Applying Quantitative Fluorescence Techniques to Investigate the Effectiveness of Deep-Seated Mudstone Caprocks in the Junggar Basin, NW China
Abstract
1. Introduction
2. Geological Setting
3. Sampling and Methods
3.1. Mineralogy
3.2. TOC and Rock-Eval Pyrolysis
3.3. Imaging Methods
3.4. Quantitative Fluorescence Techniques
4. Results
4.1. Mineral Compositions
4.2. TOC and Pyrolysis Parameters
4.3. Backscatter Image
4.4. Fluorescence Parameters
5. Discussion
5.1. Fluorescence Parameter Characteristics of Reservoirs
5.2. Applicability of Quantitative Fluorescence Techniques
5.3. The Primary Hydrocarbons Implications for Fluorescence Parameter
5.4. Response of Fluorescence Parameters of Caprocks to the Leakage of Palaeo–Oil Zones
5.4.1. Natural Hydraulic Fracturing of Mudstone Caprock
5.4.2. Fluorescence Parameter Characteristics of Caprock
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aplin, A.C.; Macquaker, J.H.S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bull. 2011, 95, 2031–2059. [Google Scholar] [CrossRef]
- Davy, C.; Skoczylas, F.; Lebon, P.; Dubois, T. Gas migration properties through a bentonite/argillite interface. Appl. Clay Sci. 2009, 42, 639–648. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chen, H.H.; Huang, Y.H.; Safaei-Farouji, M.; Ostadhassan, M. An indication of salt caprock failed integrity in inclusion records: Dongpu depression, bohai bay basin, China. Mar. Pet. Geol. 2023, 148, 106016. [Google Scholar] [CrossRef]
- Skerbisch, L.; Misch, D.; Drews, M.; Stollhofen, H.; Sachsenhofer, R.F.; Arnberger, K.; Schuller, V.; Zamolyi, A. Regional mudstone compaction trends in the Vienna Basin: Top seal assessment and implications for uplift history. Int. J. Earth Sci. 2023, 112, 1901–1921. [Google Scholar] [CrossRef]
- Wang, Y.; Gang, W.; Zhu, C.; Jiang, W.; Liao, W. Source rock evaluation and hydrocarbon generation and expulsion characteristics in Es3 in Qikou Sag. Pet. Geol. Recovery Effic. 2023, 03, 11–27. [Google Scholar]
- Bennani, R.; Wang, M.; Wang, X.; Li, T.Y. Porosity estimation using machine learning approaches for shale reservoirs: A case study of the Lianggaoshan Formation, Sichuan Basin, Western China. J. Appl. Geophys. 2025, 237, 105702. [Google Scholar] [CrossRef]
- Wu, S.T.; Guan, M.D.; Wang, X.H.; Zhang, J.; Zhou, Y.H.; Huang, X.; Pan, B. Machine learning-based shale-alkane-brine contact angle prediction at in-situ reservoir conditions. Fuel 2025, 395, 135106. [Google Scholar] [CrossRef]
- Cushing, L.J.; Vavra-Musser, K.; Chau, K.; Franklin, M.; Johnston, J.E. Flaring from Unconventional Oil and Gas Development and Birth Outcomes in the Eagle Ford Shale in South Texas. Environ. Health Perspect. 2020, 128, 077003. [Google Scholar] [CrossRef]
- Norris, S. Clays in Natural and Engineered Barriers for Radioactive Waste Confinement: An introduction. Geol. Soc. Lond. Spec. Publ. 2014, 400, 1–5. [Google Scholar] [CrossRef]
- Espinoza, D.N.; Santamarina, J.C. CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage. Int. J. Greenh. Gas Control. 2017, 66, 218–229. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Downey, M.W. Evaluating Seals for Hydrocarbon Accumulations. AAPG Bull. 1984, 68, 1760. [Google Scholar]
- Dewhurst, D.N.; Piane, C.D.; Esteban, L.; Sarout, J.; Josh, M.; Pervukhina, M.; Clennell, M.B. Geological Carbon Storage. In Geological Carbon Storage: Subsurface Seals and Caprock Integrity; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2018; pp. 1–30. [Google Scholar]
- Rahman, M.J.; Fawad, M.; Mondol, N.H. Organic-rich shale caprock properties of potential CO2 storage sites in the northern North Sea, offshore Norway. Mar. Pet. Geol. 2020, 122, 104665. [Google Scholar] [CrossRef]
- Lloyd, C.; Huuse, M.; Barrett, B.J.; Stewart, M.A.; Newton, A.M.W. A regional CO2 containment assessment of the northern Utsira Formation seal and overburden, northern North Sea. Basin Res. 2021, 33, 1985–2017. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.; Wang, Q.; Du, W.; Chang, S.; Wang, C.; Tian, Z.; Cheng, M.; Yao, D. Quantitative evaluation of caprock sealing controlled by fault activity and hydrocarbon accumulation response: K gasfield in the Xihu Depression, East China Sea Basin. Mar. Pet. Geol. 2021, 134, 105352. [Google Scholar] [CrossRef]
- An, F.; Jia, H.; Feng, Y. Effect of stress, concentration and temperature on gas diffusion coefficient of coal measured through a direct method and its model application. Fuel 2022, 312, 122991. [Google Scholar] [CrossRef]
- Zhang, S.Q. Evaluation on the Dynamic Evolution of Ultra-Deep Caprock in Sichuan Basin. Master’s Thesis, China University of Petroleum, Beijing, China, 2021; p. 5. (In Chinese). [Google Scholar]
- Thyberg, B.; Jahren, J. Quartz cementation in mudstones: Sheet-like quartz cement from clay mineral reactions during burial. Pet. Geosci. 2011, 17, 53–63. [Google Scholar] [CrossRef]
- Bjørlykke, K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sediment. Geol. 2014, 301, 1–14. [Google Scholar] [CrossRef]
- Li, C.; Luo, X.; Likuan, Z.; Yuhong, L.; Ming, C.; Lan, Y. Chemical compaction of deep buried mudstone and its influence on pressure prediction. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Changsha, China, 18–20 September 2020; Institute of Physics: London, UK, 2020; Volume 600, p. 012012. [Google Scholar]
- Nie, H.K.; Jin, Z.J.; Li, P.; Katz, B.J.; Dang, W.; Liu, Q.; Ding, J.; Jiang, S.; Li, D. Deep shale gas in the Ordovician-Silurian Wufeng–Longmaxi formations of the Sichuan Basin, SW China: Insights from reservoir characteristics, preservation conditions and development strategies. J. Asian Earth Sci. 2023, 244, 105521. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Yang, C.; Xiao, D.; Liao, Q.; Shen, C.; Fan, Y.; Tang, P.; Pu, X.; Jiang, W. Hydrocarbon phase limit and conversion process in the deep formation from Qikou Sag of Bohai Bay rift lacustrine basin, China. J. Nat. Gas Geosci. 2017, 2, 229–238. [Google Scholar] [CrossRef]
- Ghaderi, S.M.; Nourozieh, H. Estimation of bitumen and bitumen-liquid solvent volumetric properties from analysis of extensive experimental data with application in numerical simulation. Fuel 2019, 244, 227–239. [Google Scholar] [CrossRef]
- Hu, W.X.; Kang, X.; Cao, J.; Wang, X.L.; Fu, B.; Wu, H.G. Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin. Nat. Commun. 2018, 9, 5131. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, M.; Wang, Y.; Wang, Q.; Liu, J.; Peng, P. The effect of thermochemical sulfate reduction of n-pentane and condensate on the chemical and isotopic compositions of gases: Implications for the organic reactant and reaction extent. Mar. Pet. Geol. 2022, 145, 105916. [Google Scholar] [CrossRef]
- Fan, Z.Q.; Jin, Z.J.; Johnson, S.E. Oil-Gas Transformation Induced Subcritical Crack Propagation and Coalescence in Petroleum Source Rocks. Int. J. Fract. 2014, 185, 187–194. [Google Scholar] [CrossRef]
- Jin, Z.J.; Yuan, Y.S.; Sun, D.; Liu, Q.Y.; Li, S. Models for dynamic evaluation of mudstone/shale caprocks and their applications in the Lower Paleozoic sequences, Sichuan Basin, SW China. Mar. Pet. Geol. 2014, 49, 121–128. [Google Scholar] [CrossRef]
- Yang, Y.; Aplin, A.C. Permeability and petrophysical properties of 30 natural mudstones. J. Geophys. Res. Solid Earth 2007, 112, B03206. [Google Scholar] [CrossRef]
- Yang, Y.; Aplin, A.C. A permeability–porosity relationship for mudstones. Mar. Pet. Geol. 2010, 27, 1692–1697. [Google Scholar] [CrossRef]
- Schumacher, D.D. Surface geochemical exploration for oil and gas new life for an old technology. Lead. Edge 2000, 19, 258–261. [Google Scholar] [CrossRef]
- Liu, K.; Eadington, P. Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Org. Geochem. 2005, 36, 1023–1036. [Google Scholar] [CrossRef]
- Przyjalgowski, M.A.; Ryder, A.G.; Feely, M.; Glynn, T.J. Analysis of Hydrocarbon-bearing Fluid Inclusions (HCFI) using time-resolved fluorescence spectroscopy. In Proceedings of the Conference on Optical Sensing and Spectroscopy, Seattle, WA, USA, 17–24 August 2025; Department of Physics, National University of Irel: Galway, Ireland, 2005; Volume 5826, pp. 173–184. [Google Scholar]
- Chen, W.M.; Li, Q.X.; Xiao, X.L.; Zhang, Q.; Deng, T.L. Determination of Acidolysis Hydrocarbons in Oil/Gas Geochemical Exploration Sample by Gas Chromatograph. Acta Geol. Sin. 2014, 88, 128–129. [Google Scholar] [CrossRef]
- Leith, T.L.; Kaarstad, I.; Connan, J.; Pierron, J.; Caillet, G. Recognition of caprock leakage in the Snorre Field, Norwegian North Sea. Mar. Pet. Geol. 1993, 10, 29–41. [Google Scholar] [CrossRef]
- Kalio, V.G.; Sunday, A.; Beka, F.T. Application of molecular markers for the determination of leakage through the caprock of asgard field. Int. J. Sci. Invent. Today 2015, 4, 140–150. [Google Scholar]
- Li, W.; Zhu, H. Borehole Oil and Gas Geochemical Exploration Technique and Its Application. Mar. Geol. Quat. Geol. 2012, 32, 159–166. [Google Scholar] [CrossRef]
- Liu, K.; Eadington, P.; Coghlan, D. Fluorescence evidence of polar hydrocarbon interaction on mineral surfaces and implications to alteration of reservoir wettability. J. Pet. Sci. Eng. 2003, 39, 275–285. [Google Scholar] [CrossRef]
- Liu, K.; George, S.C.; Lu, X.; Gong, S.; Tian, H.; Gui, L. Innovative fluorescence spectroscopic techniques for rapidly characterising oil inclusions. Org. Geochem. 2014, 72, 34–45. [Google Scholar] [CrossRef]
- Liu, N.; Qiu, N.; Chang, J.; Shen, F.; Ma, X.; Liu, C.; Feng, Q. Quantitative fluorescence techniques for investigating hydrocarbon charge history in carbonate reservoir. Energy Explor. Exploit. 2017, 35, 356–375. [Google Scholar] [CrossRef]
- Guo, X.; Chen, J.; Huang, Z.; Jin, Y.; Chen, C.; Li, T.; Ding, C.; Wang, R. Geochemical characteristics and accumulation of hydrocarbon in Lower Jurassic tight sandstone in Wenjisang area, Turpan Basin, NW China. Pet. Sci. Technol. 2019, 37, 853–861. [Google Scholar] [CrossRef]
- Liu, B.; Bai, L.; Chi, Y.; Jia, R.; Fu, X.F.; Yang, L. Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: A case study from the Qingshankou Formation in Southern Songliao Basin, northeast China. Mar. Pet. Geol. 2019, 109, 561–573. [Google Scholar]
- Hao, J.; Taylor, K.G.; Hollis, C. Mineral diagenesis and inferred fluids in basinal mudstones: The Carboniferous Morridge Formation, Widmerpool Gulf, UK. Mar. Pet. Geol. 2021, 134, 105373. [Google Scholar] [CrossRef]
- Sun, N.; He, W.; Zhong, J.; Gao, J.; Chen, T.; Swennen, R. Widespread development of bedding-parallel calcite veins in medium–high maturity organic-rich lacustrine shales (Upper Cretaceous Qingshankou Formation, Northern Songliao Basin, NE China): Implications for hydrocarbon generation and horizontal compression. Mar. Pet. Geol. 2023, 158, 106544. [Google Scholar] [CrossRef]
- Luo, T.; Guo, X.; He, Z.; Dong, T.; Tao, Z.; Yang, R.; Wang, K. Fluid evolution and gas enrichment in the Wufeng-Longmaxi shale reservoirs of the eastern Sichuan Basin, SW China. J. Asian Earth Sci. 2024, 259, 105905. [Google Scholar] [CrossRef]
- Schowalter, T.T.; Hess, P.D. Interpretation of Subsurface Hydrocarbon Shows. AAPG Bull. 1982, 66, 1302–1327. [Google Scholar]
- Ablimiti, Y.; He, W.; Li, N.; Ma, D.; Liu, H.; Bian, B.; Ding, X.; Jiang, M.; Wang, J.; Cao, J. Mechanisms of deep oil–gas accumulation: New insights from the Carboniferous Central Depression, Junggar Basin, China. Front. Earth Sci. 2022, 10, 987822. [Google Scholar] [CrossRef]
- Hu, H.Y.; Zhao, Z.; Lu, S.; Xiao, H.Z. Regional Seal as Key Controlled Elements of Petroleum Accumulation in the Rift Basin. Adv. Mater. Res. 2012, 524, 190–193. [Google Scholar] [CrossRef]
- Jahn, B.; Wu, F.; Chen, B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Krooner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Ji, D.; Xu, Y.; Pang, Z.; Yuan, B.; Zhao, K. Classification of Typical Tectonic Styles and Exploration of Hydrocarbon Accumulation Patterns in Southern Junggar Basin, China. Energies 2022, 15, 6715. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Q.; Chen, H.; Li, J.; Zhang, W.; Liu, Y.; Yan, Z. Tectonic-geomorphological evolution and provenance-sedimentary response: Insights from the Middle Jurassic–Lower Cretaceous, Junggar Basin, China. Mar. Pet. Geol. 2023, 158, 106514. [Google Scholar] [CrossRef]
- Shen, Z.; Yu, F.; Wang, Q.; Zhang, J.; Xue, Y. Discrete element method simulation of the fold-and-thrust belts along strike various compression in the southern margin of the Junggar Basin, China. Mar. Pet. Geol. 2022, 145, 105849. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, D.; Pan, J.; Wei, D.; Tang, Y.; Wang, G.; Wei, C.; Ma, D. Multiple-phase tectonic superposition and reworking in the Junggar Basin of northwestern China-Implications for deep-seated petroleum exploration. AAPG Bull. 2018, 102, 1489–1521. [Google Scholar] [CrossRef]
- Liu, K.; Qu, J.; Zha, M.; Liu, H.; Ding, X.; Zhou, M.; Gao, T. Genesis Types and Migration of Middle and Lower Assemblages of Natural Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China. Processes 2023, 11, 689. [Google Scholar] [CrossRef]
- Tao, K.Y.; Cao, J.; Chen, X.; Hu, W.X.; Shi, C.H. Deep hydrocarbons in the northwestern Junggar Basin (NW China): Geochemistry, origin, and implications for the oil vs. gas generation potential of post-mature saline lacustrine source rocks? Mar. Pet. Geol. 2019, 109, 623–640. [Google Scholar] [CrossRef]
- Liu, K.; Eadington, P.; Middleton, H.; Fenton, S.; Cable, T. Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea. J. Pet. Sci. Eng. 2007, 57, 139–151. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Z.; Li, F. Quantitative Grain Fluorescence Responds to Residual Oil Zones and Paleo-Oil Zones. Spectrosc. Spectr. Anal. 2012, 32, 3073–3077. [Google Scholar]
- Liu, K.; Lu, X.; Gui, L.; Fan, J.; Gong, Y.; Li, X. Quantitative Fluorescence Techniques and Their Applications in Hydrocarbon Accumulation Studies. Earth Sci. 2016, 41, 373–384. [Google Scholar]
- Ma, W.J.; Wei, Y.Z.; Li, X. Accumulation process and control factors of Jurassic-Cretaceous distant-source and secondary-filled reservoirs in the hinterland of Junggur Basin. Acta Sci. Nat. Univ. Pekin. 2018, 54, 1195–1204. [Google Scholar]
- Hou, M. Phase Origin and Evolution of Deep-Seated Oil and Gas in the Western Central Depress of Junggar Basin. Ph.D. Thesis, China University of Petroleum (East China), Qingdao, China, 2022; p. 145. (In Chinese). [Google Scholar]
- Meng, Y.; Wang, J.; Ma, W. Evaluation of Hydrocarbon Source Rock Characteristics of Lower Permian Fengcheng Formation in Mahu Sag Based on Fine Grained Sedimentary Rock Type. J. Jilin Univ. (Earth Sci. Ed.) 2022, 52, 1735–1746. [Google Scholar]
- Mackenzie, A.S.; Leythaeuser, D.; Schaefer, R.G.; Bjorøy, M. Expulsion of petroleum hydrocarbons from shale source rocks. Nature 1983, 301, 506–509. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Fabiańska, M.J. The impact of water-washing, biodegradation and self-heating processes on coal waste dumps in the Rybnik Industrial Region (Poland). Int. J. Coal Geol. 2016, 154, 286–299. [Google Scholar] [CrossRef]
- Teige, G.M.G.; Hermanrud, C.; Thomas, W.H.; Wilson, O.B.; Bolås, H.M.N. Capillary resistance and trapping of hydrocarbons: A laboratory experiment. Pet. Geosci. 2005, 11, 125–129. [Google Scholar] [CrossRef]
- Bennett, B.; Buckman, J.O.; Bowler, B.F.J.; Larter, S.R. Wettability alteration in petroleum systems: The role of polar non-hydrocarbons. Pet. Geosci. 2004, 10, 271–277. [Google Scholar] [CrossRef]
- Wang, W.; Lin, C.; Zhang, X.; Dong, C.; Ren, L.; Lin, J. Diagenesis, Diagenetic Facies and Their Relationship with Reservoir Sweet Spot in Low-Permeability and Tight Sandstone: Jiaxing Area of the Xihu Sag, East China Sea Basin. Minerals 2023, 13, 404. [Google Scholar] [CrossRef]
- Anderson, R.N.; He, W.; Hobart, M.A.; Wilkinson, C.R.; Nelson, H.R. Active fluid flow in the Eugene Island area, offshore Louisiana. Lead. Edge 1991, 10, 12–17. [Google Scholar] [CrossRef]
- Caillet, G. The caprock of the Snorre Field, Norway: A possible leakage by hydraulic fracturing. Mar. Pet. Geol. 1993, 10, 42–50. [Google Scholar] [CrossRef]
- Hao, F.; Zhu, W.; Zou, H.; Li, P. Factors controlling petroleum accumulation and leakage in overpressured reservoirs. AAPG Bull. 2015, 99, 831–858. [Google Scholar] [CrossRef]
- Sibson, R.H. Structural permeability of fluid-driven fault-fracture meshes. J. Struct. Geol. 1996, 18, 1031–1042. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Dahl, J.; Zinniker, D.; Barbanti, S.M. Underutilized advanced geochemical technologies for oil and gas exploration and production-1. The diamondoids. J. Pet. Sci. Eng. 2015, 126, 87–96. [Google Scholar] [CrossRef]
- Jeffrey, H.S.; Sassen, R. Evidence for Large-Scale Vertical and Lateral Migration of Formation Waters, Dissolved Salt, and Crude Oil in the Louisiana Gulf Coast; GeoScienceWorld: Alexandria, VA, USA, 1990; Volume 9, pp. 283–296. [Google Scholar]
- Cartwright, J.; Huuse, M.; Aplin, A. Seal bypass systems. AAPG Bull. 2007, 8, 1141–1166. [Google Scholar] [CrossRef]
- Ingram, G.M.; Urai, J.L.; Naylor, M.A. Sealing processes and top seal assessment. Nor. Pet. Soc. Spec. Publ. 1997, 7, 165–174. [Google Scholar]
- Wang, P.; Shen, Z.; Liu, S. The Geochemical Characteristics and Comparison of the Terrestrial Natural Gas in Sichuan Basin. Nat. Gas Geosci. 2013, 24, 1186–1195. [Google Scholar]
- Krooss, B.M.; Leythaeuser, D.; Schaefer, R.G. Light hydrocarbon diffusion in a caprock. Chem. Geol. 1988, 71, 65–76. [Google Scholar] [CrossRef]
- Løseth, H.; Gading, M.; Wensaas, L. Hydrocarbon leakage interpreted on seismic data. Mar. Pet. Geol. 2009, 26, 1304–1319. [Google Scholar] [CrossRef]
- Roberts, S.J.; Nunn, J.A. Episodic fluid expulsion from geopressured sediments. Mar. Pet. Geol. 1995, 12, 195–204. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, J.; Qiao, J.; Chen, D.; Li, S.; Dong, Y.; Liu, S.; Long, H. Integration of charging time, migration pathways and sealing analysis to understand hydrocarbon accumulation in complex fault blocks, the Pinghu Slope Belt of the Xihu Depression, East China Sea Basin. Mar. Pet. Geol. 2023, 152, 106241. [Google Scholar] [CrossRef]
- Lafargue, E.; Thiez, P.L. Effect of water washing on light ends compositional heterogeneity. Org. Geochem. 1996, 24, 1141–1150. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J. Effect of water washing on hydrocarbon compositions of petroleum sandstone reservoir rocks in Tarim Basin, NW China. Chin. J. Geochem. 2000, 19, 167–175. [Google Scholar] [CrossRef]
Sample Source | Well PD1 | Well MS1 | ||
---|---|---|---|---|
Number | P1–P8 | P9–P12 | M1–M26 | M27–M30 |
Sample depth | 4930.2–5261.9 m | 5266.59–5322 m | 6379–6726 m | 6999.4–7140 m |
Lithology | Mudstone | Sandstone | Mudstone | Sandstone and conglomerate |
X-ray diffraction analysis | P1–P3, P8 | – | M1–M3, M23 | – |
TOC | P3–P8 | – | M4–M26 | – |
Rock-Eval | – | – | M4–M21 | – |
SEM | P2 | – | M3 | – |
Fluorescence parameters | P1–P8 | P9–P12 | M1–M26 | M27–M30 |
Disaggregation | Sample Core or Cuttings |
---|---|
Disaggregate to Single Grains | |
Mineral separation | Electromagnetic concentration of quartz grains from sample if required |
DCM | 10 min ultrasound bath in 20 mL of HPLC-grade DCM |
H2O2 (10%) | 1 h digestion at room temperature in 40 mL of H2O2, including 20 min of ultrasound bathing at beginning and the end of the digestion |
HCl (3.6%) | 20 min digestion in 40 mL of HCl at room temperature |
DCM | 10 min ultrasound bath in 20 mL of HPLC-grade DCM, with DCM extract used for QGF E analysis |
No. | Depth (m) | TOC (wt%) | Tmax (°C) | S1 (mg/g) | S2 (mg/g) | HI (mg/g TOC) |
---|---|---|---|---|---|---|
M4 | 6379 | 0.37 | 453 | 0.23 | 0.34 | 91.89 |
M5 | 6393 | 0.46 | 446 | 0.6 | 0.33 | 71.74 |
M6 | 6432 | 0.55 | 298 | 0.43 | 0.51 | 92.73 |
M7 | 6457 | 0.43 | 304 | 0.29 | 0.39 | 90.7 |
M8 | 6476 | 0.91 | 407 | 2.35 | 0.81 | 89.01 |
M9 | 6486 | 2.18 | 432 | 1.69 | 3.19 | 146.33 |
M10 | 6492 | 1.18 | 425 | 0.4 | 0.85 | 72.03 |
M11 | 6520 | 0.82 | 315 | 0.49 | 0.77 | 93.9 |
M12 | 6543.86 | 0.69 | 471 | 0.07 | 0.31 | 44.93 |
M13 | 6566 | 0.55 | 427 | 0.25 | 0.29 | 52.73 |
M14 | 6576 | 0.52 | 311 | 0.08 | 0.24 | 46.15 |
M15 | 6597 | 0.57 | 489 | 0.07 | 0.2 | 35.09 |
M16 | 6632 | 0.33 | 411 | 0.46 | 0.55 | 166.67 |
M17 | 6646 | 0.4 | 425 | 0.1 | 0.19 | 47.5 |
M18 | 6668 | 0.05 | 445 | 0.06 | 0.2 | 400 |
M19 | 6680 | 0.55 | 497 | 0.05 | 0.14 | 25.45 |
M20 | 6700 | 0.47 | 461 | 0.05 | 0.19 | 40.43 |
M21 | 6790 | 0.88 | 437 | 0.19 | 0.77 | 87.5 |
M22 | 6402 | 1.83 | — | — | — | — |
M23 | 6542.26 | 0.74 | — | — | — | — |
M24 | 6544.23 | 0.88 | — | — | — | — |
M25 | 6584 | 0.74 | — | — | — | — |
M26 | 6726 | 0.73 | — | — | — | — |
P4 | 4930.2 | 0.06 | — | — | — | — |
P5 | 5042 | 0.33 | — | — | — | — |
P6 | 5130.8 | 0.19 | — | — | — | — |
P7 | 5131.6 | 0.09 | — | — | — | — |
P8 | 5261.9 | 0.98 | — | — | — | — |
No. | Mesh | Weight (g) | After Cleaning (g) | Weight Loss Rate (%) | Content Deviation (%) | QGF E λ (nm) | QGF E Intensity (pc) |
---|---|---|---|---|---|---|---|
P8 | 60–80 | 1.2486 | 1.2027 | 3.68 | 47.26 | 374 | 230.66 |
80–100 | 2.5425 | 2.4352 | 4.22 | 39.45 | 374 | 184.33 | |
100–120 | 0.8115 | 0.7582 | 6.57 | 5.77 | 375 | 226.85 | |
120–140 | 0.6416 | 0.5921 | 7.72 | 10.69 | 374 | 237.05 | |
140–180 | 0.4157 | 0.383 | 7.87 | 12.86 | 376 | 241.61 | |
180–200 | 1.6165 | 1.0567 | 34.63 | 396.85 | 378 | 286.16 | |
M23 | 60–80 | 1.8742 | 1.4665 | 21.75 | 51.20 | 449 | 76.13 |
80–100 | 1.9974 | 1.4225 | 28.78 | 35.45 | 457 | 77.06 | |
100–120 | 0.7176 | 0.3947 | 45.00 | 0.89 | 372 | 109.31 | |
120–140 | 1.3805 | 0.8534 | 38.18 | 6.27 | 372 | 104.79 | |
140–180 | 0.2803 | 0.1188 | 57.62 | 29.17 | 370 | 161.59 | |
180–200 | 2.0829 | 0.8704 | 58.21 | 30.51 | 375 | 131.88 |
No. | Well | Depth (m) | QGF Parameter | QGF E Parameter | TSF Parameter | ||||
---|---|---|---|---|---|---|---|---|---|
QGF Ratio | QGF Index | QGF λmax (nm) | QGF E Intensity | QGF λ (nm) | R1 | R2 | |||
P4 | PD1 | 4930.2 | 11.9 | 1.6 | 426.3 | 9 | 375 | 1.27 | 1.64 |
P5 | PD1 | 5042 | 1 | 0.6 | 418.5 | 33.5 | 362 | 2.08 | 3.55 |
P6 | PD1 | 5130.8 | 3.3 | 1.3 | 474.5 | 11.8 | 357 | 1.18 | 1.82 |
P7 | PD1 | 5131.6 | 2.2 | 5.2 | 418.4 | 7 | 361 | 1.56 | 2.04 |
P8 | PD1 | 5261.9 | 2.6 | 8.4 | 413.5 | 226.85 | 370 | 3.4 | 4.87 |
P9 | PD1 | 5266.59 | 3.1 | 16.1 | 420.7 | 215.4 | 375 | 2.91 | 4.15 |
P10 | PD1 | 5282 | 2.2 | 5.1 | 426.7 | 323.5 | 374 | 6.28 | 9.14 |
P11 | PD1 | 5302 | 1.2 | 3.9 | 429.7 | 165.6 | 368 | 4.9 | 7.37 |
P12 | PD1 | 5322 | 0.6 | 5.6 | 395.5 | 124.1 | 368 | 5.21 | 8.71 |
M22 | MS1 | 6402 | 1.3 | 2.1 | 436.3 | 145.4 | 368 | 1.55 | 2.47 |
M23 | MS1 | 6542.26 | 1 | 2.2 | 486.8 | 109.31 | 375 | 2.43 | 2.91 |
M24 | MS1 | 6544.23 | 0.1 | 3.2 | 456 | 56.4 | 370 | 3.14 | 3.68 |
M25 | MS1 | 6584 | 8.7 | 4.5 | 504.9 | 122.5 | 365 | 2.42 | 3.45 |
M26 | MS1 | 6726 | 1.2 | 2.6 | 454.4 | 79.4 | 362 | 1.8 | 2.6 |
M27 | MS1 | 6999.4 | 2.8 | 8.9 | 497.8 | 11.1 | 356 | 0.88 | 1.43 |
M28 | MS1 | 7033 | 0.5 | 2 | 499.3 | 20.1 | 366 | 3.81 | 5.36 |
M29 | MS1 | 7094 | 4 | 17.4 | 507 | 87.5 | 367 | — | — |
M30 | MS1 | 7140 | 0.4 | 57.5 | 479.7 | 61.8 | 369 | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, J.; Liu, K.; Liu, H.; Zhou, M.; Ding, X.; Zha, M. Applying Quantitative Fluorescence Techniques to Investigate the Effectiveness of Deep-Seated Mudstone Caprocks in the Junggar Basin, NW China. Geosciences 2025, 15, 215. https://doi.org/10.3390/geosciences15060215
Qu J, Liu K, Liu H, Zhou M, Ding X, Zha M. Applying Quantitative Fluorescence Techniques to Investigate the Effectiveness of Deep-Seated Mudstone Caprocks in the Junggar Basin, NW China. Geosciences. 2025; 15(6):215. https://doi.org/10.3390/geosciences15060215
Chicago/Turabian StyleQu, Jiangxiu, Keshun Liu, Hailei Liu, Minghui Zhou, Xiujian Ding, and Ming Zha. 2025. "Applying Quantitative Fluorescence Techniques to Investigate the Effectiveness of Deep-Seated Mudstone Caprocks in the Junggar Basin, NW China" Geosciences 15, no. 6: 215. https://doi.org/10.3390/geosciences15060215
APA StyleQu, J., Liu, K., Liu, H., Zhou, M., Ding, X., & Zha, M. (2025). Applying Quantitative Fluorescence Techniques to Investigate the Effectiveness of Deep-Seated Mudstone Caprocks in the Junggar Basin, NW China. Geosciences, 15(6), 215. https://doi.org/10.3390/geosciences15060215