Changes in Climatic Parameters and Moistening Conditions on the South of the East European Plain
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Assessment of Long-Term Changes in Climatic Characteristics
2.3. Spatiotemporal Analysis of Climatic Parameters
3. Results
3.1. Assessment of Climatic Parameters at Different Periods
3.2. Time Series Analysis of Climatic Parameters
3.3. Spatiotemporal Analysis of Climatic Parameters in the Late 20th-Early 21st Century
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Henner, D.N.; Kirchengast, G. Forest Fire Risk under Climate Change in Austria and Comparable European Regions. Trees For. People 2025, 20, 100889. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.; Peng, W.; Lan, Y.; Luo, S.; Shao, J.; Chen, D.; Wang, G. Assessing Climate Impact on Forest Cover in Areas Undergoing Substantial Land Cover Change Using Landsat Imagery. Sci. Total Environ. 2019, 659, 732–745. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Meireles, C.I.R.; Gomes, C.J.P.; Ribeiro, N.M.C.A. The Impact of Climate Change on Forest Development: A Sustainable Approach to Management Models Applied to Mediterranean-Type Climate Regions. Plants 2022, 11, 69. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate Change Effects on Biodiversity, Ecosystems, Ecosystem Services, and Natural Resource Management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef]
- Schipper, C.A.; Hielkema, T.W.; Ziemba, A. Impact of Climate Change on Biodiversity and Implications for Nature-Based Solutions. Climate 2024, 12, 179. [Google Scholar] [CrossRef]
- Zhuravin, S.A.; Markov, M.L.; Gurevich, E.V. Long-Term Changes in Moisture Circulation Processes by Data of Water Balance Stations in the Central Don Basin. Water Resour. 2020, 47, 1031–1042. [Google Scholar] [CrossRef]
- Bunel, R.; Lecoq, N.; Copard, Y.; Massei, N. Effects of Climate Variability Changes on Runoff and Erosion in the Western European Loess Belt Region (NW, France). Sci. Total Environ. 2023, 903, 166536. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Chang, J.; Guo, A.; Wang, L.; Li, Z.; Zhai, D.; Gao, F. Spatial and Temporal Runoff Variability in Response to Climate Change in Alpine Mountains. J. Hydrol. 2025, 654, 132779. [Google Scholar] [CrossRef]
- Shanin, V.N.; Mikhailov, A.V.; Bykhovets, S.S.; Komarov, A.S. Global Climate Change and Carbon Balance in Forest Ecosystems of Boreal Zones: Simulation Modeling as a Forecast Tool. Biol. Bull. 2010, 37, 619–629. [Google Scholar] [CrossRef]
- Bieroza, M.Z.; Hallberg, L.; Livsey, J.; Wynants, M. Climate Change Accelerates Water and Biogeochemical Cycles in Temperate Agricultural Catchments. Sci. Total Environ. 2024, 951, 175365. [Google Scholar] [CrossRef]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Safronov, A.N. Effects of Climatic Warming and Wildfires on Recent Vegetation Changes in the Lake Baikal Basin. Climate 2020, 8, 57. [Google Scholar] [CrossRef]
- Qiu, R.; Zheng, H. Assessing the Adaptability of Agronomic Landscape to Climate Change at Watershed Scale. Agric. Syst. 2025, 224, 104225. [Google Scholar] [CrossRef]
- Novikova, N.M.; Volkova, N.A.; Ulanova, S.S.; Shapovalova, I.B.; Vyshivkin, A.A. Ecosystem Responses to Hydrological Regime Changes in the Steppe Zone. Arid Ecosyst. 2011, 1, 142–148. [Google Scholar] [CrossRef]
- Liu, F.; Liu, H.; Xu, C.; Zhu, X.; He, W.; Qi, Y. Remotely Sensed Birch Forest Resilience against Climate Change in the Northern China Forest-Steppe Ecotone. Ecol. Indic. 2021, 125, 107526. [Google Scholar] [CrossRef]
- Gaines, W.L.; Hessburg, P.F.; Aplet, G.H.; Henson, P.; Prichard, S.J.; Churchill, D.J.; Jones, G.M.; Isaak, D.J.; Vynne, C. Climate Change and Forest Management on Federal Lands in the Pacific Northwest, USA: Managing for Dynamic Landscapes. For. Ecol. Manag. 2022, 504, 119794. [Google Scholar] [CrossRef]
- Casale, F.; Bocchiola, D. Climate Change Effects upon Pasture in the Alps: The Case of Valtellina Valley, Italy. Climate 2022, 10, 173. [Google Scholar] [CrossRef]
- Crespi, A.; Renner, K.; Zebisch, M.; Schauser, I.; Leps, N.; Walter, A. Analysing Spatial Patterns of Climate Change: Climate Clusters, Hotspots and Analogues to Support Climate Risk Assessment and Communication in Germany. Clim. Serv. 2023, 30, 100373. [Google Scholar] [CrossRef]
- Lemaitre-Basset, T.; Thirel, G.; Oudin, L.; Dorchies, D. Water Use Scenarios versus Climate Change: Investigating Future Water Management of the French Part of the Moselle. J. Hydrol. Reg. Stud. 2024, 54, 101855. [Google Scholar] [CrossRef]
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Ge, J.; Li, Y.; Yu, Z.; Niu, H. sc_PDSI Is More Sensitive to Precipitation than to Reference Evapotranspiration in China during the Time Period 1951–2015. Ecol. Indic. 2019, 96, 448–457. [Google Scholar] [CrossRef]
- Pandžić, K.; Likso, T.; Pejić, I.; Šarčević, H.; Pecina, M.; Šestak, I.; Tomšić, D.; Strelec Mahović, N. Application of the Self-Calibrated Palmer Drought Severity Index and Standardized Precipitation Index for Estimation of Drought Impact on Maize Grain Yield in Pannonian Part of Croatia. Nat. Hazard. 2022, 113, 1237–1262. [Google Scholar] [CrossRef]
- Voropai, N.N.; Ryazanova, A.A. Droughts in the Tomsk Oblast. Meteorol. Gidrol. 2020, 12, 39–51. (In Russian) [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Nwayor, I.J.; Robeson, S.M. Exploring the Relationship between SPI and SPEI in a Warming World. Theor. Appl. Climatol. 2024, 155, 2559–2569. [Google Scholar] [CrossRef]
- Sun, P.; Ge, C.; Yao, R.; Bian, Y.; Yang, H.; Zhang, Q.; Xu, C.-Y.; Singh, V.P. Development of a Nonstationary Standardized Precipitation Evapotranspiration Index (NSPEI) and Its Application across China. Atmos. Res. 2024, 300, 107256. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, D.; Feng, A.; Wang, G.; Hu, L.; Xu, C.-Y.; Singh, V.P. Improved Non-Stationary SPEI and Its Application in Drought Monitoring in China. J. Hydrol. 2025, 652, 132706. [Google Scholar] [CrossRef]
- Reznikov, A.I.; Isachenko, G.A. Changes in the Climatic Characteristics of the Western Taiga of European Russiain the Late XX–Early XXI Centuries. Izv. Rus. Geogr. Obs. 2021, 153, 3–18. (In Russian) [Google Scholar] [CrossRef]
- Dmitrieva, V.A.; Buchik, S.V. Thermal Regime of River Water as a Response to Climatic Processes in the Upper Don Drainage Basin. Arid Ecosyst. 2021, 11, 109–115. [Google Scholar] [CrossRef]
- Titkova, T.B.; Zolotokrylin, A.N. The Climate of Zonal Plain Landscapes of Russia during the Modern Global Warming in Summer. Izv. Ross. Akad. Nauk. Seriya Geogr. 2023, 87, 391–402. (In Russian) [Google Scholar] [CrossRef]
- Motta, C.; Naumann, G.; Gomez, D.; Formetta, G.; Feyen, L. Assessing the Economic Impact of Droughts in Europe in a Changing Climate: A Multi-Sectoral Analysis at Regional Scale. J. Hydrol. Reg. Stud. 2025, 59, 102296. [Google Scholar] [CrossRef]
- Sun, D.; Wang, Y.; Wu, L.; Wang, X.; Cui, Y.; Shu, H.; Ma, Y. Runoff Evolution Characteristics and Its Response to Climate Change in the Middle and Lower Reaches of Shule River Basin, Northwest China. J. Hydrol. Reg. Stud. 2025, 59, 102436. [Google Scholar] [CrossRef]
- Bibi, F.; Rahman, A. An Overview of Climate Change Impacts on Agriculture and Their Mitigation Strategies. Agriculture 2023, 13, 1508. [Google Scholar] [CrossRef]
- Khan, N.; Ma, J.; Zhang, H.; Zhang, S. Climate Change Impact on Sustainable Agricultural Growth: Insights from Rural Areas. Atmosphere 2023, 14, 1194. [Google Scholar] [CrossRef]
- Belolyubtsev, A.I.; Dronova, E.A.; Ilinich, V.V.; Avdeev, S.M.; Asaulyak, I.F. Agricultural Risks of Winter Season in the Modern Changing Climate. Russ. Meteorol. Hydrol. 2023, 48, 818–822. [Google Scholar] [CrossRef]
- Kosolapov, V.M.; Trofimov, I.A.; Trofimova, L.S.; Yakovleva, E.P. Agrolandscapes of Central Chernozem Region. Zoning and Management; Publishing House «Science»: Moscow, Russia, 2015. [Google Scholar]
- Buryak, Z.A.; Grigoreva, O.I.; Gusarov, A.V. A Predictive Model for Cropland Transformation at the Regional Level: A Case Study of the Belgorod Oblast, European Russia. Resources 2023, 12, 127. [Google Scholar] [CrossRef]
- Lisetskii, F.N.; Degtyar, A.V.; Buryak, Z.A.; Pavlyuk, Y.V.; Naroznyaya, A.G.; Zemlyakova, A.V.; Marinina, O.A. Rivers and Water Objects of Belogor’e; Konstanta: Belgorod, Russia, 2015. (In Russian) [Google Scholar]
- Summary for Policymakers. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC), Ed.; Cambridge University Press: Cambridge, UK, 2023; pp. 3–32. ISBN 978-1-00-915788-9. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Nechetova, Y.V.; Narozhnyaya, A.G. Study of Gullies and Ravines Network within Belgorod Region Using GIS Technology. Land Manag. Monit. Cadastre 2010, 11, 96–100. (In Russian) [Google Scholar]
- Pavlyuk, Y.V.; Sablina, O.M.; Smirnova, S.V.; Gladkaya, K.A. Regularities Analysis of the Linear Erosion Development in River Basins in the South of the Central Russian Hill with the Use of GIS. Siberian J. Life Sci. Agric. 2022, 14, 192–212. (In Russian) [Google Scholar] [CrossRef]
- McKnight, T.L.; Hess, D. Climate Zones and Types. In Physical Geography: A Landscape Appreciation; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Lisetskii, F.N.; Buryak, Z.A. Runoff of Water and Its Quality under the Combined Impact of Agricultural Activities and Urban Development in a Small River Basin. Water 2023, 15, 2443. [Google Scholar] [CrossRef]
- Buryak, Z.; Lisetskii, F.; Gusarov, A.; Narozhnyaya, A.; Kitov, M. Basin-Scale Approach to Integration of Agro- and Hydroecological Monitoring for Sustainable Environmental Management: A Case Study of Belgorod Oblast, European Russia. Sustainability 2022, 14, 927. [Google Scholar] [CrossRef]
- Lukin, S.V. Dynamics of the Agrochemical Fertility Parameters of Arable Soils in the Southwestern Region of Central Chernozemic Zone of Russia. Eurasian Soil Sci. 2017, 50, 1323–1331. [Google Scholar] [CrossRef]
- Khitrov, N.; Smirnova, M.; Lozbenev, N.; Levchenko, E.; Gribov, V.; Kozlov, D.; Rukhovich, D.; Kalinina, N.; Koroleva, P. Soil Cover Patterns in the Forest-Steppe and Steppe Zones of the East European Plain. Soil Sci. Annu. 2019, 70, 198–210. [Google Scholar] [CrossRef]
- Trofimov, I.A.; Trofimova, L.S.; Yakovleva, E.P. Preservation and Optimization of Agrolandscapes of the Central Chernozem Zone. Izv. RAN Geograph. 2017, 1, 103–109. (In Russian) [Google Scholar] [CrossRef]
- Degtyar, A.V.; Grigoreva, O.I. Development of Land Forests of the Belgorod Region for the 400-Year Period. Nauch. Ved. Belgorod. Gos. Univ. Ser. Estestv. Nauki 2018, 42, 574–586. (In Russian). Available online: https://cyberleninka.ru/article/n/izmenenie-lesistosti-belgorodskoy-oblasti-za-400-letniy-period (accessed on 5 October 2025).
- Bugaev, V.A.; Musievskii, A.L.; Tsaralunga, V.V. Oak Forests in the European Part of Russia. Izv. Vysshikh Uchebnykh Zavedenii. Lesnoy Zhurnal 2004, 2, 7–13. (In Russian) [Google Scholar]
- Kozharinov, A.V.; Borisov, P.V. Distribution of Oak Forests in Eastern Europe over the Last 13000 Years. Contemp. Probl. Ecol. 2013, 6, 755–760. [Google Scholar] [CrossRef]
- Mikhno, V.B. Landscape Features of Oak Forests Insularity in the Srednerusskaya Partially-Wooded Steppe. Vestn. Voronezhskogo Gos. Universiteta. Seriya Geografiya. Geoekologiya 2012, 1, 14–20. (In Russian) [Google Scholar]
- Ukrainskij, P.A.; Terekhin, E.A.; Pavlyuk, Y.V. Fragmentation of Forests in the Upper Part of the Vorskla River Basin since the End of the 18th Century. Vestn. Mosk. Univ. Seriya 5 Geogr. 2017, 1, 82–91. (In Russian) [Google Scholar]
- Terekhin, E.A. Spatiotemporal Spectral-Response Assessment of the Forest Cover of Small Dry Valleys in the Central Russian Forest–Steppe. Izv. Atmos. Ocean. Phys. 2021, 57, 1566–1575. (In Russian) [Google Scholar] [CrossRef]
- Chendev, Y.G.; Lupo, A.R.; Terekhin, E.A.; Smirnova, M.A.; Gennadiev, A.N.; Narozhnyaya, A.G.; Lebedeva, M.G.; Belevantsev, V.G. Spatiotemporal Dynamics of Forest Vegetation and Their Impacts on Soil Properties in the Forest-Steppe Zone of Central Russian Upland: A Remote Sensing, GIS Analysis, and Field Studies Approach. Forests 2023, 14, 2079. [Google Scholar] [CrossRef]
- Terekhin, E.A. Possibilities for Assessing the Forest Cover of Small Dry Valleys in the Central Russian Forest-Steppe Using Remote Sensing Data. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosmosa 2024, 21, 107–120. (In Russian) [Google Scholar] [CrossRef]
- Terekhin, E.A. Reforestation on Abandoned Agricultural Lands in the Central Russian Forest–Steppe. Izv. Ross. Akad. Nauk. Seriya Geogr. 2022, 86, 594–604. (In Russian) [Google Scholar] [CrossRef]
- Terekhin, E.A. Comparative Analysis of Reforestation Indicators on Abandoned Agricultural Lands in the Central Russian Forest Steppe Based on Remote Sensing Data. Izv. Atmos. Ocean. Phys. 2024, 60, 1113–1121. [Google Scholar] [CrossRef]
- All-Russian Research Institute of Hydrometeorological Information. Available online: http://meteo.ru/data/ (accessed on 1 October 2025).






| Climatic Parameters | 1980–1985 | 1995–2000 | 2015–2020 |
|---|---|---|---|
| Annual average temperature, °C | 6.4 | 7.0 | 8.5 |
| Maximum temperature of the warmest month, °C | 25.2 | 26.9 | 27.4 |
| Minimum temperature of the coldest month, °C | −20.9 | −22.1 | −17.6 |
| Average temperature of the warmest quarter, °C | 16.9 | 17.1 | 18.8 |
| Average temperature of the coldest quarter, °C | −5.9 | −3.9 | −2.0 |
| Accumulated temperature over the period with values above 10 °C | 2689 | 2799 | 3108 |
| Annual precipitation, mm | 608 | 607 | 578 |
| Precipitation of the warmest quarter, mm | 182 | 174 | 146 |
| Precipitation of the coldest quarter, mm | 119 | 128 | 131 |
| Precipitation of the period with temperatures above 10 °C, mm | 300 | 298 | 290 |
| Hydrothermal coefficient | 1.14 | 1.08 | 0.93 |
| Drought index | 0.85 | 0.86 | 1.00 |
| Climatic Parameters | Tau | Z | Significance Level |
|---|---|---|---|
| Annual average temperature | 0.50 | 4.55 | 0.00 |
| Maximum temperature of the warmest month | 0.33 | 3.06 | 0.00 |
| Minimum temperature of the coldest month | 0.11 | 1.02 | 0.31 |
| Average temperature of the warmest quarter | 0.52 | 4.77 | 0.00 |
| Average temperature of the coldest quarter | 0.20 | 1.88 | 0.06 |
| Accumulated temperature over the period with values above 10 °C | 0.52 | 4.75 | 0.00 |
| Annual precipitation | −0.12 | −1.11 | 0.27 |
| Precipitation of the warmest quarter | −0.17 | −1.58 | 0.11 |
| Precipitation of the coldest quarter | 0.10 | 0.94 | 0.35 |
| Precipitation of the period with temperatures above 10 °C | −0.12 | −1.07 | 0.29 |
| Hydrothermal coefficient | −0.26 | −2.39 | 0.02 |
| Drought index | 0.33 | 3.07 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Terekhin, E.A.; Ukrainskiy, P.A. Changes in Climatic Parameters and Moistening Conditions on the South of the East European Plain. Geosciences 2026, 16, 23. https://doi.org/10.3390/geosciences16010023
Terekhin EA, Ukrainskiy PA. Changes in Climatic Parameters and Moistening Conditions on the South of the East European Plain. Geosciences. 2026; 16(1):23. https://doi.org/10.3390/geosciences16010023
Chicago/Turabian StyleTerekhin, Edgar A., and Pavel A. Ukrainskiy. 2026. "Changes in Climatic Parameters and Moistening Conditions on the South of the East European Plain" Geosciences 16, no. 1: 23. https://doi.org/10.3390/geosciences16010023
APA StyleTerekhin, E. A., & Ukrainskiy, P. A. (2026). Changes in Climatic Parameters and Moistening Conditions on the South of the East European Plain. Geosciences, 16(1), 23. https://doi.org/10.3390/geosciences16010023

