Formation of Low-Centered Ice-Wedge Polygons and Their Orthogonal Systems: A Review
Abstract
1. Introduction
- Are low-centered polygons degradational or aggradational features?
- What drives the formation of elevated polygonal rims in low-centered polygons? Can actively growing ice wedges form without rims?
- Does aggradation of ice-rich permafrost in polygonal centers reduce low-centered polygon microrelief?
- How does the orthogonal system of low-centered ice-wedge polygons form?
2. Are Low-Centered Polygons Degradational or Aggradational Features?
2.1. Low-Centered Polygons as Permafrost Degradation Features
2.2. Low-Centered Polygons as Permafrost Aggradation Features
3. What Drives the Formation of Elevated Polygonal Rims in Low-Centered Polygons?
3.1. Formation of Rims by Bulging of Soil Along Ice Wedges
3.2. Formation of Rims by Bulging of Ice Wedges
3.3. Formation of Rims by Shifting and Turning Peat Layers
3.4. Formation of Rims by Pressure of Ice Forming in Water-Filled Troughs
3.5. Formation of Rims of Sand-Wedge Polygons
3.6. Formation of Rims Triggered by Differential Vegetation Growth
3.7. Formation of Rims by Frost Heave
3.8. Absence of Elevated Rims in Areas of Actively Growing Ice Wedges
4. Does Aggradation of Ice-Rich Permafrost in Polygonal Centers Reduce Low-Centered Polygon Microrelief?
5. How Does the Orthogonal System of Low-Centered Ice-Wedge Polygons Form?
5.1. First Observations of Low-Centered Polygonal Systems from Ground Level
5.2. First Observations of Polygonal Systems from the Air with the Introduction of Aerial Photography
5.3. Explanations of the Processes That Lead to Orthogonal Arrangement of Ice-Wedge Polygons
- (1)
- The orthogonal grid is confined to the shorelines of water bodies and follows the forms of a shoreline: one system of wedges is oriented along the shore, and the other is normal to it. There are also examples when the shorelines of water bodies cross a nonpredetermined polygonal grid without any changes in it.
- (2)
- The orthogonal grid is confined to the ancient shorelines of water bodies, which are not existing now (e.g., due to migration of the river channel), but left traces of their existence visible on aerial photographs.
- (3)
- The orthogonal grid is separated from the adjacent nonorthogonal polygonal grid or from the area devoid of polygonal grids by a sharp boundary, the nature of which cannot be unambiguously interpreted from aerial photographs.
- (4)
- There is a gradual transition from orthogonal to nonorthogonal polygonal grids.
5.4. Opposing Explanations of Orthogonal Network Formation
6. Conclusions
- Are low-centered polygons degradational or aggradational features?
- 2.
- What drives the formation of elevated polygonal rims in low-centered polygons? Can actively growing ice wedges form without rims?
- 3.
- Does aggradation of ice-rich permafrost in polygonal centers reduce low-centered polygon microrelief?
- 4.
- How does the orthogonal system of low-centered ice-wedge polygons form?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- de Koven Leffingwell, E. Ground-ice wedges, the dominant form of ground-ice on the north coast of Alaska. J. Geol. 1915, 23, 635–654. [Google Scholar] [CrossRef]
- Black, R.F. Polygonal patterns and ground conditions from aerial photographs. Photogramm. Eng. 1952, 18, 123–134. [Google Scholar]
- Dostovalov, B.N.; Popov, A.I. Polygonal systems of ice wedges and conditions of their development. In Proceedings of the Permafrost International Conference, Lafayette, IN, USA, 11–15 November 1963; Publication No. 1287; National Academy of Sciences—National Research Council: Washington, DC, USA, 1966; pp. 102–105. [Google Scholar]
- Lachenbruch, A.H. Contraction theory of ice-wedge polygons—A qualitative discussion. In Proceedings of the Permafrost—International Conference, Lafayette, IN, USA, 11–15 November 1963; Publication No. 1287; National Academy of Sciences—National Research Council: Washington, DC, USA, 1966; pp. 63–71. [Google Scholar]
- Mackay, J.R. The world of underground ice. Ann. Assoc. Am. Geogr. 1972, 62, 1–22. [Google Scholar] [CrossRef]
- Mackay, J.R. Thermally-induced movements in ice-wedge polygons, western Arctic coast. Géographie Phys. Quat. 2000, 54, 41–68. [Google Scholar] [CrossRef]
- Vtyurin, B.I. Ground Ice in USSR; Nauka: Moscow, USSR, 1975. [Google Scholar]
- Romanovskii, N.N. Formation of Polygonal-Wedge Structures; Nauka: Novosibirsk, USSR, 1977. (In Russian) [Google Scholar]
- French, H.M. The Periglacial Environment, 4th ed.; John Wiley and Sons Ltd.: Chichester, UK, 2018; 515p. [Google Scholar]
- Kanevskiy, M.Z.; Shur, Y.; Jorgenson, M.T.; Ping, C.-L.; Michaelson, G.J.; Fortier, D.; Stephani, E.; Dillon, M.; Tumskoy, V. Ground ice in the upper permafrost of the Beaufort Sea Coast of Alaska. Cold Reg. Sci. Technol. 2013, 85, 56–70. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Lantz, T.C.; Wolfe, S.A.; Kanigan, J.C.; Morse, P.D.; Coutts, R.; Molina-Giraldo, N.; Burn, C.R. Distribution and activity of ice wedges across the forest-tundra transition, Western Arctic Canada. J. Geophys. Res. Earth Surf. 2014, 119, 2032–2047. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Ward Jones, M.K.; Pollard, W.H.; Amyot, F. Impacts of degrading ice-wedges on ground temperatures in a high Arctic polar desert system. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005173. [Google Scholar] [CrossRef]
- Brown, J. An Estimation of the Volume of Ground Ice, Coastal Plain, Northern Alaska; A First Approximation; Technical Note; CRREL: Hanover, NH, USA, 1968. [Google Scholar]
- Black, R.F. Permafrost—A review. Bull. Geol. Soc. Am. 1954, 65, 839–858. [Google Scholar] [CrossRef]
- Black, R.F. Periglacial features indicative of permafrost: Ice and soil wedges. Quat. Res. 1976, 6, 3–26. [Google Scholar] [CrossRef]
- Hussey, K.M.; Michelson, R.W. Tundra Relief Features near Point Barrow, Alaska. Arcti. 1966, 19, 162–184. [Google Scholar] [CrossRef]
- Péwé, T.L. Quaternary Geology of Alaska; professional paper 835; United States Geological Survey, United States Government Printing Office: Washington, DC, USA, 1975; pp. 1–145. [Google Scholar]
- Billings, W.D.; Peterson, K.M. Vegetational Change and Ice-Wedge Polygons through the Thaw-Lake Cycle in Arctic Alaska. Arct. Alp. Res. 1980, 12, 413–432. [Google Scholar] [CrossRef]
- Everett, K.R. Landforms. In Geobotanical Atlas of the Prudhoe Bay Region, Alaska; CRREL Report, 80-14; Walker, D.A., Everett, K.R., Webber, P.J., Brown, J., Eds.; U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1980; pp. 14–19. [Google Scholar]
- Lara, M.J.; McGuire, A.D.; Euskirchen, E.S.; Tweedie, C.E.; Hinkel, K.M.; Skurikhin, A.N.; Romanovsky, V.E.; Grosse, G.; Bolton, W.R.; Genet, E. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Glob. Change Biol. 2015, 21, 1634–1651. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; Wolter, J.; Rudaya, N.; Palagushkina, O.; Nazarova, L.; Obu, J.; Rethemeyer, J.; Lantuit, H.; Wetterich, S. Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada). Quat. Sci. Rev. 2016, 147, 279–297. [Google Scholar] [CrossRef]
- Zhang, W.; Witharana, C.; Liljedahl, A.K.; Kanevskiy, M. Deep convolutional neural networks for automated characterization of arctic ice-wedge polygons in very high spatial resolution aerial imagery. Remote Sens. 2018, 10, 1487. [Google Scholar] [CrossRef]
- Witharana, C.; Bhuiyan, M.A.E.; Liljedahl, A.K.; Kanevskiy, M.; Epstein, H.E.; Jones, B.M.; Daanen, R.; Griffin, C.G.; Kent, K.; Jones, M.K.W. Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high-resolution commercial satellite imagery for automated ice-wedge polygon detection. ISPRS J. Photogramm. Remote Sens. 2020, 170, 174–191. [Google Scholar] [CrossRef]
- Witharana, C.; Bhuiyan, M.A.E.; Liljedahl, A.K.; Kanevskiy, M.; Jorgenson, T.; Jones, B.M.; Daanen, R.; Epstein, H.E.; Griffin, C.G.; Kent, K.; et al. An object-based approach for mapping tundra ice-wedge polygon troughs from very high spatial resolution optical satellite imagery. Remote Sens. 2021, 13, 558. [Google Scholar] [CrossRef]
- Gusev, A.I. Tetragonal soils in the arctic tundra. Izv. Gos. Geogr. Obs. 1938, 70, 377–385. (In Russian) [Google Scholar]
- Popov, A.I. Lithogenesis of alluvial lowlands in the cold climatic conditions. Izvestiya (Transactions) of the USSR Academy of Sciences. Geography 1953, 2, 29–41. (In Russian) [Google Scholar]
- Popov, A.I. Permafrost Phenomena in the Earth’s Crust (Cryolithology); Moscow State University: Moscow, USSR, 1967. (In Russian) [Google Scholar]
- Shumskii, P.A. Ground (Subsurface) Ice. In Principles of Geocryology, Part I, General Geocryology; Academy of Sciences of the USSR: Moscow, USSR, 1959; Chapter IX; pp. 274–327. (In Russian) (English translation: C. de Leuchtenberg, 1964, National Research Council of Canada, Ottawa, Technical Translation 1130, 118p) [Google Scholar]
- Péwé, T.L. Ice-wedges in Alaska—Classification, distribution and climatic significance. In Proceedings of the Permafrost International Conference, Lafayette, IN, USA, 11–15 November 1963; Publication No. 1287; National Academy of Sciences—National Research Council: Washington, DC, USA, 1966; pp. 76–81. [Google Scholar]
- Jahn, A. Problems of the Periglacial Zone; PWN—Polish Scientific Publisher: Warsaw, Poland, 1970. (In Polish) [Google Scholar]
- Jahn, A. Problems of the Periglacial Zone; PWN—Polish Scientific Publisher: Warsaw, Poland, 1975; (updated English edition). [Google Scholar]
- Podbornyy, E.E. Time and intensiveness of frost cracking. In Problemy Kriolitologii; Popov, A.I., Ed.; Moscow State University: Moscow, USSR, 1978; Volume VII, pp. 132–140. (In Russian) [Google Scholar]
- Vasil’chuk, Y.K. Ice Wedges; Moscow State University: Moscow, Russia, 2006. (In Russian) [Google Scholar]
- Dostovalov, B.N. On Physical Conditions of Formation of Frost Cracks and Development of Wedge Ice in Soil; Study of permafrost in Yakut Republic; Akademii Nauk SSSR: Leningrad, USSR, 1952; Volume 3, pp. 162–195. (In Russian) [Google Scholar]
- Lachenbruch, A. Mechanics of Thermal-Contraction Cracks and Ice-Wedge Polygons in Permafrost; special paper 70; Geological Society of America: New York, NY, USA, 1962. [Google Scholar]
- Grechishchev, S.E. Frost cracking of soils. In Cryogenic Physical-Geological Processes and Their Prediction; Grechishchev, S.E., Chistotinov, L.V., Shur, Y.L., Eds.; Nedra: Moscow, USSR, 1980; pp. 239–359. (In Russian) [Google Scholar]
- Gevorkyan, S.G. Mathematical model of frost cracking. In Quantitative Theory of Geocryologyical Forecasting; Grigoryan, S.S., Ed.; Moscow State University: Moscow, USSR, 1987; pp. 186–250. (In Russian) [Google Scholar]
- Skurikhin, A.N.; Gangodagamage, C.; Rowland, J.C.; Wilson, C.J. Arctic tundra ice-wedge landscape characterization by active contours without edges and structural analysis using high-resolution satellite imagery. Remote Sens. Lett. 2013, 4, 1077–1086. [Google Scholar] [CrossRef]
- Ulrich, M.; Grosse, G.; Strauss, J.; Schirrmeister, L. Quantifying Wedge-Ice Volumes in Yedoma and Thermokarst Basin Deposits. Permafr. Periglac. Process. 2014, 25, 151–161. [Google Scholar] [CrossRef]
- Abolt, C.J.; Young, M.H.; Atchley, A.A.; Wilson, C.J. Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models. Cryosphere 2019, 13, 237–245. [Google Scholar] [CrossRef]
- Plug, L.J. Ice Wedge Networks and “Whale Hole” Ponds in Frozen Ground. Ph.D. Thesis, University of Alaska Fairbanks, Fairbanks, AK, USA, 2000. [Google Scholar]
- Plug, L.J.; Werner, B.T. Fracture networks in frozen ground. J. Geophys. Res. 2001, 106, 8599–8613. [Google Scholar] [CrossRef]
- Plug, L.J.; Werner, B.T. Modelling of ice-wedge networks. Permafr. Periglac. Process. 2008, 19, 63–69. [Google Scholar] [CrossRef]
- Abolt, C.J.; Young, M.H.; Caldwell, T.G. Numerical modelling of ice wedge polygon geomorphic transition. Permafr. Periglac. Process. 2017, 28, 347–355. [Google Scholar] [CrossRef]
- Nitzbon, J.; Langer, M.; Westermann, S.; Martin, L.; Aas, K.S.; Boike, J. Pathways of ice wedge degradation in polygonal tundra under different hydrological conditions. Cryosphere 2019, 13, 1089–1123. [Google Scholar] [CrossRef]
- Nitzbon, J.; Langer, M.; Martin, L.C.; Westermann, S.; Schneider von Deimling, T.; Boike, J. Effects of multi-scale heterogeneity on the simulated evolution of ice-rich permafrost lowlands under a warming climate. Cryosphere 2021, 15, 1399–1422. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Shur, Y.L.; Pullman, E.R. Abrupt Increase in Permafrost Degradation in Arctic Alaska. Geophys. Res. Lett. 2006, 33, L02503. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.G.; Brown, D.R.N.; Wickland, K.; Striegl, R.; Koch, J. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J. Geophys. Res. Earth Surf. 2015, 120, 2280–2297. [Google Scholar] [CrossRef]
- Jorgenson, T.; Kanevskiy, M.; Jorgenson, J.C.; Liljedahl, A.K.; Shur, Y.; Epstein, H.E.; Kent, K.; Griffin, C.G.; Daanen, R.; Boldenow, M.; et al. Rapid transformation of tundra ecosystems from ice-wedge degradation. Glob. Planet. Chang. 2022, 216, 103921. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Walker, D.A.; Ambrosius, K.J.; Brown, J.; Everett, K.R.; Kanevskiy, M.; Kofinas, G.P.; Romanovsky, V.E.; Shur, Y.; Webber, P.J. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 2014, 20, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.M.; Grosse, G.; Arp, C.D.; Liu, L.; Miller, E.A.; Hayes, D.J.; Larsen, C. Recent arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 2015, 5, 15865. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.M.; Kanevskiy, M.; Shur, Y.; Jorgenson, M.T.; Gaglioti, B.V.; Ward Jones, M.K.; Veremeeva, A.; Miller, E.A.; Jandt, R. Post-fire stabilization of thaw-affected permafrost terrain in northern Alaska. Sci. Rep. 2024, 14, 8499. [Google Scholar] [CrossRef]
- Kanevskiy, M.; Shur, Y.; Jorgenson, T.; Brown, D.R.N.; Moskalenko, N.G.; Brown, J.; Walker, D.A.; Raynolds, M.K.; Buchhorn, M. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology 2017, 297, 20–42. [Google Scholar] [CrossRef]
- Kanevskiy, M.; Shur, Y.; Walker, D.A.; Jorgenson, T.; Raynolds, M.K.; Peirce, J.L.; Jones, B.M.; Buchhorn, M.; Matyshak, G.; Bergstedt, H.; et al. The shifting mosaic of ice-wedge degradation and stabilization in response to infrastructure and climate change, Prudhoe Bay Oilfield, Alaska. Arct. Sci. 2022, 8, 498–530. [Google Scholar] [CrossRef]
- Frost, G.V.; Christopherson, T.; Jorgenson, M.T.; Liljedahl, A.K.; Macander, M.J.; Walker, D.A.; Wells, A.F. Regional patterns and asynchronous onset of ice-wedge degradation since the mid-20th century in Arctic Alaska. Remote Sens. 2018, 10, 1312. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.M.; Romanovsky, V.E.; Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 2018, 9, 5423. [Google Scholar] [CrossRef]
- Farquharson, L.M.; Romanovsky, V.E.; Cable, W.L.; Walker, D.A.; Kokelj, S.V.; Nicolsky, D. Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic. Geophys. Res. Lett. 2019, 46, 6681–6689. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Douglas, T.A.; Hiemstra, C.A.; Anderson, J.E.; Barbato, R.A.; Bjella, K.L.; Deeb, E.J.; Gelvin, A.B.; Nelsen, P.E.; Newman, S.D.; Saari, S.P.; et al. Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar. Cryosphere 2021, 15, 3555–3575. [Google Scholar] [CrossRef]
- Walker, D.A.; Raynolds, M.K.; Kanevskiy, M.; Shur, Y.; Romanovsky, V.E.; Jones, B.M.; Buchhorn, M.; Jorgenson, M.T.; Šibík, J.; Breen, A.L.; et al. Cumulative impacts of a gravel road and climate change in an ice-wedge polygon landscape, Prudhoe Bay, Alaska. Arct. Sci. 2022, 8, 1040–1066. [Google Scholar] [CrossRef]
- Walker, D.A.; Kanevskiy, M.; Breen, A.L.; Kade, A.; Daanen, R.P.; Jones, B.M.; Nicolsky, D.J.; Bergstedt, H.; Watson-Cook, E.; Peirce, J.L. Observations in Ice-Rich Permafrost Systems, Prudhoe Bay Alaska, 2020–2021; AGC Data Report 22-01; Alaska Geobotany Center: Fairbanks, AK, USA, 2022. [Google Scholar]
- Ward Jones, M.; Schwoerer, T.; Gannon, G.; Jones, B.M.; Kanevskiy, M.Z.; Sutton, I.; St. Pierre, B.; St. Pierre, C.; Russell, J.; Russell, D. Climate-driven expansion of northern agriculture must consider permafrost. Nat. Clim. Chang. 2022, 12, 699–703. [Google Scholar] [CrossRef]
- Wolter, J.; Lantuit, H.; Fritz, M.; Macias-Fauria, M.; Myers-Smith, I.; Herzschuh, U. Vegetation composition and shrub extent on the Yukon coast, Canada, are strongly linked to ice-wedge polygon degradation. Polar Res. 2016, 35, 27489. [Google Scholar] [CrossRef]
- Hugelius, G.; Bockheim, J.G.; Camill, P.; Elberling, B.; Grosse, G.; Harden, J.W.; Johnson, K.; Jorgenson, T.; Koven, C.D.; Kuhry, P.; et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 2013, 5, 393–402. [Google Scholar] [CrossRef]
- Witharana, C.; Udawalpola, M.R.; Perera, A.S.; Hasan, A.; Manos, E.; Liljedahl, A.; Kanevskiy, M.; Jorgenson, M.T.; Daanen, R.; Jones, B.; et al. Ice-Wedge Polygon Detection in Satellite Imagery from Pan-Arctic Regions, Permafrost Discovery Gateway, 2001–2021; Arctic Data Center: Norway, Finland, 2023. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Witharana, C.; Manos, E. The capillaries of the Arctic tundra. Nat. Water 2024, 2, 611–614. [Google Scholar] [CrossRef]
- Schirrmeister, L.; Froese, D.; Wetterich, S.; Strauss, J.; Veremeeva, A.; Grosse, G. Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia. In Encyclopedia of Quaternary Science, 3rd ed.; Elias, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2025; Volume 5, pp. 296–311. [Google Scholar]
- Burn, C.R. Cryostratigraphy, paleogeography, and climate change during the early Holocene warm interval, western Arctic coast, Canada. Can. J. Earth Sci. 1997, 34, 912–935. [Google Scholar] [CrossRef]
- Lacelle, D.; Fontaine, M.; Forest, A.P.; Kokelj, S. High-resolution stable water isotopes as tracers of thaw unconformities in permafrost: A case study from western Arctic Canada. Chem. Geol. 2014, 368, 85–96. [Google Scholar] [CrossRef]
- Murton, J.B. Ground Ice. In Treatise on Geomorphology; Shroder, J.J.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 4, pp. 428–457. [Google Scholar] [CrossRef]
- Shur, Y.L. Thermokarst. In Cryogenic Physical-Geological Processes and Their Prediction; Grechishchev, S.E., Chistotinov, L.V., Shur, Y.L., Eds.; Nedra: Moscow, USSR, 1980; pp. 27–125. (In Russian) [Google Scholar]
- Shur, Y.L. The Upper Horizon of Permafrost and Thermokarst; Nauka: Moscow, USSR, 1988. (In Russian) [Google Scholar]
- Shur, Y.L. The upper horizon of permafrost soils. In Proceedings of the Fifth International Conference on Permafrost, Trondheim, Norway, 2–5 August 1988; Senneset, K., Ed.; Tapir Publishers: Trondheim, Norway, 1988; Volume 1, pp. 867–871. [Google Scholar]
- Shur, Y.L.; Vasiliev, A.A.; Zaikanov, V.G. New observations of shore erosion in the permafrost region. In Beregovye Protsessy v Kriolitozone; Are, F., Ed.; Nauka (Science) Publishing House: Moscow, USSR, 1984; pp. 12–19. (In Russian) [Google Scholar]
- Shur, Y.; Jorgenson, M.T.; Kanevskiy, M.Z. Permafrost. In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Encyclopedia of Earth Sciences Series; Springer: Berlin/Heidelberg, Germany, 2011; pp. 841–848. [Google Scholar]
- Shur, Y.; Jones, B.M.; Kanevskiy, M.; Jorgenson, T.; Ward Jones, M.K.; Fortier, D.; Stephani, E.; Vasiliev, A. Fluvio-thermal erosion and thermal denudation in the Yedoma region of northern Alaska: Revisiting the Itkillik River exposure. Permafr. Periglac. Process. 2021, 32, 277–298. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Shur, Y.L.; Walker, H.J. Evolution of a permafrost-dominated landscape on the Colville River delta, northern Alaska. In Proceedings of the Permafrost, Seventh International Conference, Yellowknife, NT, Canada, 23–27 June 1998; Collection Nordicana. Université Laval: Quebec, QC, Canada, 1998; pp. 523–529. [Google Scholar]
- Shur, Y.; Jorgenson, M.T. Cryostructure development on the floodplain of the Colville River Delta, Northern Alaska. In Proceedings of the Permafrost, Seventh International Conference, Yellowknife, NT, Canada, 23–27 June 1998; Collection Nordicana. Université Laval: Quebec, QC, Canada, 1998; pp. 993–999. [Google Scholar]
- Fortier, D.; Allard, M. Late Holocene Syngenetic Ice-Wedge Polygons Development, Bylot Island, Canadian Arctic Archipelago. Can. J. Earth Sci. 2004, 41, 997–1012. [Google Scholar] [CrossRef]
- Fortier, D.; Allard, M. Frost cracking conditions, Bylot Island, Eastern Canadian Arctic Archipelago. Permafr. Periglac. Process. 2005, 16, 145–161. [Google Scholar] [CrossRef]
- Shur, Y.; Osterkamp, T. Thermokarst; Report INE 06.11; University of Alaska Fairbanks, Institute of Northern Engineering: Fairbanks, AK, USA, 2007; 50p. [Google Scholar]
- Kanevskiy, M.; Shur, Y.; Fortier, D.; Jorgenson, M.T.; Stephani, E. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quat. Res. 2011, 75, 584–596. [Google Scholar] [CrossRef]
- Kanevskiy, M.; Shur, Y.; Strauss, J.; Jorgenson, M.T.; Fortier, D.; Stephani, E.; Vasiliev, A. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 2016, 253, 370–384. [Google Scholar] [CrossRef]
- Jones, B.M.; Kanevskiy, M.Z.; Connor, B.; Peirce, J.; Tracey, B.; Curtis, K.; Urban, F.; Wessen, S.; Shur, Y. Climate Change and Infrastructure Development Drive Ice-Rich Permafrost Thaw in Point Lay (Kali), Alaska. Environ. Res. Ecol. 2025, in press. [Google Scholar]
- Parkhomenko, S.G. Some data on the environment of the Nizhne-Lenskiy Kray. Tr. Kom. Po Izucheniyu Yakutsk. ASSR 1929, 3, 206–245. (In Russian) [Google Scholar]
- Cabot, E.C. The Northern Alaskan Coastal Plain Interpreted from Aerial Photographs. Geogr. Rev. 1947, 37, 639–648. [Google Scholar] [CrossRef]
- Gorodkov, B.N. Frost cracking of soils in the north. Izv. Gos. Geogr. Obs. 1950, 82, 487–500. (In Russian) [Google Scholar]
- Pyavchenko, N.I. Peat Mounds; Izdatel’stvo Akademii Nauk SSSR: Moscow, USSR, 1955; 279p. (In Russian) [Google Scholar]
- Dostovalov, B.N. Regularities of development of tetragonal systems of ice and ground wedges in soil. In Periglacial Phenomena on the Territory of the USSR; Markov, K.K., Ed.; Moscow State University: Moscow, USSR, 1960; pp. 37–63. (In Russian) [Google Scholar]
- Drury, W.H., Jr. Patterned ground and vegetation on southern Bylot island, Northwest Territories, Canada. Contrib. Gray Herb. Harv. Univ. 1962, 3–111. [Google Scholar] [CrossRef]
- Wallace, R.E. Cave-in lakes in the Nabesna, Chisana, and Tanana River Valleys, eastern Alaska. J. Geol. 1948, 56, 171–181. [Google Scholar] [CrossRef]
- Black, R.F.; Barksdale, W.L. Oriented lakes of northern Alaska. J. Geol. 1949, 57, 105–118. [Google Scholar] [CrossRef]
- Hopkins, D.M. Thaw lakes and thaw sinks in the Imuruk Lake area, Seward Peninsula, Alaska. J. Geol. 1949, 57, 119–131. [Google Scholar] [CrossRef]
- Jahn, A. Geomorphological Modelling and Nature Protection in Arctic and Subarctic Environments. Geoforum 1976, 7, 121–137. [Google Scholar] [CrossRef]
- Mudrov, Y.V. Permafrost Phenomena in the Cryolithozone of Plains and Mountains: Basic Concepts and Definitions; Nauchnyy Mir: Moscow, Russia, 2007. (In Russian) [Google Scholar]
- Root, J.D. Ice-Wedge Polygons, Tuktoyaktuk Area; Paper 75-1, Part B; N.W.T. Geological Survey of Canada: Yellowknife, NT, Canada, 1975; p. 181. [Google Scholar]
- Van Everdingen, R.O. (Ed.) Multi-Language Glossary of Permafrost and Related Ground-Ice Terms; The Arctic Institute of North America, The University of Calgary: Calgary, AB, Canada, 1998. [Google Scholar]
- NSIDC Cryosphere Glossary. Available online: https://nsidc.org/learn/cryosphere-glossary (accessed on 25 June 2025).
- de Koven Leffingwell, E. The Canning River Region, Northern Alaska; professional paper 109; United States Geological Survey, Government Printing Office: Washington, DC, USA, 1919. [Google Scholar]
- Brown, R.J.E.; Kupsch, W.O. Permafrost Terminology; Technical Memorandum No. 111; Associate Committee on Geotechnical Research, National Research Council of Canada: Ottawa, ON, Canada, 1974. [Google Scholar]
- Vtyurin, B.I.; Litvinov, A.Y. Polygonal Formations In Polevye Geokriologicheskie (Merzlotnye) Issledovaniya; Akademii Nauk SSSR: Moscow, USSR, 1961; pp. 244–275. (In Russian) [Google Scholar]
- Tyrtikov, A.P. Development of Vegetation Cover and Permafrost Landforms; Nauka: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Brown, J. Soils of the Okpilak River region, Alaska. In The Periglacial Environment: Past and Present; Péwé, T.L., Ed.; McGill-Queen’s University Press: Montreal, QC, Canada, 1969; pp. 93–128. [Google Scholar]
- Jorgenson, M.T.; Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. 2007, 112, F02S17. [Google Scholar] [CrossRef]
- Katasonov, E.M. Lithology of Frozen Quaternary Sediments (cryolithology) of the Yana Coastal Plain; PNIIIS: Moscow, Russia, 2009. (In Russian) [Google Scholar]
- Zaikanov, V.G. Evolution of Permafrost Conditions of Floodplain Geosystems of Large Rivers of the North-East of the USSR. Ph.D. Thesis, USSR Institute of Hydrogeology and Engineering Geology, Moscow, USSR, 1987. (In Russian). [Google Scholar]
- Washburn, A.L. Geocryology: A Survey of Periglacial Processes and Environment; Edward Arnold: London, UK, 1979; 402p. [Google Scholar]
- Tolstikhin, N.I. Underground Water in the Frozen Zone of the Lithosphere; Gosgeolizdat: Moscow, USSR, 1941. (In Russian) [Google Scholar]
- Boytsov, M.N. Genesis and Evolution of Fractured-Polygonal Topography; Trudy VSEGEI, Novaya seriya; VSEGEI: Leningrad, USSR, 1963; Volume 90, pp. 55–80. [Google Scholar]
- Popov, A.I.; Rozenbaum, G.E.; Tumel, N.V. Cryolithology; Moscow State University: Moscow, USSR, 1985. (In Russian) [Google Scholar]
- Seppälä, M.; Gray, J.T.; Ricard, J. The development of depressed-centre ice-wedge polygons in the northernmost Ungava Peninsula, Québec, Canada. In Proceedings of the Fifth International Permafrost Conference, Trondheim, Norway, 2–5 August 1988; pp. 862–866. [Google Scholar]
- Morse, P.D.; Burn, C.R. Field observations of syngenetic ice wedge polygons, outer Mackenzie Delta, western Arctic coast, Canada. J. Geophys. Res. Earth Surf. 2013, 118, 1320–1332. [Google Scholar] [CrossRef]
- Mackay, J.R. Fissures and mud circles on Cornwallis Island, N.W.T. Can. Geogr. 1953, 1, 31–37. [Google Scholar] [CrossRef]
- Tarnocai, C.; Zoltai, S.C.; National Wetlands Working Group; Wetlands of Canada; Canada Committee on Ecological Land Classification, Environment Canada. Wetland of Arctic Canada. In Ecological Land Classification Series, No. 24, Sustainable Development Branch; Environment Canada, Ottawa, and Polyscience Publications Inc.: Montreal, QC, Canada, 1988; pp. 27–54. [Google Scholar]
- Shumskii, P.A. Study of Permafrost in Yakut Republic; Akademii Nauk SSSR: Moscow, USSR, 1952; Volume 3, pp. 142–161. (In Russian) [Google Scholar]
- Von Steche, H. Contribution to the issue of structural soil. In Beitrage zur Frage der Strukturbdden; Berichte, Mathematisch-Physikalischen Klasse 85; Sachischen Akademie der Wissenschaften: Leipzig, Germany, 1933; pp. 193–272. (In German) [Google Scholar]
- Konishchev, V.I.; Maslov, A.D. Mechanism of growth of syngenetic polygonal wedge ice. Vestn. Mosc. State Univ. Geogr. 1969, 4, 65–72. (In Russian) [Google Scholar]
- Yershov, E.D. General Geocryology; Moscow State University: Moscow, Russia, 2002. (In Russian) [Google Scholar]
- Andreev, V.N. Survey of Tundra Reindeer Pastures from Airplane; Glavsevmorputi Publishing House: Leningrad, USSR, 1938. (In Russian) [Google Scholar]
- Grigoriev, A.A. The Subarctic; Izdatel’stvo Geograficheskoy Literatury: Moscow, USSR, 1956. (In Russian) [Google Scholar]
- Péwé, T.L. Sand-wedge polygons (tesselations) in the McMurdo sound region, Antarctica—Progress report. Am. J. Sci. 1959, 257, 545–552. [Google Scholar] [CrossRef]
- Sletten, R.S.; Hallet, B.; Fletcher, R.C. Resurfacing time of terrestrial surfaces by the formation and maturation of polygonal patterned ground. J. Geophys. Res. 2003, 108, 8044. [Google Scholar] [CrossRef]
- Vinogradova, A.N. Geobotanical narrative of reindeer pastures in the Pyasina River area. Tr. Arkticheskogo Instituta 1937, 63, 5–45. (In Russian) [Google Scholar]
- Britton, M.E. Vegetation of the arctic tundra. In Arctic Biology, 2nd ed.; Hansen, H.P., Ed.; Oregon State University Press: Corvallis, OR, USA, 1957; pp. 26–72. [Google Scholar]
- Velikotskiy, M.A. The role of the segregated ice in formation of low center polygons in drained lakes basins of Yana-Indigirka Lowland. In Problems of Cryolithology; Popov, A.I., Ed.; Moscow State University: Moscow, USSR, 1983; Volume 9, pp. 99–109. (In Russian) [Google Scholar]
- Zaikanov, V.G. Formation of Structure and Properties of Floodplain Deposits of Large Rivers of Northern Yakutiya. In Verkhniy Gorizont Tolshchi Merzlykh Porod; Mel’nikiv, P.I., Shur, Y.L., Eds.; Nauka: Moscow, USSR, 1991; pp. 31–47. (In Russian) [Google Scholar]
- Minke, M.; Donner, N.; Karpov, N.S.; de Klerk, P.; Joosten, H. Distribution, diversity, development and dynamics of polygon mires: Examples from NE Yakutia (NE Siberia). Peatl. Int. 2007, 36–40. [Google Scholar]
- De Klerk, P.; Donner, N.; Karpov, N.S.; Minke, M.; Joosten, H. Short-term dynamics of a low-centered ice-wedge polygon near Chokurdakh (NE Yakutia, NE Siberia) and climate change during the last ca 1250 years. Quat. Sci. Rev. 2011, 30, 3013–3031. [Google Scholar] [CrossRef]
- Zibulski, R.; Herzschuh, U.; Pestryakova, L.A. Vegetation patterns along micro-relief and vegetation type transects in polygonal landscapes of the Siberian Arctic. J. Veg. Sci. 2016, 27, 377–386. [Google Scholar] [CrossRef]
- Ospennikov, E.N.; Trush, N.I. Ice Content of Thaw-Lake Basins and Lacustrine-Fluvial Deposits of Yana-Omoloy Interfluve and Methods of its Field Measurements. In Permafrost Research; Moscow State University: Moscow, USSR, 1974; Volume XIV, pp. 35–42. (In Russian) [Google Scholar]
- Kaplina, T.N. Modern Development of Ice Wedges in Kolyma Lowlands. In Problems of Cryolithology; Moscow State University: Moscow, USSR, 1976; Volume 5, pp. 79–86. (In Russian) [Google Scholar]
- Gasanov, S.S. Permafrost Structure and History of Permafrost Formation in Eastern Chukotka; Nauka: Moscow, USSR, 1969. (In Russian) [Google Scholar]
- Mackay, J.R. Some observations on the growth and deformation of epigenetic, syngenetic and anti-syngenetic ice wedges. Permafr. Periglac. Process. 1990, 1, 15–29. [Google Scholar] [CrossRef]
- Burn, C.R.; O’Neal, H.B. Subdivision of ice-wedge polygons, western Arctic coast. In Proceedings of the GeoQuebec 2015, 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference, Québec, QC, Canada, 20–23 September 2015. [Google Scholar]
- Andreev, V.N. Interpretation from Aerial Photographs of Different Tundra Types and Their Aerial Visual Characterization by Frost Cracking; Geograficheskiy sbornik, v. VII, Issues in aerial photography; AN SSSR: Moscow, USSR, 1955; pp. 103–120. (In Russian) [Google Scholar]
- Gray, J.T.; Seppälä, M. Deeply dissected tundra polygons on a glacio-fluvial outwash plain, Northern Ungava Peninsula, Québec. Géographie Phys. Quat. 1991, 45, 111–117. [Google Scholar] [CrossRef]
- Popov, A.I. Conditions of Yedoma formation during Pleistocene on coastal lowlands in Subarctic. Probl. Kriolitologii 1983, 11, 19–37. (In Russian) [Google Scholar]
- Chiasson, A.; Allard, M. Thermal contraction crack polygons in Nunavik (northern Quebec): Distribution and development of polygonal patterned ground. Permafr. Periglac. Process. 2022, 3, 195–213. [Google Scholar] [CrossRef]
- Mackay, J.R. The direction of ice wedge cracking in permafrost: Downward or upward. Can. J. Earth Sci. 1984, 21, 516–524. [Google Scholar] [CrossRef]
- Middendorf, A.F. Expedition to the north and east of Siberia. In Klimat Sibiri; Imperial Academy of Sciences: St. Petersburg, Russia, 1862; Volume 1, 314p. (In Russian) [Google Scholar]
- Ellsworth, L.; Smith, E.H. Report of the Preliminary Results of the Aeroarctic Expedition with “Graf Zeppelin,” 1931. Geogr. Rev. 1932, 22, 61–82. [Google Scholar] [CrossRef]
- Von Schennerlein, B. The aerophotogrammetric research program of the Arctic voyage of the airship “Graf Zeppelin” LZ 127 in 1931. Polarforschung 2015, 84, 67–92. (In German) [Google Scholar]
- Von Weickmann, L. Observation of structural soil during the polar voyage of the “Graf Zeppelin”, July 1931. Berichte Iiber Die Verhandlungen Der Sachs. Akad. Der Wiss. Zu Leipzig. Math.-Phys. Kl. 1932, 84, 121–126. [Google Scholar]
- Molchanov, P. The first scientific flight of the dirigible “Graf Zeppelin” to the Arctic. Priroda 1932, 3, 215–236. (In Russian) [Google Scholar]
- Sumgin, M.I.; Kachurin, S.P.; Tolstikhin, N.I.; Tumel, V.F. General Permafrost Science; Akademiya Nauk SSSR: Moscow, USSR, 1940. (In Russian) [Google Scholar]
- Obruchev, S.V. Chessboard (orthogonal) forms in Permafrost region. Izv. Gos. Geogr. Obs. 1938, 70, 737–746. (In Russian) [Google Scholar]
- Muller, S.W. Frozen in Time: Permafrost and Engineering Problems; ASCE: Reston, VA, USA, 2008. [Google Scholar]
- Dostovalov, B.N.; Kudryavtsev, V.A. General Permafrost Science; Moscow State University: Moscow, USSR, 1967. (In Russian) [Google Scholar]
- Soloviev, P.A.; Tolstikhin, O.N. Cryogenic features of the permafrost region. In General Permafrost Science; Melnikov, P.I., Tolstikhin, O.N., Eds.; Nauka: Novosibirsk, USSR, 1974. (In Russian) [Google Scholar]
- Grechishchev, S.E. Frost cracking. In Fundamentals of Modeling of Cryogenic Physical-Geological Processes; Grechishchev, S.E., Chistotinov, L.V., Shur, Y.L., Eds.; Nedra: Moscow, USSR, 1984; pp. 104–127. (In Russian) [Google Scholar]
- Kaplina, T.N.; Ratz, M.V. Geometry of Polygonal System of Frost Cracks; Trudy PNIIIS: Moscow, USSR, 1972; Volume 18, pp. 206–211. (In Russian) [Google Scholar]
- Ratz, M.V.; Chernishov, S.N. Fracturing and Fracture Properties of Rocks; Nedra: Moscow, USSR, 1970. (In Russian) [Google Scholar]
- Romanovskii, N.N. The Cold of the Earth; Prosveshchenie: Moscow, USSR, 1980. (In Russian) [Google Scholar]
- Astakhov, V.I. Introduction to Quaternary Geology; St. Petersburg University: Saint Petersburg, Russia, 2008. (In Russian) [Google Scholar]
- Gusev, A.I. On the genesis of fossil ice. Sb. Statey Po Geol. Arktiki 1954, 43, 173–184. (In Russian) [Google Scholar]
- Shur, Y.L.; Petrukhin, N.P.; Slavin-Borovsky, V.B. Shore erosion in the permafrost region. In Cryogenic Processes; Grechishchev, S.E., Chistotinov, L.V., Shur, Y.L., Eds.; Nauka (Science) Publishing House: Moscow, USSR, 1978; pp. 55–72. (In Russian) [Google Scholar]
- Zimov, S.A. The ABCs of Drawings by Nature; Nauka: Moscow, Russia, 1993. (In Russian) [Google Scholar]
- Zaikanov, V.G. Evolution of natural territorial complexes of river valleys in the north of Yakutia. In Kriogennye Processy i Yavleniya v Sibiri; Nekrasov, I.A., Ed.; Institut Merzlotovedeniya: Yakutsk, USSR, 1984; pp. 110–119. (In Russian) [Google Scholar]
- Plug, L.J.; Werner, B. Nonlinear dynamics of ice-wedge networks and resultant sensitivity to severe cooling events. Nature 2002, 417, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Burn, C.R. A field perspective on modelling ‘single-ridge’ ice-wedge polygons. Permafr. Periglac. Process. 2004, 15, 59–65. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shur, Y.; Jones, B.M.; Jorgenson, M.T.; Kanevskiy, M.Z.; Liljedahl, A.; Walker, D.A.; Ward Jones, M.K.; Fortier, D.; Vasiliev, A. Formation of Low-Centered Ice-Wedge Polygons and Their Orthogonal Systems: A Review. Geosciences 2025, 15, 249. https://doi.org/10.3390/geosciences15070249
Shur Y, Jones BM, Jorgenson MT, Kanevskiy MZ, Liljedahl A, Walker DA, Ward Jones MK, Fortier D, Vasiliev A. Formation of Low-Centered Ice-Wedge Polygons and Their Orthogonal Systems: A Review. Geosciences. 2025; 15(7):249. https://doi.org/10.3390/geosciences15070249
Chicago/Turabian StyleShur, Yuri, Benjamin M. Jones, M. Torre Jorgenson, Mikhail Z. Kanevskiy, Anna Liljedahl, Donald A. Walker, Melissa K. Ward Jones, Daniel Fortier, and Alexander Vasiliev. 2025. "Formation of Low-Centered Ice-Wedge Polygons and Their Orthogonal Systems: A Review" Geosciences 15, no. 7: 249. https://doi.org/10.3390/geosciences15070249
APA StyleShur, Y., Jones, B. M., Jorgenson, M. T., Kanevskiy, M. Z., Liljedahl, A., Walker, D. A., Ward Jones, M. K., Fortier, D., & Vasiliev, A. (2025). Formation of Low-Centered Ice-Wedge Polygons and Their Orthogonal Systems: A Review. Geosciences, 15(7), 249. https://doi.org/10.3390/geosciences15070249