermal System; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Delmelle, P.; Bernard, A.; Kusakabe, M.; Fischer, T.; Takano, B. Geochemistry of magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J. Volcanol. Geotherm. Res. 2000, 97, 31–53. [Google Scholar] [CrossRef]
- Hochstein, M.; Zheng, K.; Pasvanoglu, S.; Vivian-Neal, P. Advective (heat sweep) geothermal systems. In Proceedings of the 38th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 11–13 February 2013. [Google Scholar]
- Kasbani. Type of geothermal systems in Indonesia and potential energy estimation. Bull. Geol. Agency 2009, 4, 64–73. [Google Scholar]
- Asaue, H.; Koike, K.; Yoshinaga, T.; Takakura, S. Magnetotelluric resistivity modelling for 3D characterization geothermal reservoir in the Western Side of Mt. Aso, SW Japan. J. Appl. Geophys. 2005, 58, 296–312. [Google Scholar]
- Ussher, G.; Harvey, C.; Johnstone, R.; Anderson, E. Understanding The Resistivities Observed In Geothermal Systems. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, May 28–10 June 2000; pp. 1915–1920. [Google Scholar]
- Mardiana, U. Geothermal Manifestation of Papandayan Based on Rock Resistivity Value, Case Study Mt. Garut-West Java; Department of Geology Padjadjaran University: Bandung, Indonesia, 2007. [Google Scholar]
- Fournier, R.O.; Truesdell, A.H. An empirical Na–K–Ca geothermometer for natural waters. Geochim. Cosmochim. Acta 1973, 37, 1255–1275. [Google Scholar] [CrossRef]
- Ellis, A.J. Chemical Geothermometry in Geothermal Systems. Geothermics 1979, 25, 219–226. [Google Scholar] [CrossRef]
- National Standardization Agency. Geothermal Energy Potential Estimation Method; Indonesian National Standard No. 13-6171-1999; National Standard Agency: Jakarta, Indonesia, 1999; pp. 1–9. [Google Scholar]
Elements | Test Method |
---|---|
Cl | UV-VIS |
HCO3 | UV-VIS |
SO4 | UV-VIS |
SiO2 | AAS |
Na | AAS |
K | AAS |
Ca | AAS |
Al | AAS |
Parameter | Concentration (mg/kg) | |||||
---|---|---|---|---|---|---|
AP-01 | AP-02 | AP-03 | AP-04 | AP-05 | AP-06 | |
pH | 6.628 | 6.718 | 6.648 | 6.822 | 7.685 | 6.725 |
Cl | 130 | 145 | 140 | 160 | 130 | 150 |
HCO3 | 187.44 | 280.28 | 220 | 13.2 | 0 | 132.88 |
SO4 | 43.908 | 43.731 | 32.594 | 34.678 | 20.222 | 29.792 |
SiO2 | 13.43 | 12.25 | 9.72 | 15.29 | 9.06 | 10.62 |
Na | 0.016 | 0.017 | 0.01 | 0.012 | 0.014 | 0.018 |
K | 46.86 | 18.53 | 35.65 | 30.08 | 72.7 | 57.03 |
Ca | 6.614 | 6.301 | 6.668 | 6.638 | 3.446 | 5.576 |
Al | 0 | <0.1006 | 0 | 0 | 0 | 0 |
Sampling Point | Ion | mg/kg | Temperature (°C) |
---|---|---|---|
AP-04 | Na | 0.012 | 61.15 |
K | 30.08 | ||
Ca | 6.638 | ||
AP-05 | Na | 0.014 | 107.1 |
K | 72.7 | ||
Ca | 3.446 | ||
AP-06 | Na | 0.018 | 89.65 |
K | 57.03 | ||
Ca | 5.576 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maryanto, S.; Dewi, C.N.; Syahra, V.; Rachmansyah, A.; Foster, J.; Nadhir, A.; Santoso, D.R. Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia. Geosciences 2017, 7, 41. https://doi.org/10.3390/geosciences7020041
Maryanto S, Dewi CN, Syahra V, Rachmansyah A, Foster J, Nadhir A, Santoso DR. Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia. Geosciences. 2017; 7(2):41. https://doi.org/10.3390/geosciences7020041
Chicago/Turabian StyleMaryanto, Sukir, Cinantya N. Dewi, Vanisa Syahra, Arief Rachmansyah, James Foster, Ahmad Nadhir, and Didik R. Santoso. 2017. "Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia" Geosciences 7, no. 2: 41. https://doi.org/10.3390/geosciences7020041
APA StyleMaryanto, S., Dewi, C. N., Syahra, V., Rachmansyah, A., Foster, J., Nadhir, A., & Santoso, D. R. (2017). Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia. Geosciences, 7(2), 41. https://doi.org/10.3390/geosciences7020041