EGMStream Webapp: EGMS Data Downstream Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mandatory and Optional Input Data
- -
- the link to the EEA server where the link is stored;
- -
- the product level, track, and internal EEA number referring to the selected tile or burst;
- -
- a randomly generated (non-replicable) ID token, which allows the validity of each download link only for an hour.
2.2. Webapp Interface and Relative Command in the Backend
- (i)
- the left panel, where users can upload mandatory and optional input files and set parameters to customise the data conversion (Figure 2);
- (ii)
- the right panel, which is an interactive map displaying the uploaded AoI, if provided.
- -
- 5,000,000 points for products without time series;
- -
- 300,000 points for products with time series.
3. Results
- (i)
- the volcanic area of Campi Flegrei, Gulf of Naples (Italy);
- (ii)
- the landslide-prone slopes of southern Sørfjorden, Tromsø municipality (Norway);
- (iii)
- the subsiding area of the Firenze–Prato–Pistoia basin (central Italy);
- (iv)
- the Rules Dam and Reservoir, Granada province (Spain);
- (v)
- the archaeological site of Solnitsata-Provadia, Varna province (Bulgaria);
- (vi)
- the mining subsidence in the Upper Silesian Coal Basin (Czech Republic).
- (vii)
- the 2021 Larissa earthquake area, Thessaly region (Greece).
4. Discussion
5. Future Developments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens. 2020, 12, 2043. [Google Scholar] [CrossRef]
- Costantini, M.; Minati, F.; Trillo, F.; Ferretti, A.; Novali, F.; Passera, E.; Dehls, J.; Larsen, Y.; Marinkovic, P.; Eineder, M.; et al. European Ground Motion Service (EGMS). In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 12–14 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3293–3296. [Google Scholar]
- Di Martire, D.; Paci, M.; Confuorto, P.; Costabile, S.; Guastaferro, F.; Verta, A.; Calcaterra, D. A Nation-Wide System for Landslide Mapping and Risk Management in Italy: The Second Not-Ordinary Plan of Environmental Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 143–157. [Google Scholar] [CrossRef]
- WebGIS of the PST-A Project. Available online: http://www.pcn.minambiente.it/viewer/ (accessed on 10 November 2024).
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, Semi-Automatic Monitoring of Ground Deformation Using Sentinel-1 Satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef] [PubMed]
- Confuorto, P.; Del Soldato, M.; Solari, L.; Festa, D.; Bianchini, S.; Raspini, F.; Casagli, N. Sentinel-1-Based Monitoring Services at Regional Scale in Italy: State of the Art and Main Findings. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102448. [Google Scholar] [CrossRef]
- Bredal, M.; Dehls, J.; Larsen, Y.; Marinkovic, P.; Lauknes, T.R.; Stødle, D.; Moldestad, D.A. The Norwegian National Ground Motion Service (InSAR. No): Service Evolution. In Proceedings of the AGU Fall Meeting Abstracts, InSAR Norway WebGIS, San Francisco, CA, USA, 9–13 December 2019; p. G13C-0559. [Google Scholar]
- Dehls, J.F.; Larsen, Y.; Marinkovic, P.; Lauknes, T.R.; Stodle, D.; Moldestad, D.A. INSAR.No: A National Insar Deformation Mapping/Monitoring Service In Norway—From Concept To Operations. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 5461–5464. [Google Scholar]
- Kalia, A.C.; Frei, M.; Lege, T. A Copernicus Downstream-Service for the Nationwide Monitoring of Surface Displacements in Germany. Remote Sens. Environ. 2017, 202, 234–249. [Google Scholar] [CrossRef]
- Bischoff, C.A.; Ferretti, A.; Novali, F.; Uttini, A.; Giannico, C.; Meloni, F. Nationwide Deformation Monitoring with SqueeSAR® Using Sentinel-1 Data. Proc. IAHS 2020, 382, 31–37. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Barra, A.; Monserrat, O.; Mazzanti, P.; Esposito, C.; Crosetto, M.; Scarascia Mugnozza, G. First Insights on the Potential of Sentinel-1 for Landslides Detection. Geomat. Nat. Hazards Risk 2016, 7, 1874–1883. [Google Scholar] [CrossRef]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Del Conte, S.; Farina, P.; Allievi, J.; Ferretti, A.; Casagli, N. The Maoxian Landslide as Seen from Space: Detecting Precursors of Failure with Sentinel-1 Data. Landslides 2018, 15, 123–133. [Google Scholar] [CrossRef]
- Mantovani, M.; Bossi, G.; Marcato, G.; Schenato, L.; Tedesco, G.; Titti, G.; Pasuto, A. New Perspectives in Landslide Displacement Detection Using Sentinel-1 Datasets. Remote Sens. 2019, 11, 2135. [Google Scholar] [CrossRef]
- Kalia, A.C. Landslide Activity Detection Based on Sentinel-1 PSI Datasets of the Ground Motion Service Germany—The Trittenheim Case Study. Landslides 2023, 20, 209–221. [Google Scholar] [CrossRef]
- Lanari, R. From ERS-1 TO SENTINEL-1: A Big Data Challenge for 25 Years of DInSAR Observations. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1460–1463. [Google Scholar]
- Mirmazloumi, S.M.; Wassie, Y.; Navarro, J.A.; Palamà, R.; Krishnakumar, V.; Barra, A.; Cuevas-González, M.; Crosetto, M.; Monserrat, O. Classification of Ground Deformation Using Sentinel-1 Persistent Scatterer Interferometry Time Series. Gisci. Remote Sens. 2022, 59, 374–392. [Google Scholar] [CrossRef]
- Confuorto, P.; Casagli, N.; Casu, F.; De Luca, C.; Del Soldato, M.; Festa, D.; Lanari, R.; Manzo, M.; Onorato, G.; Raspini, F. Sentinel-1 P-SBAS Data for the Update of the State of Activity of National Landslide Inventory Maps. Landslides 2023, 20, 1083–1097. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring Activity at the Daguangbao Mega-Landslide (China) Using Sentinel-1 TOPS Time Series Interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef]
- Beladam, O.; Balz, T.; Mohamadi, B.; Abdalhak, M. Using PS-InSAR with Sentinel-1 Images for Deformation Monitoring in Northeast Algeria. Geosciences 2019, 9, 315. [Google Scholar] [CrossRef]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Montalti, R.; Solari, L.; Tofani, V.; Casagli, N. Persistent Scatterers Continuous Streaming for Landslide Monitoring and Mapping: The Case of the Tuscany Region (Italy). Landslides 2019, 16, 2033–2044. [Google Scholar] [CrossRef]
- Ferretti, A.; Colombo, D.; Fumagalli, A.; Novali, F.; Rucci, A. InSAR Data for Monitoring Land Subsidence: Time to Think Big. Proc. IAHS 2015, 372, 331–334. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. From ERS 1/2 to Sentinel-1: Subsidence Monitoring in Italy in the Last Two Decades. Front. Earth Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Edalat, A.; Khodaparast, M.; Rajabi, A.M. Detecting Land Subsidence Due to Groundwater Withdrawal in Aliabad Plain, Iran, Using ESA Sentinel-1 Satellite Data. Nat. Resour. Res. 2020, 29, 1935–1950. [Google Scholar] [CrossRef]
- Hakim, W.L.; Achmad, A.R.; Eom, J.; Lee, C.-W. Land Subsidence Measurement of Jakarta Coastal Area Using Time Series Interferometry with Sentinel-1 SAR Data. J. Coast. Res. 2020, 102, 75–81. [Google Scholar] [CrossRef]
- Raspini, F.; Caleca, F.; Del Soldato, M.; Festa, D.; Confuorto, P.; Bianchini, S. Review of Satellite Radar Interferometry for Subsidence Analysis. Earth-Sci. Rev. 2022, 235, 104239. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Zhang, Y. Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data. Remote Sens. 2022, 14, 4138. [Google Scholar] [CrossRef]
- Shami, S.; Azar, M.K.; Nilfouroushan, F.; Salimi, M.; Reshadi, M.A.M. Assessments of Ground Subsidence along the Railway in the Kashan Plain, Iran, Using Sentinel-1 Data and NSBAS Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102898. [Google Scholar] [CrossRef]
- Bakon, M.; Czikhardt, R.; Papco, J.; Barlak, J.; Rovnak, M.; Adamisin, P.; Perissin, D. remotIO: A Sentinel-1 Multi-Temporal InSAR Infrastructure Monitoring Service with Automatic Updates and Data Mining Capabilities. Remote Sens. 2020, 12, 1892. [Google Scholar] [CrossRef]
- Ramirez, R.A.; Lee, G.-J.; Choi, S.-K.; Kwon, T.-H.; Kim, Y.-C.; Ryu, H.-H.; Kim, S.; Bae, B.; Hyun, C. Monitoring of Construction-Induced Urban Ground Deformations Using Sentinel-1 PS-InSAR: The Case Study of Tunneling in Dangjin, Korea. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102721. [Google Scholar] [CrossRef]
- Nam, B.X.; Van Anh, T.; Bui, L.K.; Long, N.Q.; Le Thu Ha, T.; Goyal, R. Mining-Induced Land Subsidence Detection by Persistent Scatterer InSAR and Sentinel-1: Application to Phugiao Quarries, Vietnam. In Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining, Hanoi, Vietnam, 15–17 October 2020; Lecture Notes in Civil Engineering; Tien Bui, D., Tran, H.T., Bui, X.-N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 108, pp. 18–38. ISBN 978-3-030-60268-0. [Google Scholar]
- Dang, V.K.; Nguyen, T.D.; Dao, N.H.; Duong, T.L.; Dinh, X.V.; Weber, C. Land Subsidence Induced by Underground Coal Mining at Quang Ninh, Vietnam: Persistent Scatterer Interferometric Synthetic Aperture Radar Observation Using Sentinel-1 Data. Int. J. Remote Sens. 2021, 42, 3563–3582. [Google Scholar] [CrossRef]
- Mehrabi, A.; Derakhshani, R.; Nilfouroushan, F.; Rahnamarad, J.; Azarafza, M. Spatiotemporal Subsidence over Pabdana Coal Mine Kerman Province, Central Iran Using Time-Series of Sentinel-1 Remote Sensing Imagery. Episodes 2023, 46, 19–33. [Google Scholar] [CrossRef]
- Mura, J.C.; Gama, F.F.; Paradella, W.R.; De Oliveira, C.G.; Rodrigues, T.G. Ground Displacements Revealed by A-DInSAR Analysis in the Germano Iron Mining Complex before and after the Fundão Dam Collapse Using Sentinel-1 Data. J. Appl. Rem. Sens. 2021, 15, 034513. [Google Scholar] [CrossRef]
- Ferretti, A.; Passera, E.; Capes, R. Algorithm Theoretical Basis Document. Available online: https://land.copernicus.eu/user-corner/technical-library/egms-algorithm-theoretical-basis-document (accessed on 15 November 2024).
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F. A New Method for Identification and Analysis of Persistent Scatterers in Series of SAR Images. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; IEEE: Piscataway, NJ, USA, 2008; pp. II-449–II-452. [Google Scholar]
- Costantini, M.; Bignami, C.; Falco, S.; Malvarosa, F.; Moro, M.; Saroli, M.; Stramondo, S. New Results on Post-Seismic Deformations over L’Aquila, Italy, by High Resolution PSP SAR Interferometry. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1850–1852. [Google Scholar]
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F.; Trillo, F.; Vecchioli, F. Persistent Scatterer Pair Interferometry: Approach and Application to COSMO-SkyMed SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2869–2879. [Google Scholar] [CrossRef]
- Sansosti, E.; Berardino, P.; Manunta, M.; Serafino, F.; Fornaro, G. Geometrical SAR Image Registration. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2861–2870. [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS Interferometry With TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3179–3188. [Google Scholar] [CrossRef]
- Yague-Martinez, N.; Prats-Iraola, P.; Rodriguez Gonzalez, F.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Eineder, M. Efficient Simulation of Sar Interferograms of Large Areas and of Rugged Terrain. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1415–1427. [Google Scholar] [CrossRef]
- Capes, R.; Passera, E. Product Description and Format Specification. Available online: https://land.copernicus.eu/user-corner/technical-library/egms-product-description-document (accessed on 7 November 2024).
- Larsen, Y.; Marinkovic, P.; Kenyeres, A.; To’th, S. EGMS Documentation—GNSS Calibration Report. Available online: https://land.copernicus.eu/user-corner/technicallibrary/egms-gnss-calibration-report (accessed on 10 January 2025).
- EUREF Permanent Network. Available online: https://epnd.sgo-penc.hu/ (accessed on 19 December 2024).
- EGMS Explorer. Available online: https://egms.land.copernicus.eu/ (accessed on 19 December 2024).
- EU Portal. Available online: https://european-union.europa.eu/index_en (accessed on 12 January 2025).
- Festa, D.; Del Soldato, M. EGMStream, a Desktop App for EGMS Data Downstream. Remote Sens. 2023, 15, 2581. [Google Scholar] [CrossRef]
- Racine, J.S. RStudio: A Platform-Independent IDE for R and Sweave. Available online: https://www.jstor.org/stable/41337225 (accessed on 14 January 2025).
- R Foundation for Statistical Computing. A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 10 November 2024).
- Docker Platform. Available online: https://www.docker.com/ (accessed on 21 December 2024).
- Mouat, A. Using Docker: Developing and Deploying Software with Containers; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015; ISBN 978-1-4919-1576-9. [Google Scholar]
- Larsen, Y.; Marinkovic, P.; Dehls, J.; Stødle, D. User Interface Manual. Available online: https://land.copernicus.eu/user-corner/technical-library/egms-end-user-interface-manual (accessed on 20 November 2024).
- Dwyer, G.; Aggarwal, S.; Stouffer, J. Flask: Building Python Web Services; Packt Publishing: Birmingham, UK, 2017; ISBN 978-1-787-12432-3. [Google Scholar]
- McKinney, W. Pandas: A Foundational Python Library for Data Analysis and Statistics. Python High. Perform. Sci. Comput. 2011, 14, 1–9. [Google Scholar]
- Pandas. Available online: https://pandas.pydata.org/ (accessed on 19 December 2024).
- Chen, D.Y. Pandas for Everyone: Python Data Analysis; Addison-Wesley Professional: Boston, MA, USA, 2017; ISBN 978-0-13-454693-3. [Google Scholar]
- Chandra, R.V.; Varanasi, B.S. Python Requests Essentials; Packt Publishing: Birmingham, UK, 2015; ISBN 978-1-78439-541-2. [Google Scholar]
- Request. Available online: https://pypi.org/project/requests/ (accessed on 20 October 2024).
- Sarker, M.F.; Washington, S. Learning Python Network Programming; Packt Publishing Ltd.: Birmingham, UK, 2015; ISBN 978-1-78439-918-2. [Google Scholar]
- Shanmugapriyaa, D.; Sujithra, M.; Senthilkumar, B.; Kumar, V.S.; Sanjai, R. Introduction to Geospatial Data and Python Programming. In Geospatial Application Development Using Python Programming; IGI Global: Hershey, PA, USA, 2024; pp. 1–38. [Google Scholar]
- Gillies, S. The Shapely User Manual. Available online: https://pypi.org/project/Shapely (accessed on 10 October 2024).
- Mamatov, I.; Galety, M.G.; Alimov, R.; Sriharsha, A.V.; Rofoo, F.F.H.; Sunitha, G. Geospatial Data Storage and Management. In Ethics, Machine Learning, and Python in Geospatial Analysis; IGI Global: Hershey, PA, USA, 2024; pp. 150–167. [Google Scholar]
- Rashidan, M.H.; Musliman, I.A.; Rahman, A.A. Geopackage data format for collaborativemapping of geospatial datain limited networkenvironments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLII-4/W1, 15–21. [Google Scholar] [CrossRef]
- GeoJSON Format. Available online: https://stevage.github.io/geojson-spec/ (accessed on 25 November 2024).
- Harper, R. Practical Foundations for Programming Languages; Cambridge University Press: Cambridge, UK, 2016; ISBN 978-1-107-15545-6. [Google Scholar]
- Hellmann, D. The Python Standard Library by Example; Addison-Wesley Professional: Boston, MA, USA, 2011; ISBN 978-0-321-76734-9. [Google Scholar]
- Zipfile—Work with ZIP Archives. Available online: https://docs.python.org/3/library/zipfile.html (accessed on 10 October 2024).
- Gaspar, D.; Stouffer, J. Mastering Flask Web Development: Build Enterprise-Grade, Scalable Python Web Applications; Packt Publishing Ltd.: Birmingham, UK, 2018; ISBN 978-1-78862-162-8. [Google Scholar]
- Advanced Python. In Python Scripting for Computational Science; Texts in Computational Science and Engineering; Langtangen, H.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 3, pp. 319–449. ISBN 978-3-540-73915-9. [Google Scholar]
- Crosetto, M.; Solari, L. Satellite Interferometry Data Interpretation and Exploitation; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-443-13397-8. [Google Scholar]
- Sparice, D.; Pelullo, C.; De Vita, S.; Arienzo, I.; Petrosino, P.; Mormone, A.; Di Vincenzo, G.; Marfè, B.; Cariddi, B.; De Lucia, M.; et al. The Pre-Campi Flegrei Caldera (>40 Ka) Explosive Volcanic Record in the Neapolitan Volcanic Area: New Insights from a Scientific Drilling North of Naples, Southern Italy. J. Volcanol. Geotherm. Res. 2024, 455, 108209. [Google Scholar] [CrossRef]
- Silleni, A.; Giordano, G.; Ort, M.H.; Isaia, R. Transport and Deposition of the 39.8 Ka Campanian Ignimbrite Large-Scale Pyroclastic Density Currents (Italy). Geol. Soc. Am. Bull. 2024, 136, 4877–4895. [Google Scholar] [CrossRef]
- Petley, D.N. Landslides and Engineered Slopes: Protecting Society through Improved Understanding. In Proceedings of the 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, Banff, AB, Canada, 3–8 June 2012; International Symposium on Landslides, Ed.; CRC Press: Leiden, The Netherlands, 2012. ISBN 978-0-415-62123-6. [Google Scholar]
- Canuti, P.; Casagli, N.; Farina, P.; Marks, F.; Ferretti, A.; Menduni, G. Land Subsidence in the Arno River Basin Studied through SAR Interferometry. In Proceedings of the 7th International Symposium on Land Subsidence, Shanghai, China, 23–28 October 2005; pp. 407–4016. [Google Scholar]
- Colombo, D.; Farina, P.; Moretti, S.; Nico, G.; Prati, C. Land Subsidence in the Firenze-Prato-Pistoia Basin Measured by Means of Spaceborne SAR Interferometry. In Proceedings of the IGARSS 2003—2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 4, pp. 2927–2929. [Google Scholar]
- Rosi, A.; Agostini, A. Subsidence Analysis in the Cornia River Basin (Southern Tuscany, Italy) by Using PSInSAR Technique. Rend. Online Soc. Geol. Ital 2013, 24, 276–278. [Google Scholar]
- Del Soldato, M.; Farolfi, G.; Rosi, A.; Raspini, F.; Casagli, N. Subsidence Evolution of the Firenze–Prato–Pistoia Plain (Central Italy) Combining PSI and GNSS Data. Remote Sens. 2018, 10, 1146. [Google Scholar] [CrossRef]
- Bergillos, R.J.; Ortega-Sánchez, M. Assessing and Mitigating the Landscape Effects of River Damming on the Guadalfeo River Delta, Southern Spain. Landsc. Urban. Plan. 2017, 165, 117–129. [Google Scholar] [CrossRef]
- Nikolov, V. The Prehistoric Salt-Production and Urban Center of Provadia-Solnitsata, Northeastern Bulgaria. J. Mediterr. Geogr. 2016, 126, 71–78. [Google Scholar] [CrossRef]
- Paskaleva, I.; Nikolova, S.; Dimitrova, L.; Georgieva, G. Monitoring Networks—Way for Improving Risk Assessment from Natural and Manmade Hazards: Case Study Salt Mine Provadia (NE Bulgaria). Acta Geod. Geophys. Hung. 2010, 45, 388–402. [Google Scholar] [CrossRef]
- Stoyanov, S. Provadia Region in Bulgaria—Natural or Induced Seismicity. Rep. Geod. 2006, 5, 247–255. [Google Scholar]
- Dulias, R. The Impact of Mining on the Landscape: A Study of the Upper Silesian Coal Basin in Poland; Environmental Science and Engineering Series; Springer International Publishing AG: Cham, Switzerland, 2016; ISBN 978-3-319-29539-8. [Google Scholar]
- Cabala, J.M.; Cmiel, S.R.; Idziak, A.F. Environmental impact of mining activity in the upper silesian coal basin (Poland). Geol. Belg. 2004, 7, 225–229. [Google Scholar]
- Perski, Z. InSAR and POLinSAR for Land Subsidence Monitoring—User Perspective; ESA: Frascati, Italy, 2003; pp. 321–326. [Google Scholar]
- Sopata, P.; Stoch, T.; Wójcik, A.; Mrocheń, D. Land Surface Subsidence Due to Mining-Induced Tremors in the Upper Silesian Coal Basin (Poland)—Case Study. Remote Sens. 2020, 12, 3923. [Google Scholar] [CrossRef]
- Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens. 2015, 7, 5300–5328. [Google Scholar] [CrossRef]
- Lazecký, M.; Hatton, E.; González, P.J.; Hlaváčová, I.; Jiránková, E.; Dvořák, F.; Šustr, Z.; Martinovič, J. Displacements Monitoring over Czechia by IT4S1 System for Automatised Interferometric Measurements Using Sentinel-1 Data. Remote Sens. 2020, 12, 2960. [Google Scholar] [CrossRef]
- Sarhosis, V.; Giarlelis, C.; Karakostas, C.; Smyrou, E.; Bal, I.E.; Valkaniotis, S.; Ganas, A. Observations from the March 2021 Thessaly Earthquakes: An Earthquake Engineering Perspective for Masonry Structures. Bull. Earthq. Eng. 2022, 20, 5483–5515. [Google Scholar] [CrossRef]
- Lekkas, E.; Mavroulis, S.; Mavrouli, M.; Carydis, P.; Agorastos, K. The March 2021 Thessaly Earthquakes and Their Impact through the Prism of a Multi-Hazard Approach in Disaster Management. Geosociety 2021, 58, 1. [Google Scholar] [CrossRef]
- Festa, D.; Novellino, A.; Hussain, E.; Bateson, L.; Casagli, N.; Confuorto, P.; Del Soldato, M.; Raspini, F. Unsupervised Detection of InSAR Time Series Patterns Based on PCA and K-Means Clustering. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103276. [Google Scholar] [CrossRef]
- Medici, C.; Del Soldato, M.; Fibbi, G.; Bini, L.; Confuorto, P.; Mannori, G.; Mucci, A.; Pellegrineschi, V.; Bianchini, S.; Raspini, F.; et al. InSAR Data for Detection and Modelling of Overexploitation-Induced Subsidence: Application in the Industrial Area of Prato (Italy). Sci. Rep. 2024, 14, 17950. [Google Scholar] [CrossRef]
Case Study | Data Format | EGMS Product | Time Series | Area (km2) | Time | |
---|---|---|---|---|---|---|
(i) | Gulf of Naples | SHP | ORTHO (2019–2023) | NO | 1085.24 | <1 min |
(ii) | Southern Sørfjorden | GEOJSON | BASIC (2019–2023) | YES | 292.17 | 2 h |
(iii) | Firenze–Prato–Pistoia basin | GPKG | ORTHO (2018–2022) | NO | 515.98 | <1 min |
(iv) | Rules Dam and Reservoir | SHP | BASIC (2019–2023) | NO | 17.73 | 14 min |
(v) | Solnitsata-Provadia | GEOJSON | ORTHO (2019–2023) | NO | 12.65 | <1 min |
(vi) | Upper Silesian Coal Basin | GEOJSON | ORTHO (2018–2022) | NO | 4849.34 | 2 min |
(vii) | Larissa earthquake | GPKG | BASIC (2019–2023) | YES | 988.94 | 6 h 28 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becattini, F.; Medici, C.; Festa, D.; Del Soldato, M. EGMStream Webapp: EGMS Data Downstream Solution. Geosciences 2025, 15, 154. https://doi.org/10.3390/geosciences15040154
Becattini F, Medici C, Festa D, Del Soldato M. EGMStream Webapp: EGMS Data Downstream Solution. Geosciences. 2025; 15(4):154. https://doi.org/10.3390/geosciences15040154
Chicago/Turabian StyleBecattini, Francesco, Camilla Medici, Davide Festa, and Matteo Del Soldato. 2025. "EGMStream Webapp: EGMS Data Downstream Solution" Geosciences 15, no. 4: 154. https://doi.org/10.3390/geosciences15040154
APA StyleBecattini, F., Medici, C., Festa, D., & Del Soldato, M. (2025). EGMStream Webapp: EGMS Data Downstream Solution. Geosciences, 15(4), 154. https://doi.org/10.3390/geosciences15040154