Amber from the Lower Cretaceous of Lugar d’Além Formation, Lusitanian Basin, Western Portugal: Chemical Composition and Botanical Source
Abstract
1. Introduction
2. Geological Setting of Sampled Area
3. Materials and Methods
3.1. Sample Collection and Preparation
3.2. Extraction and Derivatization
3.3. GC–MS Analyses
3.4. GC×GC–TOFMS
4. Results
4.1. Palynology
4.2. GC–MS Analyses
4.3. GC×GC–TOFMS
5. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GC–MS | Gas Chromatography–Mass Spectrometry |
| GC×GC–TOFMS | Comprehensive Two-Dimensional Gas Chromatography–Time-of-Flight Mass Spectrometry |
| HF | Hydrofluoric acid |
| HCl | Hydrochloric acid |
| HNO3 | Nitric acid |
| ZnCl2 | Zinc chloride |
| LM | Light Microscopy |
| N2 | Nitrogen |
| MSTFA | N-methyl-N-trimethylsilyl-trifluoroacetamide |
| UCM | Unresolved Complex Mixture |
| PAHs | Polycyclic aromatic hydrocarbons |
References
- Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany; Timber Press: Portland, OR, USA; Cambridge, UK, 2003. [Google Scholar]
- Delclòs, X.; Peñalver, E.; Barrón, E.; Peris, D.; Grimaldi, D.A.; Holz, M.; Conrad, C.L.; Saupe, E.E.; Scotese, C.R.; Solórzano-Kraemer, M.M.; et al. Amber and the Cretaceous resinous interval. Earth-Sci. Rev. 2023, 243, 104486. [Google Scholar] [CrossRef]
- Solórzano-Kraemer, M.M.; Delclòs, X.; Engel, M.S.; Peñalver, E. A revised definition for copal and its significance for palaeontological and Anthropocene biodiversity-loss studies. Sci. Rep. 2020, 10, 19904. [Google Scholar] [CrossRef] [PubMed]
- Pańczak, J.; Kosakowski, P.; Drzewicz, P.; Zakrzewski, A. Fossil resins—A chemotaxonomical overview. Earth-Sci. Rev. 2024, 104734. [Google Scholar] [CrossRef]
- Seyfullah, L.J.; Roberts, E.A.; Schmidt, A.R.; Ragazzi, E.; Anderson, K.B.; Rodrigues do Nascimento, D., Jr.; Kunzmann, L. Revealing the diversity of amber source plants from the Early Cretaceous Crato Formation, Brazil. BMC Evol. Biol. 2020, 20, 107. [Google Scholar] [CrossRef] [PubMed]
- Menor-Salván, C.; Najarro, M.; Velasco, F.; Rosales, I.; Tornos, F.; Simoneit, B.R. Terpenoids in extracts of lower cretaceous ambers from the Basque-Cantabrian Basin (El Soplao, Cantabria, Spain): Paleochemotaxonomic aspects. Org. Geochem. 2010, 41, 1089–1103. [Google Scholar] [CrossRef]
- Pereira, R.; Carvalho, I.S.; Simoneit, B.R.T.; Azevedo, D.A. Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Recôncavo basins, Brazil. Org. Geochem. 2009, 40, 863–875. [Google Scholar] [CrossRef]
- Simoneit, B.R.; Otto, A.; Menor-Sálvan, C.; Oros, D.R.; Wilde, V.; Riegel, W. Composition of resinites from the Eocene Geiseltal brown coal basin, Saxony-Anhalt, Germany and comparison to their possible botanical analogues. Org. Geochem. 2021, 152, 104138. [Google Scholar] [CrossRef]
- Otto, A.; Wilde, V. Sesqui-, di- and triterpenoids as chemosystematic markers in extant conifers—A review. Bot. Rev. 2001, 67, 141–238. [Google Scholar] [CrossRef]
- Pańczak, J.; Kosakowski, P.; Zakrzewski, A. Biomarkers in fossil resins and their palaeoecological significance. Earth-Sci. Rev. 2023, 242, 104455. [Google Scholar] [CrossRef]
- Valderrama, N.D.L.; Schaeffer, P.; Leprince, A.; Schmitt, S.; Adam, P. Novel oxygenated fossil nor-diterpenoids from Cretaceous amber (South-Western France) as potential markers from Cupressaceae and/or Cheirolepidiaceae. Org. Geochem. 2022, 167, 104372. [Google Scholar] [CrossRef]
- Pereira, R.; Carvalho, I.S.; Fernandes, A.C.S.; Azevedo, D.A. Chemotaxonomical aspects of lower Cretaceous amber from Recôncavo Basin, Brazil. J. Braz. Chem. Soc. 2011, 22, 1511–1518. [Google Scholar] [CrossRef]
- Drzewicz, P.; Natkaniec-Nowak, L.; Czapla, D. Analytical approaches for studies of fossil resins. Trends Anal. Chem. 2016, 85, 75–84. [Google Scholar] [CrossRef]
- Umamaheswaran, R.; Dutta, S.; Kumar, S. Elucidation of the macromolecular composition of fossil biopolymers using Py-GC×GC–TOFMS. Org. Geochem. 2021, 151, 104139. [Google Scholar] [CrossRef]
- Scarlett, A.G.; Despaigne-Diaz, A.I.; Wilde, S.A.; Grice, K. An examination by GC×GC–TOFMS of organic molecules present in highly degraded oils emerging from Caribbean terrestrial seeps of Cretaceous age. Geosci. Front. 2019, 10, 5–15. [Google Scholar] [CrossRef]
- Yu, J.; Su, X.; Shi, Z.; Li, Y.; Wang, C.; Zhu, S.; Wang, Y. Comparative metabolomic reveals chemotaxonomic markers of resin fossils for identification of botanical origins. Int. J. Coal Geol. 2023, 270, 104230. [Google Scholar] [CrossRef]
- Rodrigo, A.; Peñalver, E.; López del Valle, R.; Barrón, E.; Delclòs, X. The heritage interest of the Cretaceous amber outcrops in the Iberian Peninsula, and their management and protection. Geoheritage 2018, 10, 511–523. [Google Scholar] [CrossRef]
- Wilson, R.C.L. A reconnaissance study of Upper Jurassic sediments of the Lusitanian Basin. Earth Sci. J. 1979, 5, 53–84. [Google Scholar]
- Wilson, R.C.L. Mesozoic development of the Lusitanian Basin, Portugal. Rev. Soc. Geol. España 1988, 1, 393–407. [Google Scholar]
- Ribeiro, A.; Antunes, M.T.; Ferreira, M.P.; Rocha, R.B.; Soares, A.F.; Zbyszewski, G.; Almeida, F.M.; Carvalho, D.; Monteiro, J.H. Introduction à la Géologie Générale du Portugal; Serviços Geológicos de Portugal: Lisboa, Portugal, 1979; pp. 1–114. [Google Scholar]
- Wilson, R.C.L.; Hiscott, R.N.; Willis, M.G.; Gradstein, F.M. The Lusitanian Basin of west-central Portugal: Mesozoic and Tertiary tectonic, stratigraphic, and subsidence history. In Extensional Tectonics and Stratigraphy of the North Atlantic Margins; Tankard, A.J., Balkwill, H.R., Eds.; AAPG: Tulsa, OK, USA, 1989; pp. 341–361. [Google Scholar]
- Pinheiro, L.M.; Wilson, R.C.L.; Pena dos Reis, R.; Whitmarsh, R.B.; Ribeiro, A. The Western Iberia Margin: A Geophysical and Geological overview. Proc. Ocean. Drill. Program Sci. Results 1996, 149, 3–23. [Google Scholar]
- Hardenbol, J.; Thierry, J.; Farley, M.B.; Jacquin, T.; de Graciansky, P.C.; Vail, P.R. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. SEPM Spec. Publ. 1998, 60, 3–13. [Google Scholar]
- Soares, A.F.; Kullberg, J.C.; Marques, J.F.; Rocha, R.B.; Callapez, P. Tectono sedimentary model for the evolution of the Silves Group (Triassic, Lusitanian basin, Portugal). Bull. Soc. Géol. Fr. 2012, 183, 203–216. [Google Scholar] [CrossRef]
- Dinis, P.A.; Vermesch, P.; Callapez, P.M. Detrital zircon age signatures of the Mesozoic in the Lusitanian Basin and implications for the evolution of Iberia–Newfoundland conjugate margins. Terra Nova 2023, 35, 203–212. [Google Scholar] [CrossRef]
- Rey, J. Recherches géologiques sur le Crétacé Inférieur de l’Estremadura (Portugal). Mem. Serv. Geol. Portugal 1972, 21, 1–477. [Google Scholar]
- Rey, J. Le Crétacé inférieur de la marge atlantique portugaise: Biostratigraphie, organisation séquentielle, évolution paléogéographique. Ciências Da Terra 1979, 5, 97–121. [Google Scholar]
- Rey, J. Stratigraphie séquentielle sur une plate-forme à sédimentation mixte: Exemple du Crétacé inférieur du Bassin Lusitanien. Comun. Inst. Geol. Mineiro 1993, 79, 87–97. [Google Scholar]
- Cunha, P.P. Estratigrafia e Sedimentologia dos Depósitos do Cretácico Superior e Terciário de Portugal Central, a Leste de Coimbra/Stratigraphy and Sedimentology of the Upper Cretaceous and Tertiary of Central Portugal, East of Coimbra. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, July 1992; 262p. [Google Scholar]
- Mendes, M.M.; Dinis, J.L.; Gomez, B.; Pais, J. Reassessment of the cheirolepidiaceous conifer Frenelopsis teixeirae Alvin et Pais from the Early Cretaceous (Hauterivian) of Portugal and palaeoenvironmental considerations. Rev. Palaeobot. Palynol. 2010, 161, 30–42. [Google Scholar] [CrossRef]
- Mendes, M.M.; Polette, F.; Cunha, P.P.; Dinis, P.; Batten, D.J. A new Hauterivian palynoflora from the Vale Cortiço site (central Portugal) and its palaeoecological implications for western Iberia. Acta Palaeobot. 2019, 59, 215–228. [Google Scholar] [CrossRef]
- Dinis, J.L.; Trincão, P. Recognition and stratigraphical significance of the Aptian unconformity in the Lusitanian Basin, Portugal. Cretac. Res. 1995, 16, 171–186. [Google Scholar] [CrossRef]
- Dinis, J.L.; Rey, J.; Graciansky, P.C. Le Bassin Lusitanien (Portugal) à l’Aptien supérieur–Albien: Organisation séquentielle, proposition de corrélations, evolution. Comptes Rendus Geosci. 2002, 334, 757–764. [Google Scholar] [CrossRef]
- Dinis, J.L.; Rey, J.; Cunha, P.P.; Callapez, P.M.; Reis, R.P. Stratigraphy and allogenic controls on the western Portugal Cretaceous, an updated synthesis. Cretac. Res. 2008, 29, 772–780. [Google Scholar] [CrossRef]
- Pereira, R.; Rosas, F.; Mata, J.; Represas, P.; Escada, C.; Silva, B. Interplay of tectonics and magmatism during post-rift inversion on the central West Iberian Margin (Estremadura Spur). Basin Res. 2021, 33, 1497–1519. [Google Scholar] [CrossRef]
- Lauverjat, J. Le Crétacé Supérieur dans le Nord du Bassin Occidental Portugais. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 1982. [Google Scholar]
- Berthou, P.Y. Albian-Turonian stage boundaries and subdivisions in the Western Portuguese Basin, with special emphasis on the Cenomanian-Turonian boundary in the Ammonite Facies and Rudist Facies. Bulletin Geol. Soc. Den. 1984, 33, 41–45. [Google Scholar] [CrossRef]
- Callapez, P.M.; Barroso-Barcenilla, F.; Soares, A.F.; Segura, M.; dos Santos, V.F. On the co-occurrence of Rubroceras and Vascoceras (Ammonoidea, Vascoceratidae) in the upper Cenomanian of the West Portuguese Carbonate Platform. Cretac. Res. 2017, 88, 325–336. [Google Scholar] [CrossRef]
- Callapez, P.; Barroso-Barcenilla, F.; Berrocal-Casero, M.; Cunha, P.; Dinis, P.; Lopes, F.; Juanas, S.; Mendes, M.; Pimentel, R.; Santos, V.; et al. The Cretaceous post-rift series from the Portuguese onshore ranges of the West Iberian Margin and their history of research. Geol. Soc. Spec. Publ. 2024, 545, 157–196. [Google Scholar] [CrossRef]
- Dinis, P.A.; Dinis, J.L.; Tassinari, C.; Carter, A.; Callapez, P.M.; Morais, M. Detrital zircon geochronology of the Cretaceous succession from the Iberian Atlantic Margin, palaeogeographic implications. Int. J. Earth Sci. 2016, 105, 727–745. [Google Scholar] [CrossRef]
- Rey, J. Les unités lithostratigraphiques du Groupe de Torres Vedras (Estremadura, Portugal). Comun. Inst. Geol. Mineiro 1993, 79, 75–85. [Google Scholar]
- Rey, J. Les unités lithostratigraphiques du Crétacé Inférieur de la région de Lisbonne. Comun. Serv. Geol. Port. 1992, 78, 103–124. [Google Scholar]
- Rey, J.; Dinis, J.L.; Callapez, P.M.; Cunha, P.P. Da Rotura Continental à Margem Passiva. Composição e Evolução do Cretácico de Portugal. Cadernos de Geologia de Portugal; INETI: Lisboa, Portugal, 2006; pp. 1–75. [Google Scholar]
- Traverse, A. Paleopalynology, 2nd ed.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Nohra, Y.A.; Perrichot, V.; Jeanneau, L.; Le Pollès, L.; Azar, D. Chemical characterization and botanical origin of French ambers. J. Nat. Prod. 2015, 78, 1284–1293. [Google Scholar] [CrossRef]
- Liu, B.; Bechtel, A.; Gross, D.; Zhao, Q.; Guo, W.; Ajuaba, S.; Sun, Y.; Zhao, C. Molecular and carbon isotope composition of hydrocarbons from ambers of the Eocene Shenbei coalfield (Liaoning Province, NE China). Org. Geochem. 2022, 170, 104436. [Google Scholar] [CrossRef]
- Otto, A.; Simoneit, B.R.T. Biomarkers of Holocene buried conifer logs from Bella Coola and north Vancouver, British Columbia, Canada. Org. Geochem. 2002, 33, 1241–1251. [Google Scholar] [CrossRef]
- Wang, Y.M.; Jiang, W.Q.; Feng, Q.; Lu, H.; Zhou, Y.P.; Liao, J.; Wang, Q.T.; Sheng, G.Y. Identification of 15-nor-cleroda-3,12-diene in a Dominican amber. Org. Geochem. 2017, 113, 90–96. [Google Scholar] [CrossRef]
- Bray, P.S.; Anderson, K.B. The nature and fate of natural resins in the geosphere XIII: A probable pinaceous resin from the early Cretaceous (Barremian), Isle of Wight. Geochem. Trans. 2008, 9, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Paiva, T.S.; Carvalho, I.S. A putatively extinct higher taxon of Spirotrichea (Ciliophora) from the Lower Cretaceous of Brazil. Sci. Rep. 2021, 11, 19110. [Google Scholar] [CrossRef] [PubMed]
- Menor-Salván, C.; Simoneit, B.R.; Ruiz-Bermejo, M.; Alonso, J. The molecular composition of Cretaceous ambers: Identification and chemosystematic relevance of 1,6-dimethyl-5-alkyltetralins and related bisnorlabdane biomarkers. Org. Geochem. 2016, 93, 7–21. [Google Scholar] [CrossRef]
- Álvarez-Parra, S.; Pérez-de la Fuente, R.; Peñalver, E.; Barrón, E.; Alcalá, L.; Pérez-Cano, J.; Martín-Closas, C.; Trabelsi, K.; Meléndez, N.; López Del Valle, R.; et al. Dinosaur bonebed amber from an original swamp forest soil. eLife 2021, 10, e72477. [Google Scholar] [CrossRef]
- Langenheim, J.H. Biology of Amber-Producing Trees: Focus on Case Studies of Hymenaea and Agathis. In Amber, Resinite, and Fossil Resins; Anderson, K.B., Crelling, J.C., Eds.; American Chemical Society: Washington, DC, USA, 1996; pp. 1–31. [Google Scholar]
- Otto, A.; Simoneit, B.R.T.; Wilde, V. Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae). Bot. J. Linn. Soc. 2007, 154, 129–140. [Google Scholar] [CrossRef]
- Cox, R.E.; Yamamoto, S.; Otto, A.; Simoneit, B.R.T. Oxygenated di- and tricyclic diterpenoids of southern hemisphere conifers. Biochem. Syst. Ecol. 2007, 35, 342–362. [Google Scholar] [CrossRef]
- Otto, A.; Simoneit, B.R.; Wilde, V.; Kuntzmann, L.; Pűttmann, W. Terpenoids Composition of three fossil resins from Cretaceae and tertiary Conifers. Rev. Palaeobatony Palynol. 2002, 120, 203–215. [Google Scholar] [CrossRef]
- Bechtel, A.; Chekryzhov, I.Y.; Nechaev, V.P.; Kononov, V.V. Hydrocarbon composition of Russian amber from the Voznovo lignite deposit and Sakhalin Island. Int. J. Coal Geol. 2016, 167, 176–183. [Google Scholar] [CrossRef]
- Lu, Y.; Hautevelle, Y.; Michels, R. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy—Part 1: The Araucariaceae family. Biogeosciences 2013, 10, 1943–1962. [Google Scholar] [CrossRef]
- Delclòs, X.; Arillo, A.; Peñalver, E.; Barrón, E.; Soriano, C.; Del Valle, R.L.; Bernárdez, E.; Corral, C.; Ortuño, V.M. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rend. Pal. 2007, 6, 135–149. [Google Scholar] [CrossRef]
- Alonso, J.; Arillo, A.; Barrón, E.; Corral, J.C.; Grimalt, J.; López, J.F.; López, R.; Martínez-Delclòs, X.; Ortuño, V.; Trincão, P.R.; et al. A new fossil resin with biological inclusions in Lower Cretaceous deposits from Álava (Northern Spain, Basque-Cantabrian Basin). J. Paleontol. 2000, 74, 158–178. [Google Scholar] [CrossRef]
- Perrichot, V.; Neraudeau, D.; Tafforeau, P. Charentese amber. In Biodiversity of Fossils in Amber from the Major World Deposits; Penney, D., Ed.; Siri Scientific Press: Manchester, UK, 2010; pp. 192–207. [Google Scholar]
- Girard, V.; Breton, G.; Perrichot, V.; Bilotte, M.; Le Loeuff, J.; Nel, A.; Philippe, M.; Thevenard, F. The Cenomanian amber of Fourtou (Aude, Southern France): Taphonomy and palaeoecological implications. Ann. Paléontol. 2013, 99, 301–315. [Google Scholar] [CrossRef]
- Néraudeau, D.; Redois, F.; Ballèvre, M.; Duplessis, B.; Girard, V.; Gomez, B.; Daviero-Gomez, V.; Mellier, B.; Perrichot, V. L’ambre cénomanien d’Anjou: Stratigraphie et paléontologie des carrières du Brouillard et de Hucheloup (Ecouflant, Maine-et-Loire). Ann. Paléontol. 2013, 99, 361–374. [Google Scholar] [CrossRef]
- Grantham, P.J.; Douglas, A.G. The nature and origin of sesquiterpenoids in some Tertiary fossil resins. Geochim. Cosmochim. Acta 1980, 44, 1801–1810. [Google Scholar] [CrossRef]
- Havelcová, M.; Sýkorová, I.; Mach, K.; Dvořák, Z. Organic geochemistry of fossil resins from the Czech Republic. Procedia Earth Planet. Sci. 2014, 10, 303–312. [Google Scholar] [CrossRef]
- Havelcová, M.; Machovič, V.; Linhartová, M.; Lapčák, L.; Přichystal, A.; Dvořák, Z. Vibrational spectroscopy with chromatographic methods in molecular analyses of Moravian amber samples (Czech Republic). Microchem. J. 2016, 128, 153–160. [Google Scholar] [CrossRef]
- Fischer, T.C.; Sonibare, O.O.; Aschauer, B.; Kleine-Benne, E.; Braun, P.; Meller, B. Amber from the Alpine Triassic of Lunz (Carnian, Austria): A classic palaeobotanical site. Palaeontology 2017, 60, 743–759. [Google Scholar] [CrossRef]
- Kedves, M.; Alvarez Ramis, C. Types of sporomorphs from the Ajkaite containing brown coal samples from Ajka (Hungary). Plant Cell Biol. Dev. 2002, 14, 7–10. [Google Scholar]
- Szabó, M.; Kundrata, R.; Hoffmannova, J.; Németh, T.; Bodor, E.; Szenti, I.; Prosvirov, A.S.; Kukovecz, A.; Ősi, A. The first mainland European Mesozoic click-beetle (Coleoptera: Elateridae) revealed by X-ray micro-computed tomography scanning of an Upper Cretaceous amber from Hungary. Sci. Rep. 2022, 12, 24. [Google Scholar] [CrossRef]
- Szabó, M.; Szabó, P.; Kóbor, P.; Ősi, A. Alienopterix santonicus sp. n., a metallic cockroach from the Late Cretaceous ajkaite amber (Bakony Mts, western Hungary) documents Alienopteridae within the Mesozoic Laurasia. Biologia 2023, 78, 1701–1712. [Google Scholar] [CrossRef]
- Kosmowska-Ceranowicz, B.; Krumbiegel, G.R. Bursztyn bitterfeldzki (saksoński) i inne żywice kopalne z okolic Halle (NRD). Przegl. Geol. 1990, 38, 394. [Google Scholar]
- Pastorova, I.; Weeding, T.; Boon, J.J. 3-Phenylpropanylcinnamate, a copolymer unit in Siegburgite fossil resin: A proposed marker for the Hammamelidaceae. Org. Geochem. 1998, 29, 1381–1393. [Google Scholar] [CrossRef]
- Anderson, K.B.; Botto, R.E. The nature and fate of natural resins in the geosphere—III. Re-evaluation of the structure and composition of Highgate Copalite and Glessite. Org. Geochem. 1993, 20, 1027–1038. [Google Scholar] [CrossRef]
- Wolfe, A.P.; McKellar, R.C.; Tappert, R.; Sodhi, R.N.; Muehlenbachs, K. Bitterfeld amber is not Baltic amber: Three geochemical tests and further constraints on the botanical affinities of succinite. Rev. Palaeobot. Palynol. 2016, 225, 21–32. [Google Scholar] [CrossRef]
- Drzewicz, P.; Naglik, B.; Natkaniec-Nowak, L.; Dumańska-Słowik, M.; Stach, P.; Kwaśny, M.; Matusik, J.; Milovský, R.; Skonieczny, J.; Kubica-Bąk, D. Chemical and spectroscopic signatures of resins from Sumatra (Sarolangun mine, Jambi Province) and Germany (Bitterfeld, Saxony-Anhalt). Sci. Rep. 2020, 10, 18283. [Google Scholar] [CrossRef]
- Anderson, K.B. The nature and fate of natural resins in the geosphere. XII. Investigation of C-ring aromatic diterpenoids in Raritan amber by pyrolysis-GC-matrix isolation FTIR-MS. Geochem. Trans. 2006, 7, 2–10. [Google Scholar] [CrossRef]
- Knight, T.K.; Bingham, P.S.; Grimaldi, D.A.; Anderson, K.; Lewis, R.D.; Savrda, C.E. A new Upper Cretaceous (Santonian) amber deposit from the Eutaw Formation of eastern Alabama, USA. Cretac. Res. 2010, 31, 85–93. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Cox, R.E.; Oros, D.R.; Otto, A. Terpenoid Compositions of Resins from Callitris Species (Cupressaceae). Molecules 2018, 23, 3384. [Google Scholar] [CrossRef]







| No | Class and Compound Name | MF | MW | Ref. |
|---|---|---|---|---|
| Alkyl benzenes, alkyl naphthalenes, and alkyl tetralins | ||||
| 1 | 1,5-Dimethylnaphthalene | C12H12 | 156.2 | I |
| 2 | 1,2,3,4-Tetrahydro-1,5,8-trimethylnaphthalene | C13H18 | 174.3 | I |
| 3 | 1-Isopropyl-5-methyl-1,2,3,4-tetrahydronaphthalene | C14H20 | 188.3 | I |
| 4 | 5,6,7,8-Tetramethyl-1,2,3,4-tetrahydronaphthalene | C14H20 | 188.3 | I |
| 5 | 2,3,6-Trimethylnaphthalene | C13H14 | 170.3 | I |
| 6 | Amberene | C17H26 | 230.4 | [45,46] |
| Abietanes and podocarpanes | ||||
| 7 | Podocarpa-8,11,13-triene | C17H24 | 228.4 | I |
| 8 | 16,17,19-Trisnorabieta-8,11,13-triene | C17H24 | 228.4 | I |
| 9 | 16,17,18-Trisnorabieta-8,11,13-triene | C17H24 | 228.4 | [7,47] |
| 10 | 7-Oxo-16,17,19-trisnorabieta-8,11,13-triene | C17H22O | 242.3 | [7,47] |
| 11 | Simonellite | C19H24 | 252.4 | I |
| 12 | 18-norabieta-8,11,13-triene | C19H28 | 256.4 | I |
| 13 | Dehydroabietane | C20H30 | 270.5 | I |
| 14 | 16,17-bisnordehydroabietic acid (a) | C18H24O2 | 272.4 | [47] |
| Kauranes | ||||
| 15 | ent-18-Norkaurane | C20H34 | 274.5 | [46] |
| Phenolic abietans | ||||
| 16 | Ferruginol | C20H30O | 286.5 | I |
| Carboxylic acids | ||||
| 17 | Palmitic acid (a) | C16H32O2 | 256.4 | I |
| 18 | Oleic acid (a) | C18H34O2 | 282.5 | I |
| Alcohols and phenols | ||||
| 19 | Methyltetrahydroionol | C14H28O | 212.4 | I |
| 20 | 4-Butyl-indan-5-ol | C13H18O | 190.3 | I |
| 21 | 2-Dodecanol | C12H26O | 186.3 | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Santos, T.L.d.; Mendes, M.M.; Dinis, P.A.; Callapez, P.M.; Cunha, P.P.e.; André, I.T.; Albuquerque, M.G.; Siqueira, C.Y.d.S. Amber from the Lower Cretaceous of Lugar d’Além Formation, Lusitanian Basin, Western Portugal: Chemical Composition and Botanical Source. Geosciences 2026, 16, 24. https://doi.org/10.3390/geosciences16010024
Santos TLd, Mendes MM, Dinis PA, Callapez PM, Cunha PPe, André IT, Albuquerque MG, Siqueira CYdS. Amber from the Lower Cretaceous of Lugar d’Além Formation, Lusitanian Basin, Western Portugal: Chemical Composition and Botanical Source. Geosciences. 2026; 16(1):24. https://doi.org/10.3390/geosciences16010024
Chicago/Turabian StyleSantos, Thairine Lima dos, Mário Miguel Mendes, Pedro Alexandre Dinis, Pedro Miguel Callapez, Pedro Proença e Cunha, Ilunga Tshibango André, Magaly Girão Albuquerque, and Celeste Yara dos Santos Siqueira. 2026. "Amber from the Lower Cretaceous of Lugar d’Além Formation, Lusitanian Basin, Western Portugal: Chemical Composition and Botanical Source" Geosciences 16, no. 1: 24. https://doi.org/10.3390/geosciences16010024
APA StyleSantos, T. L. d., Mendes, M. M., Dinis, P. A., Callapez, P. M., Cunha, P. P. e., André, I. T., Albuquerque, M. G., & Siqueira, C. Y. d. S. (2026). Amber from the Lower Cretaceous of Lugar d’Além Formation, Lusitanian Basin, Western Portugal: Chemical Composition and Botanical Source. Geosciences, 16(1), 24. https://doi.org/10.3390/geosciences16010024

