Detecting the Occurrence and Explaining the Origin of Lithologic Discontinuities in Low-Mountain Soils: An Example from the Carpathians, Southern Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Study
2.3. Geochemical Analysis
2.4. Geomorphometry
2.5. ERT Analysis
3. Results
3.1. Profile Morphology
3.2. Particle Size Distribution and Ratios
3.3. Coarse Fragments
3.4. Geochemical Composition
3.5. Geomorphometric Analysis
3.6. ERT Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Phillips, J.D.; Lorz, C. Origins and implications of soil layering. Earth Sci. Rev. 2008, 89, 144–155. [Google Scholar] [CrossRef]
- Arnold, R.W. Pedological significance of discontinuities: A sequel. Soil Surv. Horiz. 2005, 46, 48–58. [Google Scholar] [CrossRef]
- Schaetzl, R.; Anderson, S. Soils: Genesis and Geomorphology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences: Vienna, Austria, 2022. [Google Scholar]
- Kleber, A. Periglacial slope deposits and their pedogenic implications in Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1992, 99, 361–372. [Google Scholar] [CrossRef]
- Kleber, A.; Terhorst, B. (Eds.) Mid-Latitude Slope Deposits (Cover Beds); Elsevier Science: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Dietze, M.; Kleber, A. Characterisation and prediction of thickness and material properties of periglacial cover beds, Tharandter Wald, Germany. Geoderma 2010, 156, 346–356. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Kajdas, B.; Zaleski, T. Lithological indicators of discontinuities in mountain soils rich in calcium carbonate in the Polish Carpathians. J. Mt. Sci. 2020, 17, 1058–1083. [Google Scholar] [CrossRef]
- Kacprzak, A.; Derkowski, A. Cambisols developed from cover-beds in the Pieniny Mts (southern Poland) and their mineral composition. Catena 2007, 71, 292–297. [Google Scholar] [CrossRef]
- Kacprzak, A.; Szymański, W.; Wójcik-Tabol, P. The role of flysch sandstones in forming the properties of cover deposits and soils—Examples from the Carpathians. Z. Geomorphol. 2015, 59, 227–245. [Google Scholar] [CrossRef]
- Waroszewski, J.; Kalinski, K.; Malkiewicz, M.; Mazurek, R.; Kozłowski, G.; Kabała, C. Pleistocene-Holocene cover-beds on granite regolith as parent material for Podzols—An example from the Sudeten Mountains. Catena 2013, 104, 161–173. [Google Scholar] [CrossRef]
- Waroszewski, J.; Malkiewicz, M.; Mazurek, R.; Labaz, B.; Jezierski, P.; Kabała, C. Lithological discontinuities in Podzols developed from sandstone cover beds in the Stolowe Mountains (Poland). Catena 2015, 126, 11–19. [Google Scholar] [CrossRef]
- Martignier, L.; Nussbaumer, M.; Adatte, T.; Gobat, J.-M.; Verrecchia, E.P. Assessment of a locally-sourced loess system in Europe: The Swiss Jura Mountains. Aeolian Res. 2015, 18, 11–21. [Google Scholar] [CrossRef]
- Waroszewski, J.; Sprafke, T.; Kabala, C.; Musztyfaga, E.; Labaz, B.; Wozniczka, P. Aeolian silt contribution to soils on mountain slopes (Mt. Ślęża, southwest Poland). Quat. Res. 2018, 89, 702–717. [Google Scholar] [CrossRef]
- Waroszewski, J.; Sprafke, T.; Kabala, C.; Musztyfaga, E.; Kot, A.; Tsukamoto, S.; Frechen, M. Chronostratigraphy of silt-dominated Pleistocene periglacial slope deposits on Mt. Ślęża (SW, Poland): Palaeoenvironmental and pedogenic significance. Catena 2020, 190, 104549. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, G.L.; Karius, V.; Sauer, D. Loess in Pleistocene periglacial slope deposits and Holocene colluvium of European low mountain ranges: Mixing processes and spatial variations. Catena 2021, 207, 105666. [Google Scholar] [CrossRef]
- D’Amico, M.E.; Casati, E.; El Khair, D.A.; Cavallo, A.; Barcella, M.; Previtali, F. Aeolian inputs and dolostone dissolution involved in soil formation in Alpine karst landscapes (Corna Bianca, Italian Alps). Catena 2023, 230, 107254. [Google Scholar] [CrossRef]
- Styllas, M.; Pennos, C.; Persoiu, A.; Godelitsas, A.; Papadopoulou, L.; Aidona, E.; Kantiranis, N.; Ducea, M.N.; Ghilardi, M.; Demory, F. Aeolian dust accretion outpaces erosion in the formation of Mediterranean alpine soils. New evidence from the periglacial zone of Mount Olympus, Greece. Earth Surf. Process. Landf. 2023, 48, 3003–3021. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, J.; Yang, F.; Song, X.; Ye, M.; Gu, J.; Zhang, G. Identification of lithological discontinuities and preliminary exploration of material sources in typical mountain soils of the southern margin of the Qinghai-Tibet Plateau. Catena 2025, 251, 108819. [Google Scholar] [CrossRef]
- Van Dam, R.L. Landform Characterization Using Geophysics—Recent Advances, Applications, and Emerging Tools. Geomorphology 2010, 137, 57–73. [Google Scholar] [CrossRef]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent Developments in the Direct-Current Geoelectrical Imaging Method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Chauris, H.; Adler, A.; Lionheart, W. 100 Years of Electrical Imaging; Sciences de la terre et de l’environnement; Presse des Mines: Paris, France, 2012; p. 192. ISBN 978-2-911256-87-5. [Google Scholar]
- Carpentier, S.; Konz, M.; Fischer, R.; Anagnostopoulos, G.; Meusburger, K.; Schoeck, K. Geophysical Imaging of Shallow Subsurface Topography and Its Implication for Shallow Landslide Susceptibility in the Urseren Valley, Switzerland. J. Appl. Geophys. 2012, 83, 46–56. [Google Scholar] [CrossRef]
- Perrone, A.; Lapenna, V.; Piscitelli, S. Electrical Resistivity Tomography Technique for Landslide Investigation: A Review. Earth-Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Marescot, L.; Monnet, R.; Chapellier, D. Resistivity and Induced Polarization Surveys for Slope Instability Studies in the Swiss Alps. Eng. Geol. 2008, 98, 18–28. [Google Scholar] [CrossRef]
- Pánek, T.; Hradecký, J.; Silhán, K. Application of electrical resistivity tomography (ERT) in the study of various types of slope deformations in anisotropic bedrock: Case studies from the Flysch Carpathians. Studia Geomorphol. Carpatho-Balc. 2008, 42, 57–74. [Google Scholar]
- Kasprzak, M. High-Resolution Electrical Resistivity Tomography Applied to Patterned Ground, Wedel Jarlsberg Land, South-West Spitsbergen. Polar Res. 2015, 34, 25678. [Google Scholar] [CrossRef]
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical Resistivity Survey in Soil Science: A Review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef]
- Pawlik, Ł.; Kasprzak, M. Regolith Properties under Trees and the Biomechanical Effects Caused by Tree Root Systems as Recognized by Electrical Resistivity Tomography (ERT). Geomorphology 2018, 300, 1–12. [Google Scholar] [CrossRef]
- Zuo, F.-L.; Li, X.-Y.; Yang, X.-F.; Ma, Y.-J.; Shi, F.-Z.; Liao, Q.-W.; Li, D.-S.; Wang, Y.; Wang, R.-D. Linking Root Traits and Soil Moisture Redistribution under Achnatherum Splendens Using Electrical Resistivity Tomography and Dye Experiments. Geoderma 2021, 386, 114908. [Google Scholar] [CrossRef]
- Waroszewski, J.; Uzarowicz, Ł.; Kasprzak, M.; Egli, M.; Loba, A.; Błachowski, A. Formation of Placic Horizons in Soils of a Temperate Climate—The Interplay of Lithology and Pedogenesis (Stołowe Mts, SW Poland). Geoderma 2024, 452, 117118. [Google Scholar] [CrossRef]
- Ryłko, W.; Paul, Z. Detailed Geological Map of Poland, Scale 1:50,000, Sheet Kalwaria Zebrzydowska (995); Polish Geological Intitute—National Research Institute: Warsaw, Poland, 2014. [Google Scholar]
- Bąk, K.; Bąk, M.; Paul, Z. Barnasiówka Radiolarian Shale Formation—A new lithostratigraphic unit in the Upper Cenomanian–lowermost Turonian of the Polish Outer Carpathians (Silesian Series). Ann. Soc. Geol. Polon. 2001, 71, 75–103. [Google Scholar]
- Golonka, J.; Krobicki, M.; Waśkowska-Oliwa, A.; Słomka, T.; Skupień, P.; Vašíček, Z.; Cieszkowski, M.; Ślączka, A. Litostratygrafia osadów górnej jury i dolnej kredy zachodniej części Karpat zewnętrznych: (propozycja do dyskusji). In Utwory Przełomu Jury I Kredy W Zachodnich Karpatach Fliszowych Polsko-Czeskiego Pogranicza; Krobicki, M., Ed.; Kwart. AGH, Geologia 2008, 34(3/1), 9–31. (In Polish).
- Zuchiewicz, W.; Butrym, J. On new sites of solifluction and deluvial (washout) deposits in the Rożnów Foothills, Outer West Carpathians. Stud. Geom. Carpatho-Balc. 1990, 24, 87–99. [Google Scholar]
- Grabowski, D. Lithostratygraphy and genesis of Quaternary strata between Lanckorona and Myślenice in the Western Outer Carpathians. Geol. Q. 2004, 48, 351–370. [Google Scholar]
- Obrębska-Starklowa, B.; Hess, M.; Olecki, Z.; Trepińska, J.; Kowanetz, L. Klimat. In Karpaty Polskie; Warszyńska, J., Ed.; Wyd. UJ: Kraków, Poland, 1995; pp. 31–47. (In Polish) [Google Scholar]
- Matuszkiewicz, J.M. Zespoły Leśne Polski; PWN: Warszawa, Poland, 2008. (In Polish) [Google Scholar]
- FAO. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods; Agronomy Monograph 9 (2); Klute, A., Ed.; ASA-SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Van Reeuwijk, L.P. (Ed.) Procedures for Soil Analysis; Technical Paper 9; International Soil Reference and Information Centre: Wageningen, The Netherlands, 2002. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis. Part 3. Chemical Methods; SSSA Book Series no. 5; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; ASA-SSSA: Madison, MI, USA, 1996; pp. 961–1010. [Google Scholar]
- Wężyk, P. Handbook For Participants of Training Courses on the Use of LiDAR Products, 2nd ed.; GUGiK: Warszawa, Poland, 2015. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Gruber, S.; Huggel, C.; Pike, R. Modelling Mass Movements and Landslide Susceptibility. Dev. Soil Sci. 2009, 33, 527–550. [Google Scholar] [CrossRef]
- Olaya, V. Basic Land-Surface Parameters. Dev. Soil Sci. 2009, 33, 141–169. [Google Scholar] [CrossRef]
- Loke, M.H. Tutorial: 2D and 3D Electrical Imaging Surveys; Geotomo Software: Geotomo, Malaysia, 2025; p. 258. Available online: https://www.geotomosoft.com/coursenotes.zip (accessed on 1 July 2025).
- Reynolds, J.M. Electrical Resistivity Methods. In An Introduction to Applied and Environmental Geophysics, 2nd ed.; Wiley: Chichester, UK, 2021; pp. 289–372. [Google Scholar]
- Polish Geological Institute—National Research Institute. Boreholes. Available online: https://geologia.pgi.gov.pl/otwory/ (accessed on 11 August 2025).
- Lehmkuhl, F.; Nett, J.J.; Pötter, S.; Schulte, P.; Sprafke, T.; Jary, Z.; Antoine, P.; Wacha, L.; Wolf, D.; Zerboni, A.; et al. Loess Landscapes of Europe—Mapping, Geomorphology, and Zonal Differentiation. Earth-Sci. Rev. 2021, 215, 103496. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; p. 312. [Google Scholar]
- Muhs, D.R. Loess deposits, origins and properties. In Encyclopedia of Quaternary Science; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1405–1418. [Google Scholar]
- Scheib, A.J.; Birke, M.; Dinelli, E.; GEMAS Project Team. Geochemical evidence of aeolian deposits in European soils. Boreas 2014, 43, 175–192. [Google Scholar] [CrossRef]
- Loba, A.; Sykuła, M.; Kierczak, J.; Łabaz, B.; Bogacz, A.; Waroszewski, J. In situ weathering of rocks or aeolian silt deposition: Key parameters for verifying parent material and pedogenesis in the Opawskie Mountains—A case study from SW Poland. J. Soils Sediments 2020, 20, 435–451. [Google Scholar] [CrossRef]
- Migoń, P.; Waroszewski, J. The Central European Variscan Ranges. In Periglacial Landscapes of Europe; Oliva, M., Nývlt, D., Fernández-Fernández, J.M., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Kleber, A.; Terhorst, B.; Bullmann, H.; Damm, B.; Dietze, M.; Döhler, S.; Felix-Henningsen, P.; Heinrich, J.; Heinrich, S.; Hülle, D.; et al. Subdued Mountains of Central Europe. In Mid-Latitude Slope Deposits (Cover Beds); Kleber, A., Terhorst, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 9–114. [Google Scholar]
Depth [cm] | Horizon | Moist Munsell Color | Structure 1 | Consistence 2 | Roots 3 | Coarse Fragments [% vol] | Boundary |
---|---|---|---|---|---|---|---|
Profile 1—Epidystric Eutric Episkeletic Cambisol (Episiltic, Endoloamic, Humic) | |||||||
0–5 | Ah | 7.5YR1.7/1 | sb | fr | ++ | 20 | clear |
5–27 | AB | 10YR4/4 | sb | vf | ++ | 50 | gradual |
27–45 | Bw1 | 10YR5/4 | sb | vf | ++ | 50 | gradual |
45–65 | Bw2 | 7.5YR5/4 | sb | vf | + | 15 | clear |
65–80 | 2BC | 5YR5/4 + 10YR7-6/2 | sb | vf | + | 20 | gradual |
80–115 | 2C | 5YR5/4 + 10YR7-6/2 | m | exf | + | 40 | |
Profile 2—Epidystric Eutric Katoskeletic Cambisol (Anosiltic, Ochric) | |||||||
0–5 | Ah | 10YR2/1 | sb | fr | +++ | 10 | abrupt |
5–25 | Bw1 | 10YR6/4 | sb | f | ++ | 10 | clear |
25–60 | Bw2 | 10YR6/4 | sb | vf | + | 50 | gradual |
60–85 | BCg | 10YR6/6 + 2.5YR7/3 + 10YR6/8 | sb | vf | + | 60 | clear |
85–120 | 2C1 | 5YR4/3 + 10YR7/4 + 7.5YR6/2 | m | exf | 70 | abrupt | |
120–135 | 2C2 | 10YR6/6 + 7.5YR6/8 + 2.5Y6/3 | m | exf | 70 | abrupt | |
135–160 | 2C3 | 5YR4/4 | m | exf | 70 | clear | |
160–200 | 2C4 | 7.5YR5/4 | m | exf | 70 | ||
Profile 3—Albic Endostagnic Luvisol (Pantosiltic, Cutanic, Humic) | |||||||
0–4 | Ah | 10YR1.7/1 | sph | fr | +++ | 0 | abrupt |
4–8 | A | 10YR5/3 | sb | fr | +++ | 0 | clear |
8–22 | AE | 10YR6/4 | sb | f | ++ | 5 | gradual |
22–50 | E | 10YR6/4 + 10YR5/4 | sb | f | ++ | 5 | gradual |
50–70 | Btg1 | 10YR6/4 + 7.5YR5/6 | sb | vf | ++ | 5 | abrupt |
70–85 | Btg2 | 7.5YR5/4 + 2.5Y7/2 | ang | vf | ++ | 10 | abrupt |
85–100 | BCg | 10YR6/6 + 7.5YR5/6 + 2.5Y7/2 | ang | f | ++ | 25 | abrupt |
100–110 | 2BC | 5YR4/4 + 10YR7/2 | ang | vf | + | 45 | abrupt |
110–160 | 2C1 | 2.5Y6/4 | m | vf | + | 60 | clear |
160–195 | 2C2 | 5YR4/4 + 2.5Y6/3 | m | exf | 40 | clear | |
195–225 | 3C | 5YR4/3-4 | m | exf | 30 | clear | |
225–290 | 5YR4/4 + 5Y5-6/2 | m | 25 | abrupt | |||
290–300 | 7.5YR3/4 + 5Y5-4/1 | m | 40 | clear | |||
300–350 | 7.5YR3/3 + 7.5Y4/6 + 5Y6-7/2 | m | 25 | abrupt | |||
350–360 | 7.5YR4/6 + 5YR4/4 + 5Y5-4/1 | m | 50 | abrupt | |||
360–395 | 5YR4/4 + 5Y5-4/1 | m | 25 | clear | |||
395–460 | 5YR4/4 + 5Y5-4/1 | m | 30 | gradual | |||
460–515 | 7.5YR4/6 | m | 20 | clear | |||
515–530 | 5Y6/2 + 5YR4/6 + 7.5YR6/8 | m | 30 | abrupt | |||
530–540 | 2.5Y6/3 | m | 30 | abrupt | |||
545–570 | 5YR4/4 + 5Y5-6/2 | m | 20 | gradual | |||
570–580 | 5YR4/4 | m | 30 | clear | |||
580–600 | 5YR3/4 + 5Y5/2 | m | 40 |
Depth [cm] | Horizon | pH H2O | pH KCl | Corg [%] |
---|---|---|---|---|
Profile 1—Epidystric Eutric Episkeletic Cambisol (Episiltic, Endoloamic, Humic) | ||||
0–5 | Ah | 3.74 | 3.13 | 10.40 |
5–27 | AB | 4.40 | 3.53 | 0.73 |
27–45 | Bw1 | 4.93 | 3.74 | 0.36 |
45–65 | Bw2 | 5.13 | 3.80 | |
65–80 | 2BC | 4.86 | 3.37 | |
80–115 | 2C | 4.78 | 3.28 | |
Profile 2—Epidystric Eutric Katoskeletic Cambisol (Anosiltic, Ochric) | ||||
0–5 | Ah | 3.83 | 3.03 | 8.12 |
5–25 | Bw1 | 4.49 | 3.61 | 0.32 |
25–60 | Bw2 | 4.72 | 3.65 | |
60–85 | BCg | 4.98 | 3.54 | |
85–120 | 2C1 | 5.08 | 3.46 | |
120–135 | 2C2 | 5.02 | 3.54 | |
135–160 | 2C3 | 5.20 | 3.44 | |
160–200 | 2C4 | 5.26 | 3.53 | |
Profile 3—Albic Endostagnic Luvisol (Pantosiltic, Cutanic, Humic) | ||||
0–4 | Ah | 3.66 | 2.94 | 12.93 |
4–8 | A | 3.98 | 3.06 | 1.68 |
8–22 | AE | 4.54 | 3.88 | 0.51 |
22–50 | E | 4.59 | 3.78 | |
50–70 | Btg1 | 4.77 | 3.47 | |
70–85 | Btg2 | 4.81 | 3.39 | 0.44 |
85–100 | BCg | 4.90 | 3.39 | |
100–110 | 2BC | 4.99 | 3.31 | |
110–160 | 2C1 | 4.14 | 3.43 | |
160–195 | 2C2 | 5.82 | 3.83 | |
195–225 | 3C | 6.21 | 4.07 |
Depth [cm] | Horizon | 2.0–1.0 | 1.0–0.1 | 0.01–0.05 | 0.05–0.02 | 0.02–0.006 | 0.006–0.002 | <0.002 | Texture 1 |
---|---|---|---|---|---|---|---|---|---|
0–5 | Ah | n.d. | n.d | n.d | n.d | n.d | n.d | n.d | |
5–27 | AB | 1 | 8 | 4 | 23 | 24 | 19 | 21 | SiL |
27–45 | Bw1 | 2 | 7 | 5 | 21 | 23 | 17 | 25 | SiL |
45–65 | Bw2 | 2 | 8 | 5 | 19 | 21 | 17 | 28 | SiCL |
65–80 | 2BC | 3 | 12 | 4 | 8 | 13 | 22 | 38 | SiCL |
80–115 | 2C | 2 | 14 | 2 | 5 | 16 | 23 | 38 | SiCL |
0–5 | Ah | n.d. | n.d | n.d | n.d | n.d | n.d | n.d | |
5–25 | Bw1 | 1 | 5 | 6 | 23 | 25 | 17 | 23 | SiL |
25–60 | Bw2 | 4 | 9 | 7 | 21 | 21 | 16 | 22 | SiL |
60–85 | BCg | 1 | 8 | 7 | 21 | 23 | 14 | 26 | SiL |
85–120 | 2C1 | 4 | 23 | 5 | 7 | 12 | 16 | 33 | CL |
120–135 | 2C2 | 2 | 10 | 7 | 30 | 21 | 11 | 19 | SiL |
135–160 | 2C3 | 4 | 16 | 5 | 9 | 14 | 16 | 36 | CL |
160–200 | 2C4 | 6 | 22 | 7 | 9 | 14 | 14 | 28 | CL |
0–4 | Ah | n.d. | n.d | n.d | n.d | n.d | n.d | n.d | |
4–8 | A | 1 | 5 | 10 | 32 | 26 | 12 | 14 | SiL |
8–22 | AE | 1 | 5 | 8 | 34 | 26 | 14 | 12 | SiL |
22–50 | E | 1 | 8 | 8 | 33 | 24 | 11 | 15 | SiL |
50–70 | Btg1 | 0 | 5 | 8 | 34 | 24 | 11 | 18 | SiL |
70–85 | Btg2 | 2 | 14 | 8 | 26 | 19 | 12 | 19 | SiL |
85–100 | BCg | 2 | 9 | 8 | 33 | 22 | 9 | 17 | SiL |
100–110 | 2BC | 4 | 29 | 4 | 11 | 10 | 15 | 27 | L |
110–160 | 2C1 | 5 | 25 | 5 | 7 | 10 | 15 | 33 | CL |
160–195 | 2C2 | 8 | 21 | 5 | 6 | 10 | 16 | 34 | CL |
195–225 | 3C | 5 | 25 | 4 | 7 | 10 | 16 | 33 | CL |
225–290 | 6 | 29 | 6 | 8 | 8 | 13 | 30 | CL | |
290–300 | 5 | 26 | 5 | 7 | 4 | 26 | 27 | CL | |
300–350 | 8 | 32 | 4 | 6 | 12 | 16 | 22 | L | |
350–360 | 9 | 26 | 5 | 6 | 12 | 19 | 23 | L | |
360–395 | 7 | 21 | 6 | 6 | 13 | 22 | 25 | L | |
395–460 | 7 | 28 | 5 | 6 | 14 | 17 | 23 | L | |
460–515 | 11 | 28 | 4 | 4 | 12 | 19 | 22 | L | |
515–530 | 10 | 30 | 5 | 5 | 13 | 16 | 21 | L | |
530–540 | 8 | 18 | 6 | 10 | 14 | 17 | 27 | CL | |
545–570 | 13 | 45 | 3 | 6 | 8 | 12 | 13 | SL | |
570–580 | 16 | 24 | 5 | 4 | 14 | 18 | 19 | L | |
580–600 | 9 | 30 | 4 | 7 | 13 | 17 | 20 | L |
Depth [cm] | Horizon | Sand (2–0.05 mm) Content 1 | Silt (0.05–0.002 mm) Content 1 | Sand Content Difference 2 | Silt Content Difference 2 | Sand/Silt Ratio | Sand/Silt Ratio Difference 3 |
---|---|---|---|---|---|---|---|
0–5 | Ah | ||||||
5–27 | AB | 13 | 66 | −1 | 5 | 0.20 | −14% |
27–45 | Bw1 | 14 | 61 | −1 | 4 | 0.23 | −13% |
45–65 | Bw2 | 15 | 57 | −4 | 14 | 0.26 | 40% |
65–80 | 2BC | 19 | 43 | 1 | −1 | 0.44 | 8% |
80–115 | 2C | 18 | 44 | 0.41 | |||
0–5 | Ah | ||||||
5–25 | Bw1 | 12 | 65 | −8 | 7 | 0.18 | −46% |
25–60 | Bw2 | 20 | 58 | 4 | 0 | 0.34 | 25% |
60–85 | BCg | 16 | 58 | −16 | 23 | 0.28 | −70% |
85–120 | 2C1 | 32 | 35 | 13 | −27 | 0.91 | 198% |
120–135 | 2C2 | 19 | 62 | −6 | 23 | 0.31 | −52% |
135–160 | 2C3 | 25 | 39 | −10 | 2 | 0.64 | −32% |
160–200 | 2C4 | 35 | 37 | 0.95 | |||
0–4 | Ah | ||||||
4–8 | A | 16 | 70 | 2 | −4 | 0.23 | 21% |
8–22 | AE | 14 | 74 | −3 | 6 | 0.19 | −24% |
22–50 | E | 17 | 68 | 4 | −1 | 0.25 | 33% |
50–70 | Btg1 | 13 | 69 | −11 | 12 | 0.19 | −55% |
70–85 | Btg2 | 24 | 57 | 5 | −7 | 0.42 | 42% |
85–100 | BCg | 19 | 64 | −18 | 28 | 0.30 | −71% |
100–110 | 2BC | 37 | 36 | 2 | 4 | 1.03 | −6% |
110–160 | 2C1 | 35 | 32 | 1 | 0 | 1.09 | 3% |
160–195 | 2C2 | 34 | 32 | 0 | −1 | 1.06 | 3% |
195–225 | 3C | 34 | 33 | −7 | 4 | 1.03 | −27% |
225–290 | 41 | 29 | 5 | -8 | 1.41 | 45% | |
290–300 | 36 | 37 | −8 | 3 | 0.97 | −25% | |
300–350 | 44 | 34 | 4 | −3 | 1.29 | 20% | |
350–360 | 40 | 37 | 6 | −4 | 1.08 | 30% | |
360–395 | 34 | 41 | −6 | 4 | 0.83 | −23% | |
395–460 | 40 | 37 | −3 | 2 | 1.08 | −12% | |
460–515 | 43 | 35 | −2 | 1 | 1.23 | −7% | |
515–530 | 45 | 34 | 13 | −7 | 1.32 | 70% | |
530–540 | 32 | 41 | −29 | 15 | 0.78 | −67% | |
545–570 | 61 | 26 | 16 | −10 | 2.35 | 88% | |
570–580 | 44 | 36 | 2 | −1 | 1.25 | 8% | |
580–600 | 43 | 37 | 1.16 |
Depth [cm] | Horizon | 2.0–1.0 | 1.0–0.1 | 0.01–0.05 | 0.05–0.02 | 0.02–0.006 | 0.006–0.002 |
---|---|---|---|---|---|---|---|
0–5 | Ah | n.d. | n.d | n.d | n.d | n.d | n.d |
5–27 | AB | 1.3 | 10.1 | 5.1 | 29.1 | 30.4 | 24.1 |
27–45 | Bw1 | 2.7 | 9.3 | 6.7 | 28.0 | 30.7 | 22.7 |
45–65 | Bw2 | 2.8 | 11.1 | 6.9 | 26.4 | 29.2 | 23.6 |
65–80 | 2BC | 4.8 | 19.4 | 6.5 | 12.9 | 21.0 | 35.5 |
80–115 | 2C | 3.2 | 22.6 | 3.2 | 8.1 | 25.8 | 37.1 |
0–5 | Ah | n.d. | n.d | n.d | n.d | n.d | n.d |
5–25 | Bw1 | 1.3 | 6.5 | 7.8 | 29.9 | 32.5 | 22.1 |
25–60 | Bw2 | 5.1 | 11.5 | 9.0 | 26.9 | 26.9 | 20.5 |
60–85 | BCg | 1.4 | 10.8 | 9.5 | 28.4 | 31.1 | 18.9 |
85–120 | 2C1 | 6.0 | 34.3 | 7.5 | 10.4 | 17.9 | 23.9 |
120–135 | 2C2 | 2.5 | 12.3 | 8.6 | 37.0 | 25.9 | 13.6 |
135–160 | 2C3 | 6.3 | 25.0 | 7.8 | 14.1 | 21.9 | 25.0 |
160–200 | 2C4 | 8.3 | 30.6 | 9.7 | 12.5 | 19.4 | 19.4 |
0–4 | Ah | n.d. | n.d | n.d | n.d | n.d | n.d |
4–8 | A | 1.2 | 5.8 | 11.6 | 37.2 | 30.2 | 14.0 |
8–22 | AE | 1.1 | 5.7 | 9.1 | 38.6 | 29.5 | 15.9 |
22–50 | E | 1.2 | 9.4 | 9.4 | 38.8 | 28.2 | 12.9 |
50–70 | Btg1 | 0.0 | 6.1 | 9.8 | 41.5 | 29.3 | 13.4 |
70–85 | Btg2 | 2.5 | 17.3 | 9.9 | 32.1 | 23.5 | 14.8 |
85–100 | BCg | 2.4 | 10.8 | 9.6 | 39.8 | 26.5 | 10.8 |
100–110 | 2BC | 5.5 | 39.7 | 5.5 | 15.1 | 13.7 | 20.5 |
110–160 | 2C1 | 7.5 | 37.3 | 7.5 | 10.4 | 14.9 | 22.4 |
160–195 | 2C2 | 12.1 | 31.8 | 7.6 | 9.1 | 15.2 | 24.2 |
195–225 | 3C | 7.5 | 37.3 | 6.0 | 10.4 | 14.9 | 23.9 |
Depth [cm] | Coarse Fragments [% vol] | Cherts | Lgota Sandstones | Variegated Shales |
---|---|---|---|---|
0–5 | 20 | 90 | 10 | 0 |
5–27 | 50 | 90 | 10 | 0 |
27–45 | 50 | 90 | 10 | 0 |
45–65 | 15 | 80 | 10 | 10 |
65–80 | 20 | 80 | 0 | 20 |
80–115 | 40 | 90 | 5 | 5 |
0–5 | 10 | 20 | 80 | 0 |
5–25 | 10 | 20 | 80 | 0 |
25–60 | 50 | 70 | 30 | 0 |
60–85 | 60 | 70 | 30 | 0 |
85–120 | 70 | 65 | 30 | 5 |
120–135 | 70 | 25 | 70 | 5 |
135–160 | 70 | 25 | 50 | 25 |
160–200 | 70 | 75 | 25 | 0 |
0–4 | 0 | 0 | 0 | 0 |
4–8 | 0 | 0 | 0 | 0 |
8–22 | 5 | 50 | 50 | 0 |
22–50 | 5 | 50 | 50 | 0 |
50–70 | 5 | 90 | 10 | 0 |
70–85 | 10 | 40 | 60 | 0 |
85–100 | 25 | 70 | 30 | 0 |
100–110 | 45 | 75 | 20 | 5 |
110–160 | 60 | 95 | 5 | 0 |
160–195 | 40 | 95 | 5 | 0 |
195–225 | 30 | 90 | 0 | 10 |
225–290 | 25 | 95 | 0 | 5 |
290–300 | 40 | 95 | 0 | 5 |
300–350 | 25 | 80 | 0 | 20 |
350–360 | 50 | 85 | 0 | 15 |
360–395 | 25 | 70 | 0 | 30 |
395–460 | 30 | 95 | 0 | 5 |
460–515 | 20 | 65 | 0 | 35 |
515–530 | 30 | 95 | 0 | 5 |
530–540 | 30 | 85 | 0 | 15 |
545–570 | 20 | 80 | 0 | 20 |
570–580 | 30 | 90 | 0 | 10 |
580–600 | 40 | 65 | 5 | 30 |
Depth [cm] | SiO2 [%] | Al2O3 [%] | Fe2O3 [%] | MnO [%] | MgO [%] | CaO [%] | Na2O [%] | K2O [%] | TiO2 [%] | P2O5 [%] | LOI [%] | SiO2/ R2O3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Profile 1 | ||||||||||||
27–45 | 79.42 | 8.30 | 2.54 | 0.316 | 0.62 | 0.25 | 0.6 | 1.92 | 0.768 | 0.09 | 5.33 | 6.84 |
80–115 | 65.81 | 15.38 | 5.07 | 0.04 | 1.35 | 0.29 | 0.24 | 2.77 | 0.648 | 0.05 | 8.79 | 3.12 |
Profile 2 | ||||||||||||
25–60 | 81.28 | 7.99 | 2.2 | 0.117 | 0.48 | 0.17 | 0.54 | 1.84 | 0.736 | 0.04 | 3.85 | 7.44 |
85–120 | 67.58 | 13.99 | 5.08 | 0.281 | 1.32 | 0.35 | 0.28 | 2.58 | 0.638 | 0.08 | 8.58 | 3.43 |
135–160 | 67.03 | 13.82 | 4.92 | 0.164 | 1.27 | 0.41 | 0.42 | 2.6 | 0.635 | 0.09 | 8.02 | 3.46 |
Profile 3 | ||||||||||||
40–60 | 83.07 | 7.76 | 2.09 | 0.093 | 0.48 | 0.25 | 0.71 | 2.08 | 0.759 | 0.04 | 3.48 | 7.83 |
100–110 | 66.46 | 13.43 | 4.5 | 0.296 | 1.42 | 0.31 | 0.4 | 2.51 | 0.595 | 0.06 | 8.74 | 3.59 |
110–160 | 69.18 | 12.92 | 3.81 | 0.225 | 1.59 | 0.47 | 0.23 | 2.32 | 0.563 | 0.07 | 9.26 | 4.00 |
195–225 | 65.57 | 14.22 | 3.6 | 0.763 | 1.79 | 0.79 | 0.4 | 2.91 | 0.575 | 0.08 | 9.4 | 3.56 |
290–300 | 65.2 | 13.81 | 4.85 | 0.299 | 1.53 | 0.73 | 0.41 | 2.69 | 0.579 | 0.09 | 8.65 | 3.39 |
350–360 | 64.4 | 14.24 | 4.59 | 1.931 | 1.55 | 0.74 | 0.26 | 2.77 | 0.573 | 0.1 | 9.53 | 3.32 |
360–395 | 63.78 | 13.63 | 6.41 | 0.14 | 1.42 | 0.66 | 0.35 | 2.61 | 0.559 | 0.18 | 9.21 | 3.10 |
545–570 | 65.46 | 13.55 | 6.41 | 0.172 | 1.49 | 0.66 | 0.27 | 2.69 | 0.541 | 0.19 | 9.05 | 3.19 |
Depth [cm] | Ba ppm | Sr ppm | Y ppm | Sc ppm | Zr ppm | Be ppm | V ppm |
---|---|---|---|---|---|---|---|
Profile 1 | |||||||
27–45 | 383 | 68 | 23 | 8 | 344 | 2 | 67 |
80–115 | 294 | 73 | 19 | 14 | 131 | 2 | 119 |
Profile 2 | |||||||
25–60 | 354 | 70 | 22 | 7 | 394 | <1 | 52 |
85–120 | 334 | 84 | 22 | 13 | 158 | 2 | 118 |
135–160 | 323 | 61 | 24 | 13 | 155 | 2 | 114 |
Profile 3 | |||||||
40–60 | 386 | 68 | 25 | 6 | 541 | 1 | 46 |
100–110 | 327 | 70 | 27 | 13 | 175 | 2 | 104 |
110–160 | 301 | 66 | 26 | 12 | 113 | 2 | 84 |
195–225 | 420 | 58 | 25 | 14 | 104 | 2 | 97 |
290–300 | 320 | 56 | 23 | 13 | 128 | 2 | 108 |
350–360 | 859 | 82 | 29 | 14 | 113 | 2 | 110 |
360–395 | 260 | 51 | 25 | 13 | 115 | 2 | 101 |
545–570 | 343 | 84 | 25 | 13 | 112 | 2 | 104 |
Depth [cm] | Zr/Y | Zr/Sc | Zr/TiO2 | Zr/Al2O3 | Ti/Si | Ti/Al | V/Zr | V/TiO2 | V/Al2O3 |
---|---|---|---|---|---|---|---|---|---|
Profile 1 | |||||||||
27–45 | 14.96 | 43.00 | 447.92 | 41.45 | 0.0097 | 0.0925 | 0.1948 | 87.24 | 8.07 |
80–115 | 6.89 | 9.36 | 202.16 | 8.52 | 0.0098 | 0.0421 | 0.9084 | 183.64 | 7.74 |
Profile 2 | |||||||||
25–60 | 17.91 | 56.29 | 535.33 | 49.31 | 0.0091 | 0.0921 | 0.132 | 70.65 | 6.51 |
85–120 | 7.18 | 12.15 | 247.65 | 11.29 | 0.0094 | 0.0456 | 0.7468 | 184.95 | 8.43 |
135–160 | 6.46 | 11.92 | 244.09 | 11.22 | 0.0095 | 0.0459 | 0.7355 | 179.53 | 8.25 |
Profile 3 | |||||||||
40–60 | 21.64 | 90.17 | 712.78 | 69.72 | 0.0091 | 0.0978 | 0.085 | 60.61 | 5.93 |
100–110 | 6.48 | 13.46 | 294.12 | 13.03 | 0.009 | 0.0443 | 0.5943 | 174.79 | 7.74 |
110–160 | 4.35 | 9.42 | 200.71 | 8.75 | 0.0081 | 0.0436 | 0.7434 | 149.20 | 6.50 |
195–225 | 4.16 | 7.43 | 180.87 | 7.31 | 0.0088 | 0.0404 | 0.9327 | 168.70 | 6.82 |
290–300 | 5.57 | 9.85 | 221.07 | 9.27 | 0.0089 | 0.0419 | 0.8438 | 186.53 | 7.82 |
350–360 | 3.90 | 8.07 | 197.21 | 7.94 | 0.0089 | 0.0402 | 0.9735 | 191.97 | 7.72 |
360–395 | 4.60 | 8.85 | 205.72 | 8.44 | 0.0088 | 0.0410 | 0.8783 | 180.68 | 7.41 |
545–570 | 4.48 | 8.62 | 207.02 | 8.27 | 0.0083 | 0.0399 | 0.9286 | 192.24 | 7.68 |
Depth [cm] | Sand/Silt Ratio Difference | Sand Content Difference | Silt Content Difference | Coarse Fragments Lithology | Volume of Coarse Fragments | Abrupt Color Difference | Clay-Free PSD Difference |
---|---|---|---|---|---|---|---|
0–5 | |||||||
5–27 | |||||||
27–45 | + | + | |||||
45–65 | + | + | + | + | |||
65–80 | + | (+) | |||||
80–115 | |||||||
0–5 | |||||||
5–25 | + | + | + | ||||
25–60 | |||||||
60–85 | + | + | + | + | + | ||
85–120 | + | + | + | + | + | + | |
120–135 | + | + | + | + | + | + | |
135–160 | + | + | + | ||||
160–200 | |||||||
0–4 | |||||||
4–8 | |||||||
8–22 | |||||||
22–50 | |||||||
50–70 | + | + | + | + | |||
70–85 | + | + | + | ||||
85–100 | + | + | + | + | + | + | |
100–110 | + | + | (+) | ||||
110–160 | + | + | |||||
160–195 | + | + | |||||
195–225 | + | + | |||||
225–290 | + | + | + | + | |||
290–300 | + | + | + | ||||
300–350 | + | ||||||
350–360 | + | + | + | + | |||
360–395 | |||||||
395–460 | + | ||||||
460–515 | |||||||
515–530 | + | + | + | + | |||
530–540 | + | + | + | + | + | ||
545–570 | + | + | + | ||||
570–580 | |||||||
580–600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kacprzak, A.; Kasprzak, M. Detecting the Occurrence and Explaining the Origin of Lithologic Discontinuities in Low-Mountain Soils: An Example from the Carpathians, Southern Poland. Geosciences 2025, 15, 326. https://doi.org/10.3390/geosciences15080326
Kacprzak A, Kasprzak M. Detecting the Occurrence and Explaining the Origin of Lithologic Discontinuities in Low-Mountain Soils: An Example from the Carpathians, Southern Poland. Geosciences. 2025; 15(8):326. https://doi.org/10.3390/geosciences15080326
Chicago/Turabian StyleKacprzak, Andrzej, and Marek Kasprzak. 2025. "Detecting the Occurrence and Explaining the Origin of Lithologic Discontinuities in Low-Mountain Soils: An Example from the Carpathians, Southern Poland" Geosciences 15, no. 8: 326. https://doi.org/10.3390/geosciences15080326
APA StyleKacprzak, A., & Kasprzak, M. (2025). Detecting the Occurrence and Explaining the Origin of Lithologic Discontinuities in Low-Mountain Soils: An Example from the Carpathians, Southern Poland. Geosciences, 15(8), 326. https://doi.org/10.3390/geosciences15080326