Updated Chronology of the Last Deglaciation in the Făgăraş Mts (Romania)
Abstract
:1. Introduction
2. Study Site Description
2.1. Geomorphology of the Central Făgăraș Mts
2.2. Climate of the Făgăraș Mts
3. Materials and Methods
3.1. Lithology, Sample Collection and Morphostratigraphic Associations
3.2. Sample Collection and Morphostratigraphic Associations
3.3. Calculation of 10Be Surface Exposure Ages
4. Results
4.1. Cosmic Ray Exposure Ages and Outlier Identification of the Novel Dataset
4.2. Recalculated Cosmic Ray Exposure Ages
5. Discussion
5.1. Deglaciation Chronology of the Central Făgăraș Mts and the Surrounding Alpine Ranges
5.2. Deglaciation Chronology of the Central Făgăraș Mts—Paleoclimatological Context
5.3. Current Limitations and Future Works
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, P. Beobachtungen über Tektonik und Gletscherspuren im Fogarascher Hochgebirge. Z. Dtsch. Geol. Ges. 1881, 33, 109–117. [Google Scholar]
- de Martonne, E. La Période Glaciaire dans les Karpates Méridionales; Imprimerie Hollinek Frères: Vienna, Austria, 1904; pp. 691–702. [Google Scholar]
- Posea, G. Geomorfologia României; Editura Fundaţiei România de Mâine: Bucureşti, Romania, 2002; pp. 27–40. [Google Scholar]
- Urdea, P. The Pleistocene glaciation of the Romanian Carpathians. In Developments in Quaternary Sciences; Ehlers, J., Gibbard, P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2, pp. 301–308. [Google Scholar]
- Popescu, R.; Urdea, P.; Vespremeanu-Stroe, A. Deglaciation History of High Massifs from the Romanian Carpathians: Towards an Integrated View. In Landform Dynamics and Evolution in Romania; Radoane, M., Vespremeanu-Stroe, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 87–116. [Google Scholar]
- Kłapyta, P.; Zasadni, J.; Mîndrescu, M. Late Pleistocene glaciation in the Eastern Carpathians—A regional overview. CATENA 2023, 224, 106994. [Google Scholar] [CrossRef]
- Mîndrescu, M.; Evans, I.S. Cirque form and development in Romania: Allometry and the buzzsaw hypothesis. Geomorphology 2014, 208, 117–136. [Google Scholar] [CrossRef]
- Mîndrescu, M.; Evans, I.S.; Cox, N.J. Climatic implications of cirque distribution in the Romanian Carpathians: Palaeowind directions during glacial periods. J. Quat. Sci. 2010, 25, 875–888. [Google Scholar] [CrossRef]
- Urdea, P.; Onaca, A.; Ardelean, F.; Ardelean, M. Chapter 24—New Evidence on the Quaternary Glaciation in the Romanian Carpathians. In Developments in Quaternary Sciences; Ehlers, J., Gibbard, P.L., Hughes, P.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15, pp. 305–322. [Google Scholar]
- Urdea, P. Munţii Retezat: Studiu Geomorfologic; Editura Academiei Române: Bucureşti, Romania, 2000. [Google Scholar]
- Balco, G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat. Sci. Rev. 2011, 30, 3–27. [Google Scholar] [CrossRef]
- Gosse, J.C.; Phillips, F.M. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat. Sci. Rev. 2001, 20, 1475–1560. [Google Scholar] [CrossRef]
- Reuther, A.; Geiger, C.; Urdea, P.; Niller, H.-P.; Heine, K. Determining the glacial equilibrium line altitude (ELA) for the northern Retezat Mountains, southern Carpathians and resulting paleoclimatic implications for the last glacial cycle. Analele Univ. Vest Timişoara Ser. Geogr. 2004, 14, 11–34. [Google Scholar]
- Reuther, A.U.; Urdea, P.; Geiger, C.; Ivy-Ochs, S.; Niller, H.-P.; Kubik, P.W.; Heine, K. Late Pleistocene glacial chronology of the Pietrele Valley, Retezat Mountains, Southern Carpathians constrained by 10Be exposure ages and pedological investigations. Quat. Int. 2007, 164–165, 1511–1569. [Google Scholar] [CrossRef]
- Urdea, P.; Reuther, A.U. Some new data concerning the Quaternary glaciation in the Romanian Carpathians. Geogr. Pannonica 2009, 13, 41–52. [Google Scholar] [CrossRef]
- Gheorghiu, D.M.; Hosu, M.; Corpade, C.; Xu, S. Deglaciation constraints in the Parâng Mountains, Southern Romania, using surface exposure dating. Quat. Int. 2015, 388, 156–167. [Google Scholar] [CrossRef]
- Kuhlemann, J.; Dobre, F.; Urdea, P.; Krumrei, I.; Gachev, E.; Kubik, P.; Rahn, M. Last glacial maximum glaciation of the Central South Carpathian Range (Romania). Austrian J. Earth Sci. 2013, 106, 50–62. [Google Scholar]
- Ruszkiczay-Rüdiger, Z.; Kern, Z.; Urdea, P.; Braucher, R.; Madarász, B.; Schimmelpfennig, I. Revised deglaciation history of the Pietrele–Stânişoara glacial complex, Retezat Mts, Southern Carpathians, Romania. Quat. Int. 2016, 415, 216–229. [Google Scholar] [CrossRef]
- Ruszkiczay-Rüdiger, Z.; Kern, Z.; Urdea, P.; Madarász, B.; Braucher, R. Limited glacial erosion during the last glaciation in mid-latitude cirques (Retezat Mts, Southern Carpathians, Romania). Geomorphology 2021, 384, 107719. [Google Scholar] [CrossRef]
- Pascal, D.; Vespremeanu-Stroe, A.; Braucher, R.; Popescu, R.; Enachescu, M.; Berbecariu, A.; Vasile, A. New Data from Făgăraș and Retezat Massifs Set the Timeframe of the Last Glacial Activity in Southern Carpathians during Younger Dryas and Early Holocene. In Proceedings of the European Geosciences Union General Assembly 2024 (EGU24), Vienna, Austria, 14–19 April 2024. [Google Scholar] [CrossRef]
- Borchers, B.; Marrero, S.; Balco, G.; Caffee, M.; Goehring, B.; Lifton, N.; Nishiizumi, K.; Phillips, F.; Schaefer, J.; Stone, J. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat. Geochronol. 2016, 31, 188–198. [Google Scholar] [CrossRef]
- Chmeleff, J.; von Blanckenburg, F.; Kossert, K.; Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 192–199. [Google Scholar] [CrossRef]
- Korschinek, G.; Bergmaier, A.; Faestermann, T.; Gerstmann, U.C.; Knie, K.; Rugel, G.; Wallner, A.; Dillmann, I.; Dollinger, G.; von Gostomski, C.L.; et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 187–191. [Google Scholar] [CrossRef]
- Urdea, P.; Onaca, A.; Ardelean, F. Application of DC resistivity tomography on glacial deposits in the Bâlea-Valea Doamnei area, Făgăraş Mountains. Anal. Univ. Vest Timişoara Geogr. 2007, 17, 5–22. [Google Scholar]
- Drăgușin, V.; Mirea, I.; Nae, A.; Tîrlă, M.-L. Caves of the Făgăras Mountains. In Cave and Karst Systems of Romania; Ponta, G.M.L., Onac, B.P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 79–82. [Google Scholar]
- Tîrlă, L.; Drăgușin, V.; Bajo, P.; Covaliov, S.; Cruceru, N.; Ersek, V.; Hanganu, D.; Hellstrom, J.; Hoffmann, D.; Mirea, I.; et al. Quaternary environmental evolution in the South Carpathians reconstructed from glaciokarst geomorphology and sedimentary archives. Geomorphology 2020, 354, 107038. [Google Scholar] [CrossRef]
- Onaca, A.; Ardelean, F.; Urdea, P.; Magori, B. Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors. Geomorphology 2017, 293, 391–404. [Google Scholar] [CrossRef]
- Onaca, A.; Urdea, P.; Ardelean, A.C.; Șerban, R.; Ardelean, F. Present-Day Periglacial Processes in the Alpine Zone. In Landform Dynamics and Evolution in Romania; Radoane, M., Vespremeanu-Stroe, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 147–176. [Google Scholar]
- Vasile, M.; Vespremeanu-Stroe, A.; Pascal, D.; Braucher, R.; Pleșoianu, A.; Popescu, R.; Etzelmüller, B. Rock walls distribution and Holocene evolution in a mid-latitude mountain range (the Romanian Carpathians). Geomorphology 2022, 413, 108351. [Google Scholar] [CrossRef]
- Micu, D.M.; Dumitrescu, A.; Cheval, S.; Birsan, M.-V. Climate of the Romanian Carpathians; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Voiculescu, M.; Ardelean, F. Snow avalanche–disturbance of high mountain environment. Case study–the Doamnei glacial valley the Făgăraş massif-Southern Carpathians, Romanian Carpathians. Carpathian J. Earth Environ. Sci. 2012, 7, 95–108. [Google Scholar]
- Pană, D. Central and northern Făgăraş—Lithological sequences and structure. D. S. Inst. Geol. Geofiz. 1990, 74, 81–99. [Google Scholar]
- Urdea, P.; Törok-Oance, M.; Ardelean, M.; Vuia, F.; Voiculescu, M.V. Geomorphological aspects of the human impact in the alpine area of Southern Carpathians (Romania). Hrvat. Geogr. Glas. 2009, 71, 19–31. [Google Scholar] [CrossRef]
- Hughes, P.D.; Gibbard, P.L.; Woodward, J.C. Quaternary glacial records in mountain regions: A formal stratigraphical approach. Episodes 2005, 28, 85–92. [Google Scholar] [CrossRef]
- Merchel, S.; Herpers, U. An Update on Radiochemical Separation Techniques for the Determination of Long-Lived Radionuclides via Accelerator Mass Spectrometry. Radiochim. Acta 1999, 84, 215–220. [Google Scholar] [CrossRef]
- Merchel, S.; Gärtner, A.; Beutner, S.; Bookhagen, B.; Chabilan, A. Attempts to understand potential deficiencies in chemical procedures for AMS: Cleaning and dissolving quartz for 10Be and 26Al analysis. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 455, 293–299. [Google Scholar] [CrossRef]
- Ruszkiczay-Rüdiger, Z.; Neuhuber, S.; Braucher, R.; Lachner, J.; Steier, P.; Wieser, A.; Braun, M.; Bourlès, D.; Aumaître, G.; Keddadouche, K.; et al. Comparison and performance of two cosmogenic nuclide sample preparation procedures of in situ produced 10Be and 26Al. J. Radioanal. Nucl. Chem. 2021, 329, 1523–1536. [Google Scholar] [CrossRef]
- Arnold, M.; Merchel, S.; Bourlès, D.L.; Braucher, R.; Benedetti, L.; Finkel, R.C.; Aumaître, G.; Gottdang, A.; Klein, M. The French accelerator mass spectrometry facility ASTER: Improved performance and developments. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1954–1959. [Google Scholar] [CrossRef]
- Braucher, R.; Guillou, V.; Bourlès, D.L.; Arnold, M.; Aumaître, G.; Keddadouche, K.; Nottoli, E. Preparation of ASTER in-house 10Be/9Be standard solutions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 361, 335–340. [Google Scholar] [CrossRef]
- Vermeesch, P. CosmoCalc: An Excel add-in for cosmogenic nuclide calculations. Geochem. Geophys. Geosyst. 2007, 8, Q08003. [Google Scholar] [CrossRef]
- Mațenco, L. Tectonics and exhumation of Romanian Carpathians: Inferences from kinematic and thermochronological studies. In Landform Dynamics and Evolution in Romania; Radoane, M., Vespremeanu-Stroe, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 15–56. [Google Scholar]
- Zugrăvescu, D.; Polonic, G.; Horomnea, M.; Dragomir, V. Recent vertical crustal movements on the Romanian territory, major tectonic compartments and their relative dynamics. Rev. Roum. Géol. Géophys. Géogr. Sér. Géogr. 1998, 42, 3–14. [Google Scholar]
- Plug, L.J.; Gosse, J.C.; McIntosh, J.J.; Bigley, R. Attenuation of cosmic ray flux in temperate forest. J. Geophys. Res. Earth Surf. 2007, 112, F02022. [Google Scholar] [CrossRef]
- Hippe, K.; Ivy-Ochs, S.; Kober, F.; Zasadni, J.; Wieler, R.; Wacker, L.; Kubik, P.W.; Schlüchter, C. Chronology of Lateglacial ice flow reorganization and deglaciation in the Gotthard Pass area, Central Swiss Alps, based on cosmogenic 10Be and in situ 14C. Quat. Geochronol. 2014, 19, 14–26. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Birsan, M.-V.; Nita, I.-A. A Romanian daily high-resolution gridded dataset of snow depth (2005–2015). Geofizika 2017, 34, 275–295. [Google Scholar] [CrossRef]
- Micu, D. Snow pack in the Romanian Carpathians under changing climatic conditions. Meteorol. Atmos Phys. 2009, 105, 1–16. [Google Scholar] [CrossRef]
- Heyman, J.; Stroeven, A.P.; Harbor, J.M.; Caffee, M.W. Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth Planet. Sci. Lett. 2011, 302, 71–80. [Google Scholar] [CrossRef]
- Applegate, P.J.; Urban, N.M.; Keller, K.; Lowell, T.V.; Laabs, B.J.C.; Kelly, M.A.; Alley, R.B. Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms. Quat. Res. 2012, 77, 293–304. [Google Scholar] [CrossRef]
- Crest, Y.; Delmas, M.; Braucher, R.; Gunnell, Y.; Calvet, M. Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees. Geomorphology 2017, 278, 60–77. [Google Scholar] [CrossRef]
- Wirsig, C.; Ivy-Ochs, S.; Reitner, J.M.; Christl, M.; Vockenhuber, C.; Bichler, M.; Reindl, M. Subglacial abrasion rates at Goldbergkees, Hohe Tauern, Austria, determined from cosmogenic 10Be and 36Cl concentrations. Earth Surf. Process. Landf. 2017, 42, 1119–1131. [Google Scholar] [CrossRef]
- Balco, G. Glacier Change and Paleoclimate Applications of Cosmogenic-Nuclide Exposure Dating. Annu. Rev. Earth Planet. Sci. 2020, 48, 21–48. [Google Scholar] [CrossRef]
- Zasadni, J.; Kałuża, P.; Kłapyta, P.; Świąder, A. Evolution of the Białka valley Pleistocene moraine complex in the High Tatra Mountains. CATENA 2021, 207, 105704. [Google Scholar] [CrossRef]
- Rinterknecht, V.; Matoshko, A.; Gorokhovich, Y.; Fabel, D.; Xu, S. Expression of the Younger Dryas cold event in the Carpathian Mountains, Ukraine? Quat. Sci. Rev. 2012, 39, 106–114. [Google Scholar] [CrossRef]
- Zasadni, J.; Kłapyta, P.; Makos, M. The evolution of glacial landforms in the Tatra Mountains during the deglaciation. In European Glacial Landscapes; Palacios, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 157–164. [Google Scholar]
- Ruszkiczay-Rüdiger, Z.; Kern, Z.; Temovski, M.; Madarász, B.; Milevski, I.; Braucher, R.; ASTER Team. Last deglaciation in the central Balkan Peninsula: Geochronological evidence from Jablanica Mt (North Macedonia). Geomorphology 2020, 351, 106985. [Google Scholar] [CrossRef]
- Ruszkiczay-Rüdiger, Z.; Temovski, M.; Kern, Z.; Madarász, B.; Milevski, I.; Lachner, J.; Steier, P. Late Pleistocene glacial advances, equilibrium-line altitude changes and paleoclimate in the Jakupica Mt. (North Macedonia). CATENA 2022, 216 Pt A, 106383. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef]
- Lowe, J.J.; Rasmussen, S.O.; Björck, S.; Hoek, W.Z.; Steffensen, J.P.; Walker, M.J.C.; Yu, Z.C. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: A revised protocol recommended by the INTIMATE group. Quat. Sci. Rev. 2008, 27, 6–17. [Google Scholar] [CrossRef]
- Sanchi, L.; Ménot, G.; Bard, E. Insights into continental temperatures in the northwestern Black Sea area during the Last Glacial period using branched tetraether lipids. Quat. Sci. Rev. 2014, 84, 98–108. [Google Scholar] [CrossRef]
- Tóth, M.; Magyari, E.K.; Brooks, S.J.; Braun, M.; Buczkó, K.; Bálint, M.; Heiri, O. A chironomid-based reconstruction of Late glacial summer temperatures in the southern Carpathians (Romania). Quat. Res. 2012, 77, 122–131. [Google Scholar] [CrossRef]
- Braun, M.; Hubay, K.; Magyari, E.; Veres, D.; Papp, I.; Bálint, M. Using linear discriminant analysis (LDA) of bulk lake sediment geochemical data to reconstruct Lateglacial climate changes in the South Carpathian Mountains. Quat. Int. 2013, 293, 114–122. [Google Scholar] [CrossRef]
- Tantau, I.; Reille, M.; de Beaulieu, J.-L.; Farcas, S. Late Glacial and Holocene vegetation history in the southern part of Transylvania (Romania): Pollen analysis of two sequences from Avrig. J. Quat. Sci. 2006, 21, 49–61. [Google Scholar] [CrossRef]
- Magyari, E.K.; Jakab, G.; Bálint, M.; Kern, Z.; Buczkó, K.; Braun, M. Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quat. Sci. Rev. 2012, 35, 116–130. [Google Scholar] [CrossRef]
- Tămaş, T.; Onac, B.P.; Bojar, A.-V. Lateglacial-Middle Holocene stable isotope records in two coeval stalagmites from the Bihor Mountains, NW Romania. Geol. Q. 2005, 49, 185–194. [Google Scholar]
Sample ID | Latitude (N°) | Longitude (E°) | Elevation (m, asl) | Thickness (cm) | Boulder Size (m) | Valley | Morphostrat | ||
---|---|---|---|---|---|---|---|---|---|
Length | Width | Height | |||||||
VD3 | 45.6047 | 24.5989 | 1877 | 4 | 4 | 3.5 | 3.5 | Doamnei | Phase 5 |
VD4 | 45.6069 | 24.5992 | 1860 | 3 | 2 | 2.5 | 1.5 | Doamnei | Phase 4 |
VD5 | 24.5994 | 45.6092 | 1830 | 3 | 2 | 2.5 | 1 | Doamnei | Phase 4 |
VD7 | 45.6247 | 24.5933 | 1472 | 3 | striated bedrock | ~0.1 | Doamnei | Phase 2 | |
B1 | 45.6056 | 24.6289 | 2280 | 3 | 2 | 2.5 | 1 | Bâlea | Phase 6 |
F1 | 45.55 | 24.60 | 1306 | 3 | NA | NA | 1.5 | Caprei | Phase 2 |
F3 | 45.60 | 24.65 | 2063 | 3 | NA | NA | 1.5 | Caprei | Phase 5 |
F5 | 45.58 | 24.63 | 1610 | 3 | NA | NA | 1.2 | Caprei | Phase 3 |
F9 | 45.60 | 24.61 | 2065 | 3 | striated bedrock | 0.1 | Doamnei | Phase 5/6 | |
F11 | 45.62 | 24.60 | 1670 | 3 | striated bedrock | 0.1 | Doamnei | Phase 2 |
Subset | Sample ID | Exposure Age (ka) | ||
---|---|---|---|---|
Blank Corrected 10Be Concentration (at/grSiO2) | Basic Correction (Minimum Age) | All Corrections * (Most Probable Age) | ||
this study | VD3 | 132,848 ± 5615 | 7.9 ± 0.7 | 8.7 ± 0.8 |
VD4 | 266,830 ± 10,909 | 15.8 ± 1.5 | 18.7 ± 1.7 | |
VD5 | 255,287 ± 9837 | 15.8 ± 1.4 | 18.6 ± 1.7 | |
VD7 | 184,683 ± 7485 | 15.7 ± 1.4 | 17.2 ± 1.6 | |
B1 | 224,906 ± 8717 | 11.2 ± 1.0 | 13.3 ± 1.2 | |
recalculated from Kuhlemann et al. [17] | F1 | 167,900 ± 13,936 | 14.6 ± 1.7 | 16.5 ± 1.9 |
F3 | 232,600 ± 15,119 | 11.7 ± 1.2 | 14.5 ± 1.5 | |
F5 | 186,500 ± 11,004 | 13.2 ± 1.3 | 16.0 ± 1.6 | |
F9 | 234,100 ± 19,899 | 12.0 ± 1.4 | 14.9 ± 1.8 | |
F11 | 138,300 ± 8298 | 11.6 ± 1.2 | 13.3 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kern, Z.; Urdea, P.; Ardelean, M.; ASTER Team; Ruszkiczay-Rüdiger, Z. Updated Chronology of the Last Deglaciation in the Făgăraş Mts (Romania). Geosciences 2025, 15, 109. https://doi.org/10.3390/geosciences15030109
Kern Z, Urdea P, Ardelean M, ASTER Team, Ruszkiczay-Rüdiger Z. Updated Chronology of the Last Deglaciation in the Făgăraş Mts (Romania). Geosciences. 2025; 15(3):109. https://doi.org/10.3390/geosciences15030109
Chicago/Turabian StyleKern, Zoltán, Petru Urdea, Mircea Ardelean, ASTER Team, and Zsófia Ruszkiczay-Rüdiger. 2025. "Updated Chronology of the Last Deglaciation in the Făgăraş Mts (Romania)" Geosciences 15, no. 3: 109. https://doi.org/10.3390/geosciences15030109
APA StyleKern, Z., Urdea, P., Ardelean, M., ASTER Team, & Ruszkiczay-Rüdiger, Z. (2025). Updated Chronology of the Last Deglaciation in the Făgăraş Mts (Romania). Geosciences, 15(3), 109. https://doi.org/10.3390/geosciences15030109