Statistical Investigation of the 2020–2023 Micro-Seismicity in Enguri Area (Georgia)
Abstract
1. Introduction
2. Seismo-Tectonic Settings
3. Seismic Network and Data
3.1. Description of the Seismic Network
3.2. Seismic Ambient Noise Analysis and Station Performance
3.3. Local Magnitude Estimation and Uncertainty
4. Methods
4.1. The Frequency–Magnitude Distribution
4.2. The Allan Factor
4.3. The Global and Local Coefficient of Variation
4.4. The Detrended Fluctuation Analysis
- The series , where , and N is the size of the series, is integrated and the integrated series is divided into boxes of equal size n.
- For each n-size box, a line fits by the least square method and is subtracted from .
- The fluctuation, , is calculated as
- Steps (i)–(iii) are repeated for all the available box sizes n. A power-law relationship between and n indicates the presence of long-range correlation in the series, as follows:
- The numerical value of the scaling exponent provides insight into the temporal correlation structure of the seismic series, as follows:
- If , the series is uncorrelated.
- If , the series exhibits persistent correlations, meaning that an increase (or decrease) in one period is likely to be followed by a similar trend in the next.
- If , the series displays antipersistent correlations, where an increase is typically followed by a decrease, and vice versa.
4.5. The Natural Visibility Graph
4.6. The Correlogram-Based Periodogram
5. Results
- The adjacency matrices of both graphs were randomly permuted, while preserving the null elements on the diagonal and maintaining symmetry. These constraints ensure that node connections are shuffled randomly, but the overall graph structure remains consistent with the visibility graph rules.
- For each permutation and time lag , the value was computed.
- This process was repeated 100 times, resulting in a null distribution of values for each time lag .
- The 95th percentile of each distribution was calculated to determine the threshold for statistical significance.
- These percentiles were then used to construct a 95% confidence envelope for . If the observed value exceeds this envelope at a given , it is considered statistically significant.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. Solid Earth 2006, 111, 1–26. [Google Scholar] [CrossRef]
- Allen, M.; Jackson, J.; Walker, R. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics 2004, 23, 1–16. [Google Scholar] [CrossRef]
- Mosar, J.; Kangarli, T.; Bochud, M.; Glasmacher, U.A.; Rast, A.; Brunet, M.F.; Sosson, M. Cenozoic-recent tectonics and uplift in the greater Caucasus: A perspective from Azerbaijan. Geol. Soc. Spec. Publ. 2010, 340, 261–280. [Google Scholar] [CrossRef]
- Zor, E.; Sandvol, E.; Gürbüz, C.; Türkelli, N.; Seber, D.; Barazangi, M. The crustal structure of the East Anatolian Plateau (Turkey) from receiver functions. Geophys. Res. Lett. 2006, 33, L08301. [Google Scholar] [CrossRef]
- Copley, A.; Jackson, J. Active tectonics of the Turkish–Iranian Plateau. Tectonics 2006, 25, TC6006. [Google Scholar] [CrossRef]
- Mcclusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. Solid Earth 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Aktuğ, B.; Meherremov, E.; Kurt, M.; Özdemir, S.; Esedov, N.; Lenk, O. GPS constraints on the deformation of Azerbaijan and surrounding regions. J. Geodyn. 2013, 67, 40–45. [Google Scholar] [CrossRef]
- Kadirov, F.; Gadirov, A.; Abdullayev, N. Gravity modelling of the regional profile across South Caspian basin and tectonic implications. In The Modern Problems of Geology and Geophysics of Eastern Caucasus and the South Caspian Depression; Nafta-Press: Baku, Azerbaijan, 2012; Volume 231, p. 251. [Google Scholar]
- Müller, M.; Asch, G.; Ratschbacher, L.; Stöckhert, B.; Zor, E.; Akal, C.; Sipahioglu, S.; Lueth, S.; Kind, R. Present-day deformation across the Lesser and Greater Caucasus from geodetic and seismological data. Earth Planet. Sci. Lett. 2022, 579, 117369. [Google Scholar]
- Sokhadze, G.; Floyd, M.; Godoladze, T.; King, R.; Cowgill, E.; Javakhishvili, Z.; Hahubia, G.; Reilinger, R. Active convergence between the lesser and greater Caucasus in Georgia: Constraints on the tectonic evolution of the lesser-greater Caucasus continental collision. Earth Planet. Sci. Lett. 2018, 481, 154–161. [Google Scholar] [CrossRef]
- Caputo, M.; Gamkrelidze, I.; Malvezzi, V.; Sgrigna, V.; Shengelaia, G.; Zilpimiani, D. Geostructural basis and geophysical investigations for the seismic hazard assessment and prediction in the Caucasus. Il Nuovo Cimento C 2000, 23, 191–216. [Google Scholar]
- Philip, H.; Cisternas, A.; Gvishiani, A.; Gorshkov, A. The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics 1989, 161, 1–21. [Google Scholar] [CrossRef]
- Tan, O.; Taymaz, T. Active tectonics of the Caucasus: Earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. Spec. Pap. Geol. Soc. Am. 2006, 409, 531. [Google Scholar]
- Telesca, L.; Tsereteli, N.; Chelidze, T.; Lapenna, V. Spectral investigation of the relationship between seismicity and water level in the Enguri high dam area (Georgia). Geosciences 2024, 14, 22. [Google Scholar] [CrossRef]
- Karamzadeh, N.; Tsereteli, N.; Gaucher, E.; Tugushi, N.; Shubladze, T.; Varazanashvili, O.; Rietbrock, A. Seismological study around the Enguri dam reservoir (Georgia) based on old catalogs and ongoing monitoring. J. Seismol. 2023, 27, 953–977. [Google Scholar] [CrossRef]
- Braun, T.; Cesca, S.; Kuhn, D.; Martirosian-Janssen, A.; Dahm, T. Anthropogenic seismicity in Italy and its relation to tectonics: State of the art and perspectives. Anthropocene 2018, 21, 80–94. [Google Scholar] [CrossRef]
- Basili, R.; Danciu, L.; Beauval, C.; Sesetyan, K.; Vilanova, S.P.; Adamia, S.; Arroucau, P.; Atanackov, J.; Baize, S.; Canora, C.; et al. The European Fault-Source Model 2020 (EFSM20): Geologic input data for the European Seismic Hazard Model 2020. Nat. Hazards Earth Syst. Sci. 2024, 24, 3945–3976. [Google Scholar] [CrossRef]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J.C. From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef]
- Khoshnevis, N.; Taborda, R.; Azizzadeh-Roodpish, S.; Telesca, L. Analysis of the 2005–2016 earthquake sequence in Northern Iran using the visibility graph method. Pure Appl. Geophys. 2017, 174, 4003–4019. [Google Scholar] [CrossRef]
- Telesca, L.; Chen, C.C.; Lovallo, M. Investigating the relationship between seismological and topological properties of seismicity in Italy and Taiwan. Pure Appl. Geophys. 2020, 177, 4119–4126. [Google Scholar] [CrossRef]
- Murusidze, G. Seismicity and the possible position of strong earthquakes sources in the area of the Inguri HPP. In Seismic Impacts on Hydrotechnical and Power Structures; Savarensky, E., Ed.; Pub, House Nauka: Moscow, Russia, 1980; pp. 73–80. [Google Scholar]
- McNamara, D.E.; Buland, R.P. Ambient noise levels in the continental United States. Bull. Seismol. Soc. Am. 2004, 94, 1517–1527. [Google Scholar] [CrossRef]
- Krischer, L.; Megies, T.; Barsch, R.; Beyreuther, M.; Lecocq, T.; Caudron, C.; Wassermann, J. ObsPy: A bridge for seismology into the scientific Python ecosystem. Comput. Sci. Discov. 2015, 8, 014003. [Google Scholar] [CrossRef]
- Peterson, J. Observations and Modeling of Seismic Background Noise; U.S. Geological Survey Open-File Report 93-322; U.S. Geological Survey: Reston, VA, USA, 1993. [CrossRef]
- Ringler, A.T.; Hutt, C.R. Self-Noise Models of Seismic Instruments. Seismol. Res. Lett. 2010, 81, 972–983. [Google Scholar] [CrossRef]
- Anthony, R.E.; Ringler, A.T.; Wilson, D.C.; McNamara, D.E. Ambient Noise Levels in the Continental United States. Seismol. Res. Lett. 2020, 91, 2199–2210. [Google Scholar]
- Casey, A.T.; Ringler, A.T.; Anthony, R.E. Ambient Seismic Noise as a Measure of Station Performance. Seismol. Res. Lett. 2018, 89, 1453–1460. [Google Scholar] [CrossRef]
- Sleeman, R.; van Wettum, A.; Trampert, J. Three-channel correlation analysis: A new technique to measure instrumental noise of digitizers and seismic sensors. Bull. Seismol. Soc. Am. 2006, 96, 258–271. [Google Scholar] [CrossRef]
- Richter, C.F. An Instrumental Earthquake Magnitude Scale. Bull. Seismol. Soc. Am. 1935, 25, 1–32. [Google Scholar] [CrossRef]
- Hutton, L.K.; Boore, D.M. The ML Scale in Southern California. Bull. Seismol. Soc. Am. 1987, 77, 2074–2094. [Google Scholar] [CrossRef]
- Havskov, J.; Ottemöller, L. SEISAN: The Earthquake Analysis Software for Windows, Solaris, Linux and MacOSX. Seismol. Res. Lett. 2010, 81, 532–540. [Google Scholar]
- Gutenberg, R.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Scholz, C.H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am. 1968, 58, 399–415. [Google Scholar] [CrossRef]
- Wyss, M. Towards a physical understanding of the earthquake frequency distribution. Geophys. J. R. Astron. Soc. 1973, 31, 341–359. [Google Scholar] [CrossRef]
- Kárník, V.; Klíma, K. Magnitude-frequency distribution in the European-Mediterranean earthquake regions. Tectonophysics 1993, 220, 309–323. [Google Scholar] [CrossRef]
- Utsu, T. Representation and analysis of the earthquake size distribution: A historical review and some new approaches. Pageoph 1999, 155, 509–535. [Google Scholar] [CrossRef]
- Wiemer, S.; Wyss, M. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Thurner, S.; Lowen, S.B.; Feurstein, M.C.; Heneghan, C.; Feichtinger, H.G.; Teich, M.C. Analysis, synthesis, and estimation of fractal-rate stochastic point processes. Fractals 1997, 5, 565–596. [Google Scholar] [CrossRef]
- Fadel, P.; Barman, S.; Phillips, S.; Gebber, G. Fractal fluctuations in human respiration. J. Appl. Physiol. 2004, 97, 2056–2064. [Google Scholar] [CrossRef]
- Fadel, P.; Orer, H.; Barman, S.; Vongpatanasin, W.; Victor, R.; Gebber, G. Fractal properties of human muscle sympathetic nerve activity. Am. J. Physiol. Circ. Physiol. 2004, 286, H1076–H1087. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhuang, X.T.; Liu, Z.Y.; Huang, W.G. Time–clustering behavior of sharp fluctuation sequences in Chinese stock markets. Chaos Solitons Fractals 2012, 45, 838–845. [Google Scholar] [CrossRef]
- Anteneodo, C.; Malmgren, R.; Chialvo, D. Poissonian bursts in e–mail correspondence. Eur. Phys. J. B—Condensed Matter Complex Syst. 2010, 75, 389–394. [Google Scholar] [CrossRef]
- Telesca, L.; ElShafey Fat ElBary, R.; Amin Mohamed, A.E.E.; ElGabry, M. Analysis of the cross-correlation between seismicity and water level in the Aswan area (Egypt) from 1982 to 2010. Nat. Hazards Earth Syst. Sci. 2012, 12, 2203–2207. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G. On the sampling distribution of Allan factor estimator for a homogeneous Poisson process and its use to test inhomogeneities at multiple scales. Phys. A Stat. Mech. Its Appl. 2013, 392, 1080–1089. [Google Scholar] [CrossRef]
- Kagan, Y.Y.; Jackson, D.D. Long-Term Earthquake Clustering. Geophys. J. Int. 1991, 104, 117–134. [Google Scholar] [CrossRef]
- Shinomoto, S.; Miura, K.; Koyama, S. A measure of local variation of inter-spike intervals. Biosystems 2005, 79, 67–72. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef]
- Heneghan, C.; McDarby, G. Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys. Rev. E 2000, 62, 6103–6110. [Google Scholar] [CrossRef]
- Talkner, P.; Weber, R.O. Power spectrum and detrended fluctuation analysis: Application to daily temperatures. Phys. Rev. E 2000, 62, 150–160. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.A.; Havlin, S.; Bunde, A. Detecting Long-range Correlations with Detrended Fluctuation Analysis. Phys. A Stat. Mech. Its Appl. 2001, 295, 441–454. [Google Scholar] [CrossRef]
- Colás, A.; Vigil, L.; Vargas, B.; Cuesta-Frau, D.; Varela, M. Detrended Fluctuation Analysis in the prediction of type 2 diabetes mellitus in patients at risk: Model optimization and comparison with other metrics. PLoS ONE 2019, 14, e0225817. [Google Scholar] [CrossRef]
- Zhao, S.; Jiang, Y.; He, W.; Mei, Y.; Xie, X.; Wan, S. Detrended fluctuation analysis based on best-fit polynomial. Front. Environ. Sci. 2022, 10, 1054689. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Lopez, M.C.; Molist, J.M. Multiparametric statistical investigation of seismicity occurred at El Hierro (Canary Islands) from 2011 to 2014. Tectonophysics 2016, 672–673, 121–128. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Study of the temporal correlations in the magnitude time series before major earthquakes in Japan. J. Geophys. Res. Space Phys. 2014, 119, 9192–9206. [Google Scholar] [CrossRef]
- Lennartz, S.; Livina, V.N.; Bunde, A.; Havlin, S. Long-term memory in earthquakes and the distribution of interoccurrence times. Europhys. Lett. 2008, 81, 69001. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Skordas, E. Scale-specific order parameter fluctuations of seismicity before mainshocks: Natural time and detrended fluctuation analysis. Europhys. Lett. 2012, 99, 001. [Google Scholar] [CrossRef]
- Telesca, L.; Chen, C.C. Fractal and spectral investigation of the shallow seismicity in Taiwan. J. Asian Earth Sci. 2019. [Google Scholar] [CrossRef]
- Zhang, R.; Ashuri, B.; Shyr, Y.; Deng, Y. Forecasting construction cost index based on visibility graph: A network approach. Physica A 2018, 493, 239–252. [Google Scholar] [CrossRef]
- Long, Y. Visibility graph network analysis of gold price time series. Physica A 2013, 392, 3374–3384. [Google Scholar] [CrossRef]
- Wang, N.; Li, D.; Wang, Q. Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory. Physica A 2012, 391, 6543–6555. [Google Scholar] [CrossRef]
- Jiang, W.; Wei, B.; Zhan, J.; Xie, C.; Zhou, D. A visibility graph power averaging aggregation operator: A methodology based on network analysis. Comput. Ind. Eng. 2016, 101, 260–268. [Google Scholar] [CrossRef]
- Chen, S.; Hu, Y.; Mahadevan, S.; Deng, Y. A visibility graph averaging aggregation operator. Physica A 2014, 403, 1–12. [Google Scholar] [CrossRef]
- Yu, M.; Hillebrand, A.; Gouw, A.A.; Stam, C.J. Horizontal visibility graph transfer entropy (HVG-TE): A novel metric to characterize directed connectivity in large-scale brain networks. NeuroImage 2017, 156, 249–264. [Google Scholar] [CrossRef]
- Bhaduri, S.; Ghosh, D. Electroencephalographic data analysis with visibility graph technique for quantitative assessment of brain dysfunction. Clin. EEG Neurosci. 2015, 46, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Ahmadlou, M.; Adeli, H.; Adeli, A. New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. J. Neural Transm. 2010, 117, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-San Juan, B.; Guzmán-Vargas, L. Earthquake magnitude time series: Scaling behavior of visibility networks. Eur. Phys. J. B 2013, 86, 454. [Google Scholar] [CrossRef]
- Zheng, M.; Domanskyi, S.; Piermarocchi, C.; Mias, G.I. Visibility graph based temporal community detection with applications in biological time series. Sci. Rep. 2021, 11, 5623. [Google Scholar] [CrossRef]
- Lacasa, L.; Nicosia, V.; Latora, V. Network structure of multivariate time series. Sci. Rep. 2015, 5, 15508. [Google Scholar] [CrossRef]
- Carmona-Cabezas, R.; Gómez-Gómez, J.; Ariza-Villaverde, A.B.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Multiplex Visibility Graphs as a complementary tool for describing the relation between ground level O3 and NO2. Atmos. Pollut. Res. 2020, 11, 205–212. [Google Scholar] [CrossRef]
- Priestley, M.B. Spectral Analysis and Time Series; Academic Press: London, UK; New York, NY, USA, 1981; p. 890. [Google Scholar]
- Ahdesmäki, M.; Lähdesmäki, H.; Pearson, R.; Huttunen, H.; Yli-Harja, O. Robust detection of periodic time series measured from biological systems. BMC Bioinform. 2005, 6, 117. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Ramirez-Rojas, A.; Flores-Marquez, L. Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone. Physica A 2013, 391, 1553–1562. [Google Scholar] [CrossRef]
- Azizzadeh-Roodpish, S.; Cramer, C.H. Visibility graph analysis of Alaska crustal and Aleutian subduction zone seismicity: An investigation of the correlation between b value and k–M slope. Pure Appl. Geophys. 2018, 175, 4241–4252. [Google Scholar] [CrossRef]
- Perez-Oregon, J.; Lovallo, M.; Telesca, L. Visibility graph analysis of synthetic earthquakes generated by the Olami–Feder–Christensen spring-block model. Chaos 2020, 30, 093111. [Google Scholar] [CrossRef]
- Li, L.; Luo, G.; Liu, M. The K-M Slope: A Potential Supplement for b-Value. Seismol. Res. Lett. 2023, 94, 1892–1899. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Toth, L. Visibility graph analysis of 2002–2011 Pannonian seismicity. Physica A 2014, 416, 219–224. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Ramirez-Rojas, A.; Flores-Marquez, L. Relationship between the frequency magnitude distribution and the visibility graph in the synthetic seismicity generated by a simple stick-slip system with asperities. PLoS ONE 2014, 9, e106233. [Google Scholar] [CrossRef] [PubMed]
- Telesca, L.; Thai, A.T.; Lovallo, M.; Cao, D.T.; Nguyen, L.M. Shannon Entropy Analysis of Reservoir-Triggered Seis-micity at Song Tranh 2 Hydropower Plant, Vietnam. Appl. Sci. 2022, 12, 8873. [Google Scholar] [CrossRef]
- Saar, M.; Manga, M. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth Planet. Sci. Lett. 2003, 214, 605–618. [Google Scholar] [CrossRef]
- Talwani, P.; Acree, S. Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure Appl. Geophys. 1984, 122, 947–965. [Google Scholar] [CrossRef]
Station | Lat | Lon | Elevation (m) | Installation Depth (m) | Starting Time | Ending Time |
---|---|---|---|---|---|---|
BRID | 42.7424 | 41.9827 | 496 | Surface | 21/10/2020 | currently |
BUFF | 42.7052 | 41.9330 | 369 | 19 | 21/10/2020 | currently |
NIKA | 42.6583 | 41.9701 | 277 | 17 | 21/10/2020 | currently |
KIT1 | 42.7563 | 42.0336 | 427 | 250 | 23/10/2020 | currently |
DOG | 42.7901 | 42.0518 | 740 | 20 | 15/12/2020 | currently |
GULB | 42.7734 | 41.9329 | 1877 | Surface | 22/09/2021 | 05/06/23 |
KETI | 42.7185 | 42.0841 | 418 | Surface | 06/10/21 | currently |
HPP | 42.6672 | 41.8504 | 300 | Surface | 01/01/22 | currently |
GAL | 42.6316 | 41.7356 | 54 | Surface | 23/10/2023 | currently |
OKM | 42.7262 | 41.7703 | 227 | Surface | 31/10/2023 | currently |
Sensor Type | Digitizer | Stations | Response Type | Bandwidth (Flat Velocity Response) | Dynamic Range |
---|---|---|---|---|---|
Trillium Compact Posthole 20s | Centaur-4 [CTR4-3s] (3-CH) | KIT1, BUFF, NIKA, DOG | Broadband (velocity) | 0.008–100+ Hz | >156 dB @ 1 Hz |
Kinemetrics MBB-2 | Centaur-4 [CTR4-3s] (3-CH) | KETI, BRID, GULB | Broadband (velocity) | 0.03–80 Hz | >155 dB @ 1 Hz |
4.5 Hz Geophone PE-6/B | DATA-CUBE3 Type 2 | HPP, OKM, GAL | Short-period (velocity) | 4.5–80 Hz | 100–110 dB |
Station | Vrms Vertical (m/s) | Vrms HHX (m/s) | Vrms HHY (m/s) | Vrms Horizontal Avg (m/s) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1–10 Hz | 5–15 Hz | 1–10 Hz | 5–15 Hz | 1–10 Hz | 5–15 Hz | 1–10 Hz | 5–15 Hz | ||||
BRID | 0.0230 | 0.0107 | 0.0324 | 0.0172 | 0.0383 | 0.0195 | 0.0355 | 0.0184 | |||
BUFF | 0.0136 | 0.0082 | 0.0201 | 0.0135 | 0.0150 | 0.0081 | 0.0177 | 0.0112 | |||
DOG | 0.0168 | 0.0031 | 0.0189 | 0.0040 | 0.0178 | 0.0040 | 0.0183 | 0.0040 | |||
KETI | 0.0637 | 0.0306 | 0.1315 | 0.0392 | 0.1333 | 0.0357 | 0.1324 | 0.0375 | |||
KIT1 | 0.0092 | 0.0018 | 0.0073 | 0.0016 | 0.0082 | 0.0015 | 0.0078 | 0.0015 | |||
GULB | 0.0092 | 0.0022 | 0.0080 | 0.0020 | 0.0112 | 0.0040 | 0.0096 | 0.0030 | |||
NIKA | 0.0247 | 0.0050 | 0.0240 | 0.0031 | 0.0290 | 0.0036 | 0.0266 | 0.0033 | |||
GAL | 0.0355 | 0.0400 | 0.1509 | 0.1735 | 0.0967 | 0.1309 | 0.1267 | 0.1537 | |||
HPP | 0.0591 | 0.0585 | 0.0723 | 0.0561 | 0.0693 | 0.0552 | 0.0708 | 0.0556 | |||
OKM | 0.0250 | 0.0163 | 0.0248 | 0.0144 | 0.0253 | 0.0138 | 0.0251 | 0.0141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telesca, L.; Tsereteli, N.; Tugushi, N.; Chelidze, T. Statistical Investigation of the 2020–2023 Micro-Seismicity in Enguri Area (Georgia). Geosciences 2025, 15, 247. https://doi.org/10.3390/geosciences15070247
Telesca L, Tsereteli N, Tugushi N, Chelidze T. Statistical Investigation of the 2020–2023 Micro-Seismicity in Enguri Area (Georgia). Geosciences. 2025; 15(7):247. https://doi.org/10.3390/geosciences15070247
Chicago/Turabian StyleTelesca, Luciano, Nino Tsereteli, Nazi Tugushi, and Tamaz Chelidze. 2025. "Statistical Investigation of the 2020–2023 Micro-Seismicity in Enguri Area (Georgia)" Geosciences 15, no. 7: 247. https://doi.org/10.3390/geosciences15070247
APA StyleTelesca, L., Tsereteli, N., Tugushi, N., & Chelidze, T. (2025). Statistical Investigation of the 2020–2023 Micro-Seismicity in Enguri Area (Georgia). Geosciences, 15(7), 247. https://doi.org/10.3390/geosciences15070247