Surface and Subsurface Behavior of a Natural Gas Storage Site over Time: The Case of the Cornegliano Gas Field (Po Plain, Northern Italy)
Abstract
1. Introduction and Aims
- Investigate the long-term effects of methane injection and withdrawal cycles on storage performance within a depleted siliciclastic reservoir in a foredeep basin.
- Determine whether continuous underground gas storage (UGS) operations influence surface deformation patterns around the reservoir site over extended operational periods.
- Assess whether prolonged storage operations contribute to induced seismicity and distinguish between operationally induced seismic events and natural tectonic activity.
- Explore how an integrated monitoring approach, combining traditional techniques (such as seismic and SAR) and innovative methods (such as Pulsed Neutron Logging), can enhance understanding of the reservoir’s geomechanical stability and environmental compatibility.
- Evaluate if insights gained from integrated monitoring and analyses can effectively refine predictive models and operational strategies, thereby reducing risks and uncertainties while ensuring operational safety and environmental compliance.
2. Background
2.1. Geological Settings-The Po Plain
2.2. Reservoir Structure
2.3. Storage Activities
3. Methods
- Operational gas injection and withdrawal records analyzed with a hysteresis plot.
- Surface deformation data acquired using the Sentinel-1 satellite (SAR data analysis).
- Seismic monitoring data from surface and downhole systems.
- Subsurface measurements from Pulsed Neutron Logs (PNL).
3.1. Hysteresis Plot
- P is the absolute pressure (Pa).
- V is the gas volume (m3).
- n is the number of moles of gas (mol).
- R is the universal gas constant (J/mol·K).
- T is the absolute temperature (K).
3.2. SAR (Synthetic Aperture Radar) Analysis
3.3. Surface Seismic Monitoring
3.4. Downhole Seismic Monitoring
3.5. Pulsed Neutron Log
4. Results
4.1. Operational Gas Storage Analysis
4.2. Monitoring Activities
4.2.1. Ground Deformation Analysis
4.2.2. Seismic Monitoring Results
4.2.3. Downhole Seismic Monitoring Results
4.2.4. Pulsed Neutron Log Results
5. Discussion
6. Conclusions
- Gas storage capacity has effectively doubled since the beginning of operations, primarily through efficient displacement of formation water, without structural alterations to the geological framework.
- Integrated monitoring approaches combining satellite-based surface deformation tracking and microseismic monitoring have confirmed reservoir stability throughout operational phases.
- Surface deformation and seismic events have consistently remained within safe and predictable natural background limits.
- Observed geomechanical stability across multiple operational cycles demonstrates the intrinsic robustness of the reservoir, with no significant compaction or induced seismicity recorded.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IGS | Ital Gas Storage S.p.A. |
UGS | Underground Gas Storage |
MDT | Modular Formation Dynamic Tester |
TVDSS | True Vertical Depth SubSea |
RT | Rock Type |
SAR | Synthetic aperture radar |
SBAS | Small Baseline Subset |
GNSS | Global Navigation Satellite System |
LOS | Line of Sight |
MiSE | Ministero Sviluppo Economico |
UNMIG | Ufficio Nazionale Minerario per gli Idrocarburi e le Georisorse |
OGS | Istituto Nazionale di Oceanografia e di Geofisica Sperimentale |
RMCL | Rete Monitoraggio Cornegliano Laudense |
ML | Local Magnitude |
PNL | Pulsed Neutron Log |
HI | Hydrogen Index |
FNXS | Fast Neutron Cross-Section |
GRAT | Gamma Ray Count Rate |
GSEP | Gas Saturation Evaluation Parameters |
CRE | Carbon/oxygen Ratio residual Evaluation |
ID | Internal Domain |
ED | Extended Domain |
EDA | External Detection Area |
References
- Teatini, P.; Castelletto, N.; Ferronato, M.; Gambolati, G.; Janna, C.; Cairo, E.; Marzorati, D.; Colombo, D.; Ferretti, A.; Bagliani, A.; et al. Geomechanical response to seasonal gas storage in depleted reservoirs: A case study in the Po River basin, Italy. J. Geophys. Res. Earth Surf. 2011, 116, F02002. [Google Scholar] [CrossRef]
- Benetatos, C.; Codegone, G.; Ferraro, C.; Mantegazzi, A.; Rocca, V.; Tango, G.; Trillo, F. Multidisciplinary analysis of ground movements: An underground gas storage case study. Remote Sens. 2020, 12, 3487. [Google Scholar] [CrossRef]
- Codegone, G.; Rocca, V.; Verga, F.; Coti, C. Subsidence Modeling Validation Through Back Analysis for an Italian Gas Storage Field. Geotech. Geol. Eng. 2016, 34, 1749–1763. [Google Scholar] [CrossRef]
- Eid, C.; Benetatos, C.; Rocca, V. Fluid Production Dataset for the Assessment of the Anthropogenic Subsidence in the Po Plain Area (Northern Italy). Resources 2022, 11, 53. [Google Scholar] [CrossRef]
- Codegone, G.; Benetatos, C.; Uttini, A.; Rucci, A.; Fiaschi, S.; Mantegazzi, A.; Coti, C. Defining the influence area of uplift and subsidence from underground gas storage in anticline structural traps: Insights from InSAR cross-correlation. Gondwana Res. 2025, 143, 185–198. [Google Scholar] [CrossRef]
- Dercourt, J.; Zonenshain, L.; Ricou, L.-E.; Kazmin, V.; Le Pichon, X.; Knipper, A.; Grandjacquet, C.; Sbortshikov, I.; Geyssant, J.; Lepvrier, C.; et al. Geological evolution of the tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics 1986, 123, 241–315. [Google Scholar] [CrossRef]
- Carminati, E.; Doglioni, C. Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth. Earth-Sci. Rev. 2012, 112, 67–96. [Google Scholar] [CrossRef]
- Toscani, G.; Bonini, L.; Ahmad, M.I.; di Bucci, D.; di Giulio, A.; Seno, S.; Galuppo, C. Opposite verging chains sharing the same foreland: Kinematics and interactions through analogue models (Central Po Plain, Italy). Tectonophysics 2014, 633, 268–282. [Google Scholar] [CrossRef]
- Amadori, C.; Toscani, G.; di Giulio, A.; Maesano, F.E.; D’Ambrogi, C.; Ghielmi, M.; Fantoni, R. From cylindrical to non-cylindrical foreland basin: Pliocene–Pleistocene evolution of the Po Plain–Northern Adriatic basin (Italy). Basin Res. 2019, 31, 991–1015. [Google Scholar] [CrossRef]
- Fantoni, R.; Bersezio, R.; Forcella, F. Alpine structure and deformation chronology at the Southern Alps-Po Plain border Lombardy. Boll.-Soc. Geol. Ital. 2004, 123, 463–476. [Google Scholar]
- Scardia, G.; Festa, A.; Monegato, G.; Pini, R.; Rogledi, S.; Tremolada, F.; Galadini, F. Evidence for late Alpine tectonics in the Lake Garda area (northern Italy) and seismogenic implications. Bull. Geol. Soc. Am. 2015, 127, 113–130. [Google Scholar] [CrossRef]
- Turrini, C.; Toscani, G.; Lacombe, O.; Roure, F. Influence of structural inheritance on foreland-foredeep system evolution: An example from the Po valley region (northern Italy). Mar. Pet. Geol. 2016, 77, 376–398. [Google Scholar] [CrossRef]
- Livani, M.; Scrocca, D.; Arecco, P.; Doglioni, C. Structural and Stratigraphic Control on Salient and Recess Development Along a Thrust Belt Front: The Northern Apennines (Po Plain, Italy). J. Geophys. Res. Solid Earth 2018, 123, 4360–4387. [Google Scholar] [CrossRef]
- Ghielmi, M.; Minervini, M.; Nini, C.; Rogledi, S.; Rossi, M.; Vignolo, A. Sedimentary and tectonic evolution in the eastern Po-Plain and northern Adriatic Sea area from Messinian to Middle Pleistocene (Italy). Rendiconti Lincei 2010, 21 (Suppl. S1), 131–166. [Google Scholar] [CrossRef]
- Amadori, C.; Ghielmi, M.; Mancin, N.; Toscani, G. The evolution of a coastal wedge in response to Plio-Pleistocene climate change: The Northern Adriatic case. Mar. Pet. Geol. 2020, 122, 104675. [Google Scholar] [CrossRef]
- Panara, Y.; Maesano, F.E.; Amadori, C.; Fedorik, J.; Toscani, G.; Basili, R. Probabilistic Assessment of Slip Rates and Their Variability Over Time of Offshore Buried Thrusts: A Case Study in the Northern Adriatic Sea. Front. Earth Sci. 2021, 9, 664288. [Google Scholar] [CrossRef]
- Fantoni, R.; Massari, F.; Minervini, M.; Rogledi, S.; Rossi, M. Tectonic and sequence stratigraphic framework of Messinian deposits along the buried southern Alps margin. Geol. Insubrica 2001, 6, 95–108. [Google Scholar]
- Fantoni, R.; Franciosi, R. Tectono-sedimentary setting of the Po Plain and Adriatic foreland. Rendiconti Lincei 2010, 21 (Suppl. S1), 197–209. [Google Scholar] [CrossRef]
- Tek, M.R.; Fegley, E.; Mantia, R.W. Prediction of Hysteresis Performance of Storage Reservoirs. In Proceedings of the SPE Gas Technology Symposium, Calgary, AB, Canada, 15–18 March 1998; Society of Petroleum Engineers: Richardson, TX, USA, 1998. [Google Scholar] [CrossRef]
- Egermann, P.; Schaaf, T.; Bréfort, B. A Modified Hysteresis Relative Permeability Including a Gas Remobilization Threshold for Better Production Forecasts of Gas Storages. Petrophysics 2010, 51, 297–304. Available online: https://onepetro.org/petrophysics/article/171184 (accessed on 1 March 2025).
- Priolo, E.; Zinno, I.; Guidarelli, M.; Romanelli, M.; Lanari, R.; Sandron, D.; Garbin, M.; Peruzza, L.; Romano, M.A.; Zuliani, D.; et al. The Birth of an Underground Gas Storage in a Depleted Gas Reservoir—Results From Integrated Seismic and Ground Deformation Monitoring. Earth Space Sci. 2024, 11, e2023EA003275. [Google Scholar] [CrossRef]
- Villaseñor, A.; Herrmann, R.B.; Gaite, B.; Ugalde, A. Fault reactivation by gas injection at an underground gas storage off the east coast of Spain. Solid Earth 2020, 11, 63–74. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, R.; Zhang, Y.; Gao, D.; Zhang, H.; Li, T.; Zhang, C. Application of surface–downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment. Nat. Gas Ind. B 2017, 4, 62–67. [Google Scholar] [CrossRef]
- Rose, D.; Zhou, T.; Beekman, S.; Quinlan, T.; Delgadillo, M.; Gonzalez, G.; Fricke, S.; Thornton, J.; Clinton, D.; Gicquel, F.; et al. An innovative slim pulsed neutron logging tool. In Proceedings of the SPWLA 56th Annual Logging Symposium, Long Beach, CA, USA, 18−22 July 2015. [Google Scholar]
- Rose, D.; Zhou, T.; Saldungaray, P. Solving for Reservoir Saturations Using Multiple Formation Property Measurements from a Single Pulsed Neutron Logging Tool. In Proceedings of the SPWLA 58th Annual Logging Symposium, Oklahoma City, OK, USA, 17–21 June 2017. [Google Scholar]
- Liu, J.; Liu, S.; Zhang, F.; Su, B.; Yang, H.; Xu, Y.; Miao, B.; Li, H. A method for evaluating gas saturation with pulsed neutron logging in cased holes. J. Nat. Gas Sci. Eng. 2018, 59, 354–362. [Google Scholar] [CrossRef]
- Zhou, T.; Rose, D.; Millot, P.; Grover, R.; Beckman, S.M.; Farid, M.; Amin Zamzuri, M.D.B.; Ralphie, B.; Zakwan, Z. A comprehensive neutron porosity from a pulsed neutron logging tool. In Proceedings of the SPWLA 59th Annual Logging Symposium, London, UK, 2−6 June 2018. [Google Scholar]
- Zhou, T.; Rose, D.; Quinlan, T.; Thornton, J.; Saldungaray, P.; Gerges, N.; Bin Mohamed Noordin, F.; Lukman, A. Fast Neutron Cross-Section Measurement Physics and Applications. In Proceedings of the SPWLA 57th Annual Logging Symposium, Reykjavik, Iceland, 25–29 June 2016; Available online: https://onepetro.org/SPWLAALS/proceedings/SPWLA16/SPWLA16/SPWLA-2016-EE/28651 (accessed on 4 February 2024).
- Bragato, P.L.; Tento, A. Local magnitude in northeastern Italy. Bull. Seismol. Soc. Am. 2005, 95, 579–591. [Google Scholar] [CrossRef]
- Vilarrasa, V.; de Simone, S.; Carrera, J.; Villaseñor, A. Unraveling the Causes of the Seismicity Induced by Underground Gas Storage at Castor, Spain. Geophys. Res. Lett. 2021, 48, e2020GL092038. [Google Scholar] [CrossRef]
Zones | Layers | Comments |
---|---|---|
B | B1—First “appearance” of sand below the cap rock | The B zone has overall poor reservoir quality with discontinuous sand bodies mostly developed in the Western part of the reservoir: area around wells A04 and C10. |
B2—Discontinuous sandstone bodies within the zone | ||
C1 | C1a—Upper sandstone layer within the zone | The C1 zone is characterized by medium to good reservoir quality with thickness of the sandstone layers up to 15 m. The sandstone bodies are continuous over the reservoir although not homogeneously distributed as those in the C2 zone. |
C1b—Lower sandstone layer within the zone | ||
C2a_1—Upper sandstone layer within the zone | The upper part of the C2 zone is characterized by good-quality sandstone with thicknesses of up to 20 m. In some wells, additional sandstone layers have been defined as C2a_1/L and C2a_2/L. | |
C2 | C2a_2—Second sandstone layer within the upper part of the zone | |
C2b—Lower sandstone layer within the zone | ||
C3 | C3a—Upper sandstone layer within the zone | The C3 zone is characterized by good-quality sandstone. As only a few wells entered this zone, the interpretation of the formation tops is uncertain and only realistic for the upper sandstone. |
Event Type | Recorded Magnitude | Recorded Depth | Events per Year (Range) |
---|---|---|---|
Type A | 0.8–1.2 (2024) | 4.4–4.6 km (2024) | 0–2 events |
Type B | −0.8 to 1.8 | 2.4–8.0 km | 5–38 events |
Type C | >1.6 | 4.1–44.7 km | 88–148 events |
A02 | A03 | A05 | A06 | B04 | B06 | |
---|---|---|---|---|---|---|
2017 | x | x | x | x | x | x |
2019 | x | x | x | x | ||
2021 | x | x | x | x | ||
2023 | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, S.; Di Giulio, A.; Gervasi, G.; Cavalleri, C.; Johnson, A.; Egermann, P.; Lange, A.; Toscani, G. Surface and Subsurface Behavior of a Natural Gas Storage Site over Time: The Case of the Cornegliano Gas Field (Po Plain, Northern Italy). Geosciences 2025, 15, 329. https://doi.org/10.3390/geosciences15090329
Lombardi S, Di Giulio A, Gervasi G, Cavalleri C, Johnson A, Egermann P, Lange A, Toscani G. Surface and Subsurface Behavior of a Natural Gas Storage Site over Time: The Case of the Cornegliano Gas Field (Po Plain, Northern Italy). Geosciences. 2025; 15(9):329. https://doi.org/10.3390/geosciences15090329
Chicago/Turabian StyleLombardi, Stefano, Andrea Di Giulio, Giuseppe Gervasi, Chiara Cavalleri, Andrew Johnson, Patrick Egermann, Arnaud Lange, and Giovanni Toscani. 2025. "Surface and Subsurface Behavior of a Natural Gas Storage Site over Time: The Case of the Cornegliano Gas Field (Po Plain, Northern Italy)" Geosciences 15, no. 9: 329. https://doi.org/10.3390/geosciences15090329
APA StyleLombardi, S., Di Giulio, A., Gervasi, G., Cavalleri, C., Johnson, A., Egermann, P., Lange, A., & Toscani, G. (2025). Surface and Subsurface Behavior of a Natural Gas Storage Site over Time: The Case of the Cornegliano Gas Field (Po Plain, Northern Italy). Geosciences, 15(9), 329. https://doi.org/10.3390/geosciences15090329