Chemical and Mineralogical Characterizations of Different Kaolinitic Clays from Burkina Faso: Feasibility for the Synthesis of Geopolymer Binders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials: Clays and Activator
2.1.1. Identification, Preparation, and Physical Characteristics of Clays
2.1.2. Activator
2.2. Experimental Methods
2.2.1. Study Protocol
- Aspect 1: The chemical and mineralogical characterization of the clays was conducted to identify those with the highest kaolinite content and amorphous phase content, as these were more likely to react efficiently with an alkaline activator.
- Aspect 2: The pastes were prepared using 100 g of each calcined clay mixed with 80 g of a 12 M NaOH solution. Based on the criteria of this study, the clays were deemed reactive if the paste hardened within 48 h at laboratory room temperature (30 ± 5 °C). The hardening of the paste was evaluated through manual touch followed by a needle penetration test. A needle (2 mm in diameter, 50 mm in length) was dropped vertically from an average height of 15 cm onto the surface of the paste. A 150 g ball attached to the top of the needle ensured free fall. The test was performed every 24 h for up to 7 days. The paste was considered hardened if the needle penetration did not exceed 5 mm.
- Aspect 3: The mechanical characterization of the pastes after curing was conducted to determine the most reactive clay, which was expected to exhibit the highest compressive strength. This parameter is fundamental in selecting construction materials. The mechanical resistance was evaluated using prismatic specimens (4 × 4 × 16 cm3) prepared with 800 g of calcined clay and 640 g of 12 M NaOH (Figure 3). The pastes were poured into the molds in two layers, each compacted with 60 blows using a shock table. To prevent water evaporation during setting and hardening, the specimens were covered with a polyethylene film. These were then stored at laboratory room temperature (30 ± 5 °C) for 7 days, followed by heat treatment in an oven at 60 °C for an additional 7 days, following the procedure described by Ferone et al. [35]. The total curing period before mechanical testing was 14 days.
- Aspect 4: After identifying the most reactive clay, it was used to synthesize a geopolymer binder. Prismatic samples (4 × 4 × 16 cm3) were prepared and subjected to a 14-day curing process: 7 days at ambient laboratory temperature, followed by 7 days of heat treatment in an oven at 30, 60, and 90 °C.
2.2.2. Characterization Methods
- Chemical analysis
- Thermal analysis (TG/DTA)
- X-ray diffraction analysis (XRD)
- Fourier transform infrared spectroscopy (FTIR)
- Amorphous phase content
- Reactivity evaluation
- Compressive strength testing
3. Results
3.1. Chemical, Thermal, and Mineralogical Characteristics of Clays
3.1.1. Chemical Characteristics of Clays
3.1.2. Thermal Characteristics of Clays
3.1.3. Mineral Characteristics of Clays
3.1.4. Amorphous Characteristics of Calcined Clays
3.2. Feasibility of the Synthesis of Geopolymer Binder Using Calcined Clays
3.2.1. Reactivity of Calcined Clays in the Presence of an Alkaline Solution
3.2.2. Mechanical and Mineralogical Characteristics of the Geopolymer Binder
4. Discussion
- Physical characteristics of clays and their reactivity
- Correlations between mineralogical composition and reactive behavior of clays
- Impact of kaolinite content on geopolymerization and the performance of geopolymers
- Inhibitory role of paragonite on geopolymerization
- Implications for precursor selection
5. Conclusions
- Aluminosilicate composition: All clays were confirmed as aluminosilicates based on their alumina and silica content. Mineralogical analysis revealed significant variations in the initial kaolinite content and amorphous proportions. The Saaba and Kamboinsé clays exhibited the highest kaolinite content (83.1% and 58.3%, respectively) and amorphous proportions (31.8% and 24.3%, respectively), surpassing the other samples (Selogo, Tougou, Kandarfa, and Sabcé).
- The reactivity of these clays through the setting/hardening times of their pastes made it possible to highlight the hardening of five (05) pastes out of six (06) at variable time intervals: 24 h for the paste from Saaba clay, 48 h for that with Kamboinsé clay, and beyond 48 h for pastes from clays from Selogo, Tougou, and Kandarfa. The paste made with Sabcé clay did not harden after seven days due to its low reactivity.
- Compressive strength of geopolymers: The geopolymer samples derived from the Saaba and Kamboinsé clays exhibited the highest compressive strengths (14 MPa and 10 MPa, respectively), which were attributed to their elevated amorphous kaolinite contents. These results suggest that Saaba clay is particularly well-suited for the synthesis of geopolymer binders.
- The increase in compressive strength, combined with a weight loss of the Saaba clay geopolymer binders, was observed as a function of the temperature variation (from 30 to 90 °C). Its mineralogical characterization revealed the formation of new crystalline phases (faujasite, zeolite A, and hydrosodalite), indicating a favorable geopolymerization reaction, particularly due to the dissolution of aluminosilicates from the Saaba sample and the subsequent formation of the geopolymer gel.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbols | Definitions |
°C | Degree centigrade |
M | Mole |
OPC | Ordinary Portland cement |
Al2O3·2SiO2·2H2O | Chemical formula of kaolinite |
Al2O3·2SiO2 | Chemical formula of metakaolinite |
2H2O | Chemical formula of water |
MK | Metakaolin |
D90 | Size of the particles for which 90% of the sample is smaller |
RC | Compressive strength |
S | Cross-sectional area of a sample |
SiO2 | Silicon oxide |
Fe2O3 | Iron oxide |
MgO | Magnesium oxide |
MnO2 | Manganese oxide |
P2O5 | Phosphorus oxide |
NaOH | Sodium hydroxide |
MPa | Mega Pascal |
CaO | Calcium oxide |
D50 | Size of the particles for which 50% of the sample is smaller |
BET | Brunauer, Emmett, and Teller (specific surface area) |
H2SO4 | Sulfuric acid |
Mair | Mass of a saturated sample measured in air |
Mwater | Mass of a saturated sample measured in water |
Al2O3 | Aluminum oxide |
K2O | Potassium oxide |
Na2O | Sodium oxide |
TiO2 | Titanium oxide |
LOI | Loss on ignition |
ICP-OES | Inductively coupled plasma-optical emission spectrometry |
DTA | Differential thermal analyses |
DG | Thermogravimetric and differential |
Mi | Initial mass of the sample |
P | Relative mass loss of the sample |
ME.K | Mass of chemical water from the dehydroxylated kaolinite |
Mmol.H2O | Molar mass of water |
% K | Percentage of kaolinite |
References
- Castel, A. Bond between steel reinforcement and geopolymer concrete. Handb. Low Carbon Concr. 2016, 375–387. [Google Scholar] [CrossRef]
- Ahmari, S.; Ren, X.; Toufigh, V.; Zhang, L. Production of geopolymeric binder from blended waste concrete powder and fly ash. Constr. Build. Mater. 2012, 35, 718–729. [Google Scholar] [CrossRef]
- Nshimiyimana, P.; Omar, S.; Zoungrana, O. A discussion of “optimisation of compressed earth blocks (CEBs) using natural origin materials: A systematic literature review”. Constr. Build. Mater. 2022, 325, 126887. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, Z.; Tian, X.; Wu, J.; Wang, L. Review on the impact of metakaolin-based geopolymer’s reaction chemistry, nanostructure and factors on its properties. Constr. Build. Mater. 2024, 412, 134760. [Google Scholar] [CrossRef]
- Sore, O.S.; Messan, A.; Prud’homme, E.; Escadeillas, G.; Tsobnang, F. Synthesis and characterization of geopolymer binders based on local materials from Burkina Faso-Metakaolin and rice husk ash. Constr. Build. Mater. 2016, 124, 301–311. [Google Scholar] [CrossRef]
- Camarini, G.C.; Abdullah, H.H.; Shahin, M.A. One-Part Geopolymer for Stabilising Crushed Rock Road Base Material. Geosciences 2025, 15, 122. [Google Scholar] [CrossRef]
- Balde, M.Y.; Sidibe, D.; Bakam, É.S.S.; Njiomou, C.D.; Blanchart, P. Formulation of Geopolymer Cements from Two Clays Containing Kaolinite and Muscovite: Effect of Temperature on the Physicomechanical Properties of the Products. J. Mater. Sci. Chem. Eng. 2023, 11, 34–45. [Google Scholar] [CrossRef]
- Longhi, M.A.; Rodríguez, E.D.; Walkley, B.; Zhang, Z.; Kirchheim, A.P. Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation. Compos. Part B Eng. 2020, 182, 107671. [Google Scholar] [CrossRef]
- Ruiz-Santaquiteria, C.; Fernández-Jiménez, A.; Skibsted, J.; Palomo, A. Clay reactivity: Production of alkali activated cements. Appl. Clay Sci. 2013, 73, 11–16. [Google Scholar] [CrossRef]
- Xia, M.; Nematollahi, B.; Sanjayan, J. Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications. Autom. Constr. 2019, 101, 179–189. [Google Scholar] [CrossRef]
- Davidovits, J. Properties of geopolymer cements. In Proceedings of the First International Conference on Alkaline Cements and Concretes; Institute on Binders and Materials, Kiev State Technical University: Kiev, Ukraine, 1994; Volume 1, pp. 131–149. [Google Scholar]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr. Build. Mater. 2016, 114, 276–289. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Yuan, C.; Wang, Q.; Sarker, P.K.; Shi, X. Deterioration of ambient-cured and heat-cured fly ash geopolymer concrete by high temperature exposure and prediction of its residual compressive strength. Constr. Build. Mater. 2020, 262, 120924. [Google Scholar] [CrossRef]
- Mishra, J.; Nanda, B.; Patro, S.K.; Krishna, R.S. Sustainable Fly Ash Based Geopolymer Binders: A Review on Compressive Strength and Microstructure Properties. Sustain. 2022, 14, 15062. [Google Scholar] [CrossRef]
- Hossein, H.A.; Hamzawy, E.M.A.; El-Bassyouni, G.T.; Nabawy, B.S. Mechanical and physical properties of synthetic sustainable geopolymer binders manufactured using rockwool, granulated slag, and silica fume. Constr. Build. Mater. 2023, 367, 130143. [Google Scholar] [CrossRef]
- Játiva, A.; Ruales, E.; Etxeberria, M. Volcanic ash as a sustainable binder material: An extensive review. Materials 2021, 14, 1302. [Google Scholar] [CrossRef]
- Zhang, P.; Ding, J.; Dai, X.; Zheng, Y.; Zheng, M. Mechanical properties of geopolymer concrete solidified with waste materials. Constr. Build. Mater. 2025, 460, 139835. [Google Scholar] [CrossRef]
- Dadsetan, S.; Siad, H.; Lachemi, M.; Sahmaran, M. Extensive evaluation on the effect of glass powder on the rheology, strength, and microstructure of metakaolin-based geopolymer binders. Constr. Build. Mater. 2021, 268, 121168. [Google Scholar] [CrossRef]
- Kaze, C.R.; Nana, A.; Lecomte-Nana, G.L.; Deutou, J.G.N.; Kamseu, E.; Melo, U.C.; Andreola, F.; Leonelli, C. Thermal behaviour and microstructural evolution of metakaolin and meta-halloysite-based geopolymer binders: A comparative study. J. Therm. Anal. Calorim. 2022, 147, 2055–2071. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhu, H.J.; Zhou, C.H.; Wang, H. Geopolymer from kaolin in China: An overview. Appl. Clay Sci. 2016, 119, 31–41. [Google Scholar] [CrossRef]
- Ofer-Rozovsky, E.; Arbel Haddad, M.; Bar Nes, G.; Katz, A. The formation of crystalline phases in metakaolin-based geopolymers in the presence of sodium nitrate. J. Mater. Sci. 2016, 51, 4795–4814. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; Mejía De Gutiérrez, R.; Gordillo, M.; Provis, J.L. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 2011, 46, 5477–5486. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D. Geopolymerisation: A review and prospects for the minerals industry. Miner. Eng. 2007, 20, 1261–1277. [Google Scholar] [CrossRef]
- Souri, A.; Golestani-Fard, F.; Naghizadeh, R.; Veiseh, S. An investigation on pozzolanic activity of Iranian kaolins obtained by thermal treatment. Appl. Clay Sci. 2015, 103, 34–39. [Google Scholar] [CrossRef]
- Granizo, M.L.; Alonso, S.; Blanco-varela, M.T.; Palomo, A. Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction. J. Am. Ceram. Soc. 2002, 31, 225–231. [Google Scholar] [CrossRef]
- Kuenzel, C.; Neville, T.P.; Donatello, S.; Vandeperre, L.; Boccaccini, A.R.; Cheeseman, C.R. Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl. Clay Sci. 2013, 83, 308–314. [Google Scholar] [CrossRef]
- Taborda-barraza, M.; Tambara, L.U.D.; Vieira, C.M.; De Azevedo, A.R.G.; Gleize, P.J.P. Parametrization of Geopolymer Compressive Strength Obtained from Metakaolin Properties. Minerals 2024, 14, 974. [Google Scholar] [CrossRef]
- Kenne Diffo, B.B.; Elimbi, A.; Cyr, M.; Dika Manga, J.; Tchakoute Kouamo, H. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceram. Soc. 2015, 3, 130–138. [Google Scholar] [CrossRef]
- Essaidi, N.; Samet, B.; Baklouti, S.; Rossignol, S. Feasibility of producing geopolymers from two different Tunisian clays before and after calcination at various temperatures. Appl. Clay Sci. 2014, 88–89, 221–227. [Google Scholar] [CrossRef]
- Nmiri, A.; Hamdi, N.; Yazoghli-Marzouk, O.; Duc, M.; Srasra, E. Synthesis and characterization of kaolinite-based geopolymer: Alkaline activation effect on calcined kaolinitic clay at different temperatures. J. Mater. Environ. Sci. 2017, 8, 276–290. [Google Scholar]
- Diaz, E.I.; Allouche, E.N.; Eklund, S. Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 2010, 89, 992–996. [Google Scholar] [CrossRef]
- Du, H.; Dixit, A.; Pang, S. Calcined Clays for Sustainable Concrete; Scrivener, K., Favier, A., Eds.; Rilem Book; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9789401799386. [Google Scholar]
- Ferone, C.; Colangelo, F.; Cioffi, R.; Montagnaro, F. Engineering Mechanical performances of weathered coal fly ash based geopolymer bricks. Procedia Eng. 2011, 21, 745–752. [Google Scholar] [CrossRef]
- Yvon, J.; Garin, P.; Delon, J.F.; Cases, J.M. Valorisation des argiles kaoliniques des Charentes dans le caoutchouc naturel. Bull. Mineral. 1982, 105, 535–541. [Google Scholar] [CrossRef]
- Omar Sore, S.; Messan, A.; Prud’homme, E.; Escadeillas, G.; Tsobnang, F. Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso. Constr. Build. Mater. 2018, 165, 333–345. [Google Scholar] [CrossRef]
- Yameogo, A.; Sorgho, B.; Zerbo, L.; Seynou, M.; Millogo, Y.; Ouedraogo, R. Preparation D’Une Pouzzolane a Base D’Une Matiere Premiere Argileuse Du Burkina Fas. Chem. Chem. Eng. Biotechnol. Food Ind. 2015, 16, 371–383. [Google Scholar]
- Bich, C. Contribution à L’étude de L’activation Thermique du Kaolin: Évolution de la Structure Cristallographique et Activité Pouzzolanique; INSA: Lyon, France, 2005. [Google Scholar]
- Millogo, Y.; Traoré, K.; Ouedraogo, R.; Kaboré, K.; Blanchart, P.; Thomassin, J.H. Geotechnical, mechanical, chemical and mineralogical characterization of a lateritic gravels of Sapouy (Burkina Faso) used in road construction. Constr. Build. Mater. 2008, 22, 70–76. [Google Scholar] [CrossRef]
- Comodi, P.; Zanazzi, P.F. Structural thermal behavior of paragonite and its dehydroxylate: A high-temperature single-crystal study. Phys. Chem. Miner. 2000, 27, 377–385. [Google Scholar] [CrossRef]
- Prinsloo, L.C.; van der Merwe, E.M.; Wadley, L. The thermal behaviour of silica varieties used for tool making in the Stone Age. J. Therm. Anal. Calorim. 2018, 131, 1135–1145. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Zou, X.; Qing, C.; Frost, R.L. Thermal treatment of natural goethite: Thermal transformation andphysical properties. Thermochim. Acta 2013, 568, 115–121. [Google Scholar] [CrossRef]
- Bich, C.; Ambroise, J.; Péra, J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl. Clay Sci. 2009, 44, 194–200. [Google Scholar] [CrossRef]
- Tchakoute Kouamo, H.; Elimbi, A.; Mbey, J.A.; Ngally Sabouang, C.J.; Njopwouo, D. The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 2012, 35, 960–969. [Google Scholar] [CrossRef]
- Xu, H.; Van Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, F.; Wang, S.; Fan, L.; Zhang, J.; Li, P.; Yu, L. Influence mechanism of curing temperature on geopolymerization reaction: A comprehensive review. J. Build. Eng. 2025, 103, 112195. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Provis, J.L.; Bullen, F.; Reid, A.; Zhu, Y. Quantitative kinetic and structural analysis of geopolymers. Part 1. the activation of metakaolin with sodium hydroxide. Thermochim. Acta 2012, 539, 23–33. [Google Scholar] [CrossRef]
- Zaharaki, D.; Komnitsas, K.; Perdikatsis, V. Use of analytical techniques for identification of inorganic polymer gel composition. J. Mater. Sci. 2010, 45, 2715–2724. [Google Scholar] [CrossRef]
- Ozer, I.; Soyer-Uzun, S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceram. Int. 2015, 41, 10192–10198. [Google Scholar] [CrossRef]
- Provis, J.L.; Bernal, S.A. Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- Tome, S.; Nana, A.; Tchakouté, H.K.; Temuujin, J.; Rüscher, C.H. Mineralogical evolution of raw materials transformed to geopolymer materials: A review. Ceram. Int. 2024, 50, 35855–35868. [Google Scholar] [CrossRef]
- Mirković, M.; Yilmaz, M.S.; Kljajević, L.; Pavlović, V.; Ivanović, M.; Djukić, D.; Eren, T. Design of PEI and Amine Modified Metakaolin-Brushite Hybrid Polymeric Composite Materials for CO2 Capturing. Polymers 2023, 15, 1669. [Google Scholar] [CrossRef]
Clays | Latitude (N) | Longitude (W) | Altitude (m) |
---|---|---|---|
Kamboinsé | 12°29′24″ | 01°33′07″ | 317 |
Kandarfa | 13°47′07″ | 02°03′21″ | 334 |
Saaba | 12°22′46″ | 01°24′38″ | 317 |
Sabcé | 13°11′52″ | 01°31′18″ | 352 |
Selogo | 13°47′05″ | 02°03′41″ | 328 |
Tougou | 13°39′31″ | 02°16′18″ | 344 |
Clays | Particle Distribution by Laser Diffraction | Specific Surface Area by BET (m2/g) | Absolute Density by Helium Pycnometer | |
---|---|---|---|---|
d50 (µm) | d90 (µm) | |||
Kamboinsé (1) | 16 | 49.5 | 10.00 ± 0.05 | 2.776 ± 0.001 |
Kandarfa (2) | 12 | 43 | 7.19 ± 0.04 | 2.654 ± 0.005 |
Saaba (3) | 10 | 28 | 12.74 ± 0.03 | 2.633 ± 0.005 |
Sabcé (4) | 12 | 38 | 4.71 ± 0.03 | 2.674 ± 0.016 |
Selogo (5) | 10 | 18 | 9.48 ± 0.01 | 2.676 ± 0.016 |
Tougou (6) | 9 | 20 | 9.50 ± 0.05 | 2.616 ± 0.007 |
Oxide | Kamboinsé Clay (1) | Kandarfa Clay (2) | Saaba Clay (3) | Sabcé Clay (4) | Selogo Clay (5) | Tougou Clay (6) |
---|---|---|---|---|---|---|
SiO2 | 50.90 | 67.20 | 57.85 | 65.70 | 52.20 | 66.60 |
Al2O3 | 29.00 | 21.70 | 38.30 | 24.90 | 32.60 | 23.40 |
Fe2O3 | 16.50 | 1.59 | 2.30 | 1.23 | 4.73 | 1.30 |
CaO | 0.19 | 0.70 | 0.05 | 0.14 | 0.20 | 0.70 |
K2O | 0.71 | 1.59 | 0.11 | 3.40 | 4.36 | 1.70 |
Na2O | 0.08 | 1.02 | 0.23 | 2.74 | 0.17 | 0.04 |
MgO | 0.26 | 0.18 | 0.09 | 0.27 | 0.73 | 0.36 |
Mn2O3 | 0.05 | 0.01 | 0.01 | - | 0.01 | 0.00 |
TiO2 | 1.10 | 0.95 | 0.09 | 1.07 | 0.80 | 0.78 |
Cl | - | - | 0.04 | - | - | - |
SO3 | - | 0.07 | - | 0.02 | 0.07 | 0.10 |
P2O5 | 0.10 | 0.03 | 0.02 | 0.03 | 0.04 | 0.09 |
Cr2O3 | - | 0.02 | - | - | 0.01 | 0.00 |
LOI | 0.91 | 0.88 | 1.01 | 0.47 | 1.19 | 1.36 |
SiO2 + Al2O3 | 79.9 | 88.9 | 96.2 | 90.6 | 84.8 | 90.0 |
Clays | Weight Loss (%) Between [450–700 °C] | Kaolinite Content (%) |
---|---|---|
Kamboinsé (1) | 8.14 | 58.34 |
Kandarfa (2) | 4.37 | 31.32 |
Saaba (3) | 11.60 | 83.13 |
Sabcé (4) | 3.36 | 24.08 |
Selogo (5) | 5.98 | 42.86 |
Tougou (6) | 6.15 | 44.08 |
Clays | Mineral Contents (%) | ||||
---|---|---|---|---|---|
Kaolinite | Paragonite | Quartz | Hematite | Muscovite | |
Kamboinsé (1) | 63.10 | - | 16.80 | 16.50 | - |
Kandarfa (2) | 25.00 | 11.60 | 41.70 | 1.60 | 12.90 |
Saaba (3) | 83.40 | - | 11.50 | - | - |
Sabcé (4) | 0.70 | 32.20 | 36.40 | - | 27.50 |
Selogo (5) | 40.10 | - | 13.80 | 4.70 | 35.30 |
Tougou (6) | 38.90 | - | 39.10 | 1.30 | 13.70 |
Clays | Hydroxyl O-H | H-O-H | Al-OH | Si-O | Si-O-T (T = Si or Al) | |
---|---|---|---|---|---|---|
Kamboinsé (1) | Uncalcined | 3687, 3663, 3648, 3616 | 1621 | 938, 907 | 1109, 1022, 881, 782, 676 | 996, 742, 628 |
Calcined | - | - | - | 1057, 782 | ||
Kandarfa (2) | Uncalcined | 3688, 3664, 3647, 3616 | 1631 | 924, 902 | 1158, 1110, 1022, 828, 693, 769 | 997, 791, 744, 634 |
Calcined | - | - | 710 | 1038, 828, 693, 769 | 991, 791 | |
Saaba (3) | Uncalcined | 3688, 3665, 3655, 3620 | 1628 | 938, 907 | 1158, 1113, 1027, 685 | 996, 795, 750, 633 |
Calcined | - | - | - | 1056, 773, 685 | - | |
Sabcé (4) | Uncalcined | 3691, 3666, 3648, 3617 | - | 942, 907, 707 | 1155, 1107, 1025, 825 | 971, 795, 747 |
Calcined | - | - | 942, 707 | 1155, 1036, 825 | 795,747 | |
Selogo (5) | Uncalcined | 3685, 3664, 3648, 3617 | 1631 | 928, 907 | 1157, 1114, 1074, 1019, 1016, 824, 684 | 788, 748, 633 |
Calcined | - | - | 704 | 972, 1074, 824 | 788, 633 | |
Tougou (6) | Uncalcined | 3684, 3663, 3645, 3616 | 928, 909, 776, 691 | 1156, 1109, 1025, 823 | 997, 791, 750, 638 | |
Calcined | - | - | - | 1069, 1025, 776, 691 | 791 |
Clays | Kamboinsé (1) | Kandarfa (2) | Saaba (3) | Sabcé (4) | Selogo (5) | Tougou (6) |
---|---|---|---|---|---|---|
Amorphous proportion by acid attack (%) | 24.3 ± 0.01 | 19.3 ± 1.90 | 31.8 ± 0.55 | 13.7 ± 0.67 | 20.4 ± 0.01 | 20.4 ± 0.98 |
Clays | Kamboinsé (1) | Kandarfa (2) | Saaba (3) | Sabcé (4) | Selogo (5) | Tougou (6) |
---|---|---|---|---|---|---|
Setting time (h) | 48 | 96 | 24 | No setting | 48 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sore, S.O.; Nshimiyimana, P.; Messan, A.; Prud’homme, E.; Tsobnang, F.; Escadeillas, G. Chemical and Mineralogical Characterizations of Different Kaolinitic Clays from Burkina Faso: Feasibility for the Synthesis of Geopolymer Binders. Geosciences 2025, 15, 230. https://doi.org/10.3390/geosciences15060230
Sore SO, Nshimiyimana P, Messan A, Prud’homme E, Tsobnang F, Escadeillas G. Chemical and Mineralogical Characterizations of Different Kaolinitic Clays from Burkina Faso: Feasibility for the Synthesis of Geopolymer Binders. Geosciences. 2025; 15(6):230. https://doi.org/10.3390/geosciences15060230
Chicago/Turabian StyleSore, Seick Omar, Philbert Nshimiyimana, Adamah Messan, Elodie Prud’homme, François Tsobnang, and Gilles Escadeillas. 2025. "Chemical and Mineralogical Characterizations of Different Kaolinitic Clays from Burkina Faso: Feasibility for the Synthesis of Geopolymer Binders" Geosciences 15, no. 6: 230. https://doi.org/10.3390/geosciences15060230
APA StyleSore, S. O., Nshimiyimana, P., Messan, A., Prud’homme, E., Tsobnang, F., & Escadeillas, G. (2025). Chemical and Mineralogical Characterizations of Different Kaolinitic Clays from Burkina Faso: Feasibility for the Synthesis of Geopolymer Binders. Geosciences, 15(6), 230. https://doi.org/10.3390/geosciences15060230