Remote Sensing Applications for Geological Mapping in the Mediterranean Region: A Review
Abstract
1. Introduction
2. Methods
2.1. Satellite Data Acquisition and Preprocessing
2.2. Pixel-Based Methods
2.2.1. Spectral Indices
2.2.2. Spectral Similarity-Based Techniques
2.2.3. Unsupervised Classification
2.3. Sub-Pixel Methods
Spectral Unmixing
2.4. SAR Interferometry (InSAR) for Geological Mapping
2.5. Field Campaigns and Mineralogical Analysis
2.6. Geographical Information Systems (GISs) and Multi-Layer Analysis
3. Results
3.1. Overview of Remote Sensing Applications in the Mediterranean
3.2. Spectral Libraries: Use and Impact on Geological Mapping in the Mediterranean Region
Standard and Custom Spectral Libraries
- a
- The creation of validated and customized spectral signature libraries derived from in situ geological samples (XRD, XRF, etc.) complementary to the available open-access USGS library.
- b
- Validating mineral identification using the reflectance spectra of Raman-validated samples, which can be convolved into satellite spectral bands.
- c
- An accurate convolution to satellite spectra from the available multispectral and hyper-spectral sensors, to enable automatic mineral identification.
- d
- Training machine learning (ML) models for pixel-based and sub-pixel analysis optimized for mineral detection, scalable to critical raw material (CRM)-rich environments.
3.3. Comparative Summary of Pixel-Based and Sub-Pixel Methods Effectiveness
4. Discussion
4.1. Implication for Mining Exploration
4.2. Challenges and Future Directions
5. Conclusions
- Remote sensing, coupled with mineralogical data, offers a non-invasive and scalable approach to map mineralized zones.
- Locally developed spectral libraries are essential for improving classification accuracy in regions with unique mineralogical signatures.
- The standardization of methodologies, machine learning integration, and multi-sensor dataset merging is needed to address inconsistent methods and limited ground-truth data.
- Maps of alteration minerals can be linked to prospectivity models, highlighting zones likely to host Cu, REE, and CRMs.
- Integrating alteration, geophysical, geochemical, and structural datasets into a GIS framework enables spatially explicit resource assessments for exploration strategies.
- Expanding and standardizing regional spectral libraries will improve the trust of sub-pixel and hyperspectral analyses in complex terrains.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| No. | Case Study/Location | Region | Results/Purpose | Tectonics/Geological Setting | References |
|---|---|---|---|---|---|
| 1 | Freixeda, Northern Portugal | North | Mapping hydrothermal alteration zones | Varied, old sedimentary rocks | [38] |
| 2 | Beiras Group, Central Portugal | North | Lithology mapping | Sedimentary units | [92] |
| 3 | Torrential basins, Portugal | North | Mineral mapping | River basins | [106] |
| 4 | Los Frailes, Spain | North | Hydrothermal alteration patterns | Volcanic-hosted ore | [3] |
| 5 | Cantabrian Mountains, Spain | North | Land use | Variscan belt | [5] |
| 6 | Vega Media, Segura River, SE Spain | North | Alluvial deformation behaviors | Fluvial sediments | [75] |
| 7 | Iberian Pyrite Belt, SW Spain | North | Contamination monitoring | Sulfide deposits | [91] |
| 8 | Buëch area, France | North | Lithological mapping | Jurassic/Cretaceous units | [48] |
| 9 | Campi Flegrei, Southern Italy | North | Volcanic structures/unrest monitoring | Caldera volcanism | [68] |
| 10 | San Vito, Campi Flegrei, Italy | North | Hydrothermal alteration | Volcanic geothermal field | [20] |
| 11 | Lesvos Island, Greece | North | Temporal geothermal variations | Miocene volcanic field | [16] |
| 12 | Methana Volcano, Greece | North | Deformation trends | Hellenic Volcanic Arc | [67] |
| 13 | Limnos Island, Greece | North | Hydrothermal alteration mapping | Volcanic island | [34] |
| 14 | Nisyros Volcano, Greece | North | Mapping hydrothermal field | Volcanic Hellenic Arc | [4] |
| 15 | Koutala Islet, Lavreotiki, Greece | North | Identify mineralization | Igneous intrusions | [1] |
| 16 | Aegina Island, Greece | North | Ground deformation monitoring | Hellenic Volcanic Arc | [73] |
| 17 | Kythira Island, Greece | North | Ground displacement trends | Western Hellenic Arc | [74] |
| 18 | Sivas Basin, Turkey | North | Ophiolitic rock mapping | Ophiolite units | [39] |
| 19 | Central Turkey (Evaporites) | North | Evaporite minerals | Sedimentary basin | [40] |
| 20 | Eastern Taurides, W Turkey | North | Lithological units | Ophiolite/tectonic belt | [41] |
| 21 | East Anatolian Fault, Turkey | North | Tectonic activity | Fault zone/strike-slip fault | [43] |
| 22 | Kösedağ, Central-Eastern Anatolia | North | Hydrothermal alteration mapping | Volcanic metamorphic | [44] |
| 23 | Reşadiye, Tokat, Turkey | North | Bentonite mapping | Volcanic sedimentary | [65] |
| 24 | East Oltu, Erzurum, Turkey | North | Chromite ore exploration | Ultramafic rocks | [57] |
| 25 | Afyonkarahisar (Akarcay Basin) | North | Hydrothermal alteration mapping | Geothermal basin | [50] |
| 26 | Southern Italy | North | Land use | Complex volcanic/tectonic area of Southern Italy | [105] |
| 27 | East Vardar Ophiolite, North Macedonia | North | Predictive mapping | Ophiolite complex | [47] |
| 28 | Selac, Kosovo | North | Mineral prospecting | Alpine Ophiolite | [46] |
| 29 | Panagyurishte, Bulgaria | North | Hydrothermal alteration/ore deposits | Balkan Thrust | [45] |
| 30 | Troodos Ophiolite, Cyprus | North | Lithological mapping/prospecting | Ophiolite complex | [98] |
| 31 | Rich area, Central High Atlas, Morocco | South | Lithological mapping | Atlas mountains | [22] |
| 32 | Igoudrane, Jbel Saghro, Morocco | South | Lithology/mineral mapping | Anti-Atlas | [51] |
| 33 | Tifraouine M’sirda, NW Algeria | South | Hydrothermal alteration/structural mapping | Coastal/volcanic | [32,33] |
| 34 | Hamash area, Egypt | South | Mineralization zones | Precambrian basement | [37] |
| 35 | South Eastern Desert, Egypt | South | Mineral prospecting | Precambrian rocks | [42] |
| 36 | Sidi Bou Azzouz, Morocco | South | Abandoned mining site mapping | Anti-Atlas | [49] |
| 37 | Northern Tunisia (Nappe Zone) | South | Fe ore characterization | Atlas mountains | [94] |
| 38 | Nisyros Volcano (thermal correlation), Greece | North | Correlating thermal performance with hydrothermal zones | Volcanic Hellenic Arc | [15] |
| 39 | Methana, Santorini, Greece | North | Volcano monitoring/ pre/post unrest | Volcanic arc | [69] |
| 40 | Ischia Island, Italy | North | Ground displacement | Phlegraean Volcanic | [70] |
| 41 | NE Italy coastal plains | North | Subsidence zonation | Coastal plain | [72] |
| 42 | Crete, Central | North | Karst geomorphology mapping | Mediterranean karst | [85] |
References
- Sykioti, O.; Ganas, A.; Vasilatos, C.; Kypritidou, Z. Investigating the capability of Sentinel-2 and Worldview-3 VNIR satellite data to detect mineralized zones at an igneous intrusion in the Koutala islet (Lavreotiki, Greece) using laboratory mineralogical analysis, reflectance spectroscopy and spectral indices. Bull. Geol. Soc. Greece 2022, 59, 175–213. [Google Scholar] [CrossRef]
- Chikhaoui, M.; Bonn, F.; Bokoye, A.I.; Merzouk, A. A spectral index for land degradation mapping using ASTER data: Application to a semi-arid Mediterranean catchment. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 140–153. [Google Scholar] [CrossRef]
- Blumberg, A.; Schodlok, M.C. The synergistic use of multi-scale remote sensing data for the identification of hydrothermal alteration patterns in Los Frailes, Spain. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103034. [Google Scholar] [CrossRef]
- Tompolidi, A.M.; Sykioti, O.; Koutroumbas, K.; Parcharidis, I. Spectral unmixing for mapping a hydrothermal field in a volcanic environment applied on ASTER, Landsat-8/OLI, and Sentinel-2 MSI Satellite Multispectral Data: The Nisyros (Greece) case study. Remote Sens. 2020, 12, 4180. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; González-Pérez, I.; Reguero-Vaquero, A.; Marcos, E. Estimating Grassland Biophysical Parameters in the Cantabrian Mountains Using Radiative Transfer Models in Combination with Multiple Endmember Spectral Mixture Analysis. Remote Sens. 2024, 16, 4547. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Atkinson, P.M. Unsupervised object-based spectral unmixing for subpixel mapping. Remote Sens. Environ. 2025, 318, 114514. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M. A data dependent multiscale model for hyperspectral unmixing with spectral variability. IEEE Trans. Image Process. 2020, 29, 3638–3651. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Ma, W.K. Geometrical methods–illustration with hyperspectral unmixing. In Source Separation in Physical-Chemical Sensing; Wiley: Hoboken, NJ, USA, 2023; pp. 201–253. [Google Scholar]
- Anifadi, A.; Sykioti, O.; Koutroumbas, K.; Vassilakis, E.; Vasilatos, C.; Georgiou, E. Discrimination of Fe-Ni-Laterites from Bauxites Using a Novel Support Vector Machines-Based Methodology on Sentinel-2 Data. Remote Sens. 2024, 16, 2295. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Arvanitis, K.; Sigrimis, N. Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Syst. Appl. 2012, 39, 3800–3809. [Google Scholar] [CrossRef]
- Vasilakos, C.; Kavroudakis, D.; Georganta, A. Machine learning classification ensemble of multitemporal Sentinel-2 images: The case of a mixed mediterranean ecosystem. Remote Sens. 2020, 12, 2005. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Erdoğmuş, D.; Imbiriba, T. Learning interpretable deep disentangled neural networks for hyperspectral unmixing. IEEE Trans. Comput. Imaging 2023, 9, 977–991. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Rivas, M. Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models. Int. J. Digit. Earth 2014, 7, 492–509. [Google Scholar] [CrossRef]
- De Luca, G.; MN Silva, J.; Di Fazio, S.; Modica, G. Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for land cover mapping in a Mediterranean region. Eur. J. Remote Sens. 2022, 55, 52–70. [Google Scholar] [CrossRef]
- Tompolidi, A.M.; Koutroumbas, K.; Sykioti, O.; Parcharidis, I. Correlation of thermal performance of ASTER with the hydrothermal alteration zones: The case of Nisyros volcano, Greece. J. Appl. Remote Sens. 2022, 16, 034506. [Google Scholar] [CrossRef]
- Peleli, S.; Kouli, M.; Marchese, F.; Lacava, T.; Vallianatos, F.; Tramutoli, V. Monitoring temporal variations in the geothermal activity of Miocene Lesvos volcanic field using remote sensing techniques and MODIS–LST imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102251. [Google Scholar] [CrossRef]
- Rabuffi, F.; Musacchio, M.; Silvestri, M.; Cianfarra, P.; Salvini, F.; Buongiorno, M. Integrating satellite remote sensing and proximal data to investigate the role of brittle tectonics in the distribution of geothermal surface manifestations. Insights from the Parco Naturalistico delle Biancane-Larderello geothermal field (Southern Tuscany, Italy). Geothermics 2025, 132, 103428. [Google Scholar]
- Tompolidi, A.M.; Parcharidis, I.; Sykioti, O. Investigation of Sentinel-1 capabilities to detect hydrothermal alteration based on multitemporal interferometric coherence: The case of Nisyros volcano (Greece). Procedia Comput. Sci. 2021, 181, 1027–1033. [Google Scholar] [CrossRef]
- Lapini, A.; Pettinato, S.; Santi, E.; Paloscia, S.; Fontanelli, G.; Garzelli, A. Comparison of machine learning methods applied to SAR images for forest classification in mediterranean areas. Remote Sens. 2020, 12, 369. [Google Scholar] [CrossRef]
- Piochi, M.; Cantucci, B.; Montegrossi, G.; Currenti, G. Hydrothermal alteration at the San Vito area of the Campi Flegrei geothermal system in Italy: Mineral review and geochemical modeling. Minerals 2021, 11, 810. [Google Scholar] [CrossRef]
- Ferrier, G.; Ganas, A.; Pope, R. Prospectivity mapping for high sulfidation epithermal porphyry deposits using an integrated compositional and topographic remote sensing dataset. Ore Geol. Rev. 2019, 107, 353–363. [Google Scholar] [CrossRef]
- Bentahar, I.; Raji, M. Comparison of Landsat OLI, ASTER, and Sentinel 2A data in lithological mapping: A Case study of Rich area (Central High Atlas, Morocco). Adv. Space Res. 2021, 67, 945–963. [Google Scholar] [CrossRef]
- Shebl, A.; Abdellatif, M.; Hissen, M.; Abdelaziz, M.I.; Csámer, Á. Lithological mapping enhancement by integrating Sentinel 2 and gamma-ray data utilizing support vector machine: A case study from Egypt. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102619. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- D’Amico, S.; Bodin, P.; Delpech, M.; Noteborn, R. Prisma. In Distributed Space Missions for Earth System Monitoring; Springer: Berlin/Heidelberg, Germany, 2012; pp. 599–637. [Google Scholar]
- Guarini, R.; Loizzo, R.; Facchinetti, C.; Longo, F.; Ponticelli, B.; Faraci, M.; Dami, M.; Cosi, M.; Amoruso, L.; De Pasquale, V.; et al. PRISMA hyperspectral mission products. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 179–182. [Google Scholar]
- Alicandro, M.; Candigliota, E.; Dominici, D.; Immordino, F.; Masin, F.; Pascucci, N.; Quaresima, R.; Zollini, S. Hyperspectral PRISMA and Sentinel-2 Preliminary Assessment Comparison in Alba Fucens and Sinuessa Archaeological Sites (Italy). Land 2022, 11, 2070. [Google Scholar] [CrossRef]
- Sorrentino, A.; Chirico, R.; Corrado, F.; Laukamp, C.; Di Martire, D.; Mondillo, N. The application of PRISMA hyperspectral satellite imagery in the delineation of distinct hydrothermal alteration zones in the Chilean Andes: The Marimaca IOCG and the Río Blanco-Los Bronces Cu-Mo porphyry districts. Ore Geol. Rev. 2024, 167, 105998. [Google Scholar] [CrossRef]
- Hajaj, S.; El Harti, A.; Pour, A.B.; Jellouli, A.; Adiri, Z.; Hashim, M. A review on hyperspectral imagery application for lithological mapping and mineral prospecting: Machine learning techniques and future prospects. Remote Sens. Appl. Soc. Environ. 2024, 35, 101218. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; Van der Werff, H.M.; Van Ruitenbeek, F.J.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; Van Der Meijde, M.; Carranza, E.J.M.; De Smeth, J.B.; Woldai, T. Multi-and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Wise, R.A.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J. USGS Digital Spectral Library splib06a; Technical Report; US Geological Survey: Reston, VA, USA, 2007.
- Labdaoui, B.; Benali, H.; Boughacha, A.; Moussaoui, K. Mapping hydrothermal alterations and lineaments associated with epithermal and massive sulphides deposits of Tifraouine (northwest Algerian coast): Use of Landsat 8 OLI data and remote sensing. Rev. Soc. Geol. Esp. 2023, 36, 3–15. [Google Scholar] [CrossRef]
- Moussaoui, K.; Benali, H.; Kermani, S.; Labdaoui, B. Detection of hydrothermal alteration and structural characteristics of Miocene volcanic rocks using remote sensing in the M’sirda region (northwestern Algeria). Appl. Geomat. 2023, 15, 189–207. [Google Scholar] [CrossRef]
- Anifadi, A.; Parcharidis, I.; Sykioti, O. Hydrothermal alteration zones detection in Limnos Island, through the application of remote sensing. Bull. Geol. Soc. Greece 2016, 50, 1596–1604. [Google Scholar] [CrossRef]
- Ferrier, G.; White, K.; Griffiths, G.; Bryant, R.; Stefouli, M. The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset. Int. J. Remote Sens. 2002, 23, 341–356. [Google Scholar] [CrossRef]
- Ferrier, G.; Naden, J.; Ganas, A.; Kemp, S.; Pope, R. Identification of multi-style hydrothermal alteration using integrated compositional and topographic remote sensing datasets. Geosciences 2016, 6, 36. [Google Scholar] [CrossRef]
- Aboelkhair, H.; Ibraheem, M.; El-Magd, I.A. Integration of airborne geophysical and ASTER remotely sensed data for delineation and mapping the potential mineralization zones in Hamash area, South Eastern Desert, Egypt. Arab. J. Geosci. 2021, 14, 1157. [Google Scholar] [CrossRef]
- Santos, D.; Cardoso-Fernandes, J.; Lima, A.; Teodoro, A. Application of band ratios to map hydrothermal alteration zones related to Au-Sb mineralization in Freixeda, Northern Portugal. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications XV, Edinburgh, UK, 16–19 September 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13197, pp. 135–143. [Google Scholar]
- Ekici, T. Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. Turk. J. Earth Sci. 2023, 32, 200–213. [Google Scholar] [CrossRef]
- Gürbüz, E. Multispectral mapping of evaporite minerals using ASTER data: A methodological comparison from central Turkey. Remote Sens. Appl. Soc. Environ. 2019, 15, 100240. [Google Scholar] [CrossRef]
- Hozatlioğlu, D.; Bozkaya, Ö.; Inal, S.; Kavak, K.Ş. Mapping of lithological units in the western part of the Eastern Taurides (Türkiye) using ASTER images. Turk. J. Earth Sci. 2024, 33, 362–383. [Google Scholar] [CrossRef]
- ALTINBAŞ, Ü.; Kurucu, Y.; Bolca, M.; El-Nahry, A. Using advanced spectral analyses techniques as possible means of identifying clay minerals. Turk. J. Agric. For. 2005, 29, 19–28. [Google Scholar]
- Güzel, F.; Sarp, G. Evaluation of the tectonic activity of faults with mineral alterations: A case of the East Anatolian Fault-Palu segment, Türkiye. Bull. Miner. Res. Explor. 2024, 175, 149–165. [Google Scholar] [CrossRef]
- Canbaz, O.; Gürsoy, Ö.; Karaman, M.; Çalışkan, A.B.; Gökce, A. Hydrothermal alteration mapping using EO-1 Hyperion hyperspectral data in Kösedağ, Central-Eastern Anatolia (Sivas-Turkey). Arab. J. Geosci. 2021, 14, 2245. [Google Scholar] [CrossRef]
- Bakardjiev, D.; Popov, K. ASTER spectral band ratios for detection of hydrothermal alterations and ore deposits in the Panagyurishte Ore Region, Central Srednogorie. In Proceedings of the Bulgarian Geological Society—National Conference “GEOSCIENCES 2014”, Sofia, Bulgaria, 11–12 December 2014; University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2014; pp. 75–76. [Google Scholar]
- Lupa, M.; Adamek, K.; Leśniak, A.; Pršek, J. Application of satellite remote sensing methods in mineral prospecting in Kosovo, area of Selac. Gospod. Surowcami Miner. 2020, 36, 5–22. [Google Scholar] [CrossRef]
- Arnaut, F.; Đurić, D.; Đurić, U.; Samardžić-Petrović, M.; Peshevski, I. Application of geophysical and multispectral imagery data for predictive mapping of a complex geo-tectonic unit: A case study of the East Vardar Ophiolite Zone, North-Macedonia. Earth Sci. Inform. 2024, 17, 1625–1644. [Google Scholar] [CrossRef]
- Author, A. Mapping the Jurassic/Cretaceous lithological Units in the Buëch Area in France Using Sentinel-2 and ASTER. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2020. [Google Scholar]
- Guglietta, D.; Salzano, R.; Wafik, A.; Conte, A.M.; Paciucci, M.; Punturo, R.; Salvatori, R.; Senesi, G.S.; Vaccaro, C. Hyperspectral Investigation of an Abandoned Waste Mining Site: The Case of Sidi Bou Azzouz (Morocco). Remote Sens. 2025, 17, 1838. [Google Scholar] [CrossRef]
- Yalcin, M.; Kilic Gul, F.; Yildiz, A.; Polat, N.; Basaran, C. The mapping of hydrothermal alteration related to the geothermal activities with remote sensing at Akarcay Basin (Afyonkarahisar), using Aster data. Arab. J. Geosci. 2020, 13, 1166. [Google Scholar] [CrossRef]
- Baid, S.; Tabit, A.; Algouti, A.; Algouti, A.; Nafouri, I.; Souddi, S.; Aboulfaraj, A.; Ezzahzi, S.; Elghouat, A. Lithological discrimination and mineralogical mapping using Landsat-8 OLI and ASTER remote sensing data: Igoudrane region, Jbel Saghro, Anti Atlas, Morocco. Heliyon 2023, 9, e17363. [Google Scholar] [CrossRef]
- Grebby, S.; Cunningham, D.; Tansey, K.; Naden, J. The impact of vegetation on lithological mapping using airborne multispectral data: A case study for the North Troodos region, Cyprus. Remote Sens. 2014, 6, 10860–10887. [Google Scholar] [CrossRef]
- Torres Gil, L.K.; Valdelamar Martínez, D.; Saba, M. The Widespread Use of Remote Sensing in Asbestos, Vegetation, Oil and Gas, and Geology Applications. Atmosphere 2023, 14, 172. [Google Scholar] [CrossRef]
- Sudharsan, S.; Hemalatha, R.; Radha, S. A Survey on Hyperspectral Imaging for Mineral Exploration Using Machine Learning Algorithms. In Proceedings of the 2019 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2019; pp. 206–212. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Zhang, F.; Dong, Y.; Song, Z.; Liu, G. Remote Sensing for Lithology Mapping in Vegetation-Covered Regions: Methods, Challenges, and Opportunities. Minerals 2023, 13, 1153. [Google Scholar] [CrossRef]
- Mahboob, M.A.; Celik, T.; Genc, B. Predictive modelling of mineral prospectivity using satellite remote sensing and machine learning algorithms. Remote Sens. Appl. Soc. Environ. 2024, 36, 101316. [Google Scholar] [CrossRef]
- El-Raouf, A.A.; Doğru, F.; Bilici, Ö.; Azab, I.; Taşci, S.; Jiang, L.; Abdelrahman, K.; Fnais, M.S.; Amer, O. Combining Remote Sensing Data and Geochemical Properties of Ultramafics to Explore Chromite Ore Deposits in East Oltu Erzurum, Turkey. Minerals 2024, 14, 1116. [Google Scholar] [CrossRef]
- Schmid, T.; Koch, M.; Gumuzzio, J. Multisensor approach to determine changes of wetland characteristics in semiarid environments (Central Spain). IEEE Trans. Geosci. Remote Sens. 2005, 43, 2516–2525. [Google Scholar] [CrossRef]
- Ghezelbash, R.; Daviran, M.; Maghsoudi, A.; Hajihosseinlou, M. Density based spatial clustering of applications with noise and fuzzy C-means algorithms for unsupervised mineral prospectivity mapping. Earth Sci. Inform. 2025, 18, 217. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Vadrevu, K.P.; Kalaitzidis, C. Spectral angle mapper and object-based classification combined with hyperspectral remote sensing imagery for obtaining land use/cover mapping in a Mediterranean region. Geocarto Int. 2013, 28, 114–129. [Google Scholar] [CrossRef]
- Rahmani, N.; Ranjbar, H.; Nezamabadi-pour, H.; Carranza, E.J.M. Neural network classification of lithological units based on integrated radar and multispectral data. Acta Geodyn. Geomater. 2024, 21, 267–286. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Adams, J.B. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In Remote Geochemical Analysis: Elemental and Mineralogical Composition; Cambridge University Press: Cambridge, UK, 1993; pp. 145–166. [Google Scholar]
- Quintano, C.; Fernández-Manso, A.; Shimabukuro, Y.E.; Pereira, G. Spectral unmixing. Int. J. Remote Sens. 2012, 33, 5307–5340. [Google Scholar] [CrossRef]
- Canbaz, O.; Karaman, M. Geochemical characteristics and mapping of Reşadiye (Tokat-Türkiye) bentonite deposits using machine learning and sub-pixel mixture algorithms. Geochemistry 2024, 84, 126123. [Google Scholar] [CrossRef]
- Chakraborty, R.; Rachdi, I.; Thiele, S.; Booysen, R.; Kirsch, M.; Lorenz, S.; Gloaguen, R.; Sebari, I. A spectral and spatial comparison of satellite-based hyperspectral data for geological mapping. Remote Sens. 2024, 16, 2089. [Google Scholar] [CrossRef]
- Gatsios, T.; Cigna, F.; Tapete, D.; Sakkas, V.; Pavlou, K.; Parcharidis, I. Copernicus sentinel-1 MT-InSAR, GNSS and seismic monitoring of deformation patterns and trends at the Methana Volcano, Greece. Appl. Sci. 2020, 10, 6445. [Google Scholar] [CrossRef]
- Pepe, S.; De Siena, L.; Barone, A.; Castaldo, R.; D’Auria, L.; Manzo, M.; Casu, F.; Fedi, M.; Lanari, R.; Bianco, F.; et al. Volcanic structures investigation through SAR and seismic interferometric methods: The 2011–2013 Campi Flegrei unrest episode. Remote Sens. Environ. 2019, 234, 111440. [Google Scholar] [CrossRef]
- Castro-Melgar, I.; Gatsios, T.; Prudencio, J.; Ibanez, J.M.; Lekkas, E.; Parcharidis, I. Volcano Monitoring: Using SAR Interferometry for the Pre-Unrest of La Palma and the Post-Unrest of Santorini. In Remote Sensing for Geophysicists; CRC Press: Boca Raton, FL, USA, 2025; pp. 440–459. [Google Scholar]
- Beccaro, L.; Tolomei, C.; Spinetti, C.; Bisson, M.; Colini, L.; De Ritis, R.; Gianardi, R. Ground Displacement Evaluation of the Ischia Island (Phlegraean Volcanic District, Italy) Applying Advanced Satellite SAR Interferometry Techniques. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 926–929. [Google Scholar]
- Tosi, L.; Teatini, P.; Bincoletto, L.; Simonini, P.; Strozzi, T. Integrating geotechnical and interferometric SAR measurements for secondary compressibility characterization of coastal soils. Surv. Geophys. 2012, 33, 907–926. [Google Scholar] [CrossRef]
- Floris, M.; Fontana, A.; Tessari, G.; Mulè, M. Subsidence zonation through satellite interferometry in coastal plain environments of NE Italy: A possible tool for geological and geomorphological mapping in urban areas. Remote Sens. 2019, 11, 165. [Google Scholar] [CrossRef]
- Kalavrezou, I.E.; Castro-Melgar, I.; Nika, D.; Gatsios, T.; Lalechos, S.; Parcharidis, I. Application of time series INSAR (SBAS) method using sentinel-1 for monitoring ground deformation of the Aegina Island (Western Edge of Hellenic Volcanic Arc). Land 2024, 13, 485. [Google Scholar] [CrossRef]
- Alatza, S.; Papoutsis, I.; Paradissis, D.; Kontoes, C.; Papadopoulos, G.A.; Raptakis, C. InSAR time-series analysis for monitoring ground displacement trends in the western hellenic arc: The Kythira island, Greece. Geosciences 2020, 10, 293. [Google Scholar] [CrossRef]
- Conesa-garcía, C.; Tomás, R.; Herrera, G.; López-bermúdez, F.; Cano, M.; Navarro-hervás, F.; Pérez-cutillas, P. Deformational behaviours of alluvial units detected by Advanced Radar Interferometry in the Vega Media of the Segura River, southeast Spain. Geogr. Ann. Ser. A Phys. Geogr. 2016, 98, 15–38. [Google Scholar] [CrossRef]
- Cigna, F.; Del Ventisette, C.; Liguori, V.; Casagli, N. Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes. Nat. Hazards Earth Syst. Sci. 2011, 11, 865–881. [Google Scholar] [CrossRef]
- Lagios, E.; Sakkas, V.; Novali, F.; Ferreti, A.; Damiata, B.; Dietrich, V.J. Reviewing and updating (1996–2012) ground deformation in Nisyros Volcano (Greece) determined by GPS and SAR Interferometric Techniques (1996–2012). In Nisyros Volcano: The Kos-Yali-Nisyros Volcanic Field; Springer: Berlin/Heidelberg, Germany, 2017; pp. 285–301. [Google Scholar]
- Chen, Q.; Zhao, Z.; Zhou, J.; Zeng, M.; Xia, J.; Sun, T.; Zhao, X. New insights into the Pulang porphyry copper deposit in southwest China: Indication of alteration minerals detected using ASTER and WorldView-3 data. Remote Sens. 2021, 13, 2798. [Google Scholar] [CrossRef]
- Hewson, R.; van Ruitenbeek, F.; Hecker, C.; Soszynska, A.; van der Werff, H.; Bakker, W.; Portela, B.; van der Meer, F. Geological Remote Sensing From Continental to Exploration scales. In Reference Module in Earth Systems and Environmental Sciences; Elsevier Doyma: Barcelona, Spain, 2024. [Google Scholar]
- Bobos, I.; Gomes, C. Mineralogy and geochemistry (HFSE and REE) of the present-day acid-sulfate types alteration from the active hydrothermal system of Furnas Volcano, São Miguel Island, The Azores Archipelago. Minerals 2021, 11, 335. [Google Scholar] [CrossRef]
- Pereira, M.; Matias, D.; Viveiros, F.; Moreno, L.; Silva, C.; Zanon, V.; Uchôa, J. The contribution of hydrothermal mineral alteration analysis and gas geothermometry for understanding high-temperature geothermal fields–the case of Ribeira Grande geothermal field, Azores. Geothermics 2022, 105, 102519. [Google Scholar] [CrossRef]
- Quintela, A.; Terroso, D.; Costa, C.; Sá, H.; Nunes, J.C.; Rocha, F. Characterization and evaluation of hydrothermally influenced clayey sediments from Caldeiras da Ribeira Grande fumarolic field (Azores Archipelago, Portugal) used for aesthetic and pelotherapy purposes. Environ. Earth Sci. 2015, 73, 2833–2842. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Griffiths, H.M.; Kalivas, D.P. Quantifying spatial and temporal vegetation recovery dynamics following a wildfire event in a Mediterranean landscape using EO data and GIS. Appl. Geogr. 2014, 50, 120–131. [Google Scholar] [CrossRef]
- Trabucchi, M.; Puente, C.; Comin, F.A.; Olague, G.; Smith, S.V. Mapping erosion risk at the basin scale in a Mediterranean environment with opencast coal mines to target restoration actions. Reg. Environ. Chang. 2012, 12, 675–687. [Google Scholar] [CrossRef]
- Siart, C.; Bubenzer, O.; Eitel, B. Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multi-component case study on Mediterranean karst in Central Crete. Geomorphology 2009, 112, 106–121. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Tapoglou, E.; Vozinaki, A.E.K.; Tsanis, I.K. Integrated use of satellite remote sensing, artificial neural networks, field spectroscopy, and GIS in estimating crucial soil parameters in terms of soil erosion. Remote Sens. 2019, 11, 1106. [Google Scholar] [CrossRef]
- Kokkaliari, M.; Kanellopoulos, C.; Illiopoulos, I. Kaoline Mapping Using ASTER Satellite Imagery: The Case Study of Kefalos Peninsula, Kos Island. Mater. Proc. 2021, 5, 76. [Google Scholar]
- Koerting, F.; Koellner, N.; Kuras, A.; Boesche, N.K.; Rogass, C.; Mielke, C.; Elger, K.; Altenberger, U. A solar optical hyperspectral library of rare-earth-bearing minerals, rare-earth oxide powders, copper-bearing minerals and Apliki mine surface samples. Earth Syst. Sci. Data 2021, 13, 923–942. [Google Scholar] [CrossRef]
- Habashi, J.; Jamshid Moghadam, H.; Mohammady Oskouei, M.; Pour, A.B.; Hashim, M. PRISMA hyperspectral remote sensing data for mapping alteration minerals in sar-e-châh-e-shur region, birjand, Iran. Remote Sens. 2024, 16, 1277. [Google Scholar] [CrossRef]
- Rizaldy, A.; Afifi, A.J.; Ghamisi, P.; Gloaguen, R. Improving mineral classification using multimodal hyperspectral point cloud data and multi-stream neural network. Remote Sens. 2024, 16, 2336. [Google Scholar] [CrossRef]
- Riaza, A.; Buzzi, J.; García-Meléndez, E.; Carrère, V.; Müller, A. Monitoring the extent of contamination from acid mine drainage in the Iberian Pyrite Belt (SW Spain) using hyperspectral imagery. Remote Sens. 2011, 3, 2166–2186. [Google Scholar] [CrossRef]
- Pereira, J.; Pereira, A.; Gil, A.; Mantas, V.M. Lithology mapping with satellite images, fieldwork-based spectral data, and machine learning algorithms: The case study of Beiras Group (Central Portugal). Catena 2023, 220, 106653. [Google Scholar] [CrossRef]
- Mezned, N.; Abdeljaouad, S.; Boussema, M.R. Spectral modeling based on ground measurements for mine tailing mapping with Landsat ETM+ imagery. Appl. Geomat. 2012, 4, 1–10. [Google Scholar] [CrossRef]
- Bouzidi, W.; Mezned, N.; Abdeljaoued, S. Potential Of Hyerion Data And Hypersectral Reflectance Spectroscopy For The Characterization Of Fe Iron Ore Deposits In The Nappe Zone In Northern Tunisia. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; pp. 152–155. [Google Scholar]
- Kavzoglu, T.; Colkesen, I.; Atesoglu, A.; Tonbul, H.; Yilmaz, E.O.; Ozlusoylu, S.; Ozturk, M.Y. Construction and implementation of a poplar spectral library based on phenological stages for land cover classification using high-resolution satellite images. Int. J. Remote Sens. 2024, 45, 2049–2072. [Google Scholar] [CrossRef]
- Ferrier, G.; Wadge, G. The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain. Int. J. Remote Sens. 1996, 17, 331–350. [Google Scholar] [CrossRef]
- Van der Meer, F.; Vazquez-Torres, M.; Van Dijk, P. Spectral characterization of ophiolite lithologies in the Troodos Ophiolite complex of Cyprus and its potential in prospecting for massive sulphide deposits. Int. J. Remote Sens. 1997, 18, 1245–1257. [Google Scholar] [CrossRef]
- Grebby, S.; Cunningham, D.; Naden, J.; Tansey, K. Lithological mapping of the Troodos ophiolite, Cyprus, using airborne LiDAR topographic data. Remote Sens. Environ. 2010, 114, 713–724. [Google Scholar] [CrossRef]
- Quental, L.; Gonçalves, P.; de Oliveira, D.P.S.; Batista, M.J.; Matos, J.X.; Sousa, A.J.; Marsh, S.; Carreiras, J.; Dias, R.P. Multispectral and hyperspectral remote sensing as a source of knowledge in the Portuguese sector of the Iberian Pyrite Belt. Comun. Geol. 2020, 107, 21–39. [Google Scholar]
- Riaza, A.; Mediavilla, R.; Santisteban, J. Mapping geological stages of climate-dependent iron and clay weathering alteration on lithologically uniform sedimentary units using Thematic Mapper imagery (Tertiary Duero Basin, Spain). Int. J. Remote Sens. 2000, 21, 937–950. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Internal Market, Industry, Entrepreneurship; SMEs; Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023—Final Report; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Internal Market, Industry, Entrepreneurship; SMEs; Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU—A Foresight Study; Publications Office: Luxembourg, 2020. [Google Scholar] [CrossRef]
- European Parliament and European Council. Regulation (EU) 2024/1252 of the European Parliament and of the Council of 11 April 2024 Establishing a Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials and Amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1724 and (EU) 2019/1020 (Text with EEA Relevance). 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/1252/oj/eng (accessed on 2 November 2025).
- European Commission; Directorate-General for Internal Market, Industry, Entrepreneurship; SMEs; Blengini, G.A.; El Latunussa, C.; Eynard, U.; Torres De Matos, C.; Wittmer, D.; Georgitzikis, K.; Pavel, C.; et al. Study on the EU’s List of Critical Raw Materials (2020)—Executive Summary; Publications Office: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Delogu, G.; Perretta, M.; Caputi, E.; Patriarca, A.; Funsten, C.C.; Recanatesi, F.; Ripa, M.N.; Boccia, L. Leveraging the Potential of PRISMA Hyperspectral Data for Forest Tree Species Classification: A Case Study in Southern Italy. Remote Sens. 2024, 16, 4788. [Google Scholar] [CrossRef]
- Pereira, I.; García-Meléndez, E.; Ferrer-Julià, M.; van der Werff, H.; Valenzuela, P.; Cruz, J.A. Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery. Remote Sens. 2025, 17, 2582. [Google Scholar] [CrossRef]
- Chroni, A.; Vasilakos, C.; Christaki, M.; Soulakellis, N. Fusing Multispectral and LiDAR Data for CNN-Based Semantic Segmentation in Semi-Arid Mediterranean Environments: Land Cover Classification and Analysis. Remote Sens. 2024, 16, 2729. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Koellner, N.; Chabrillat, S. Detecting rare earth elements using EnMAP hyperspectral satellite data: A case study from Mountain Pass, California. Sci. Rep. 2024, 14, 20766. [Google Scholar] [CrossRef]
- Chabrillat, S.; Foerster, S.; Segl, K.; Beamish, A.; Brell, M.; Asadzadeh, S.; Milewski, R.; Ward, K.J.; Brosinsky, A.; Koch, K.; et al. The EnMAP spaceborne imaging spectroscopy mission: Initial scientific results two years after launch. Remote Sens. Environ. 2024, 315, 114379. [Google Scholar] [CrossRef]
- Chabrillat, S.; Guanter, L.; Kaufmann, H.; Förster, S.; Beamish, A.; Brosinsky, A.; Wulf, H.; Asadzadeh, S.; Bochow, M.; Bohn, N.; et al. EnMAP Science Plan; GFZ Data Services: Potsdam, Germany, 2022. [Google Scholar]
- Pandit, N.; Pagiatakis, S. Advancements in the GRACE and GRACE-FO gradiometer mode. Earth Space Sci. 2025, 12, e2024EA004045. [Google Scholar] [CrossRef]
- Nikraftar, Z.; Parizi, E.; Saber, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Simmons, C.T. Groundwater sustainability assessment in the Middle East using GRACE/GRACE-FO data. Hydrogeol. J. 2024, 32, 321–337. [Google Scholar] [CrossRef]
- Guardiola-Albert, C.; Naranjo-Fernández, N.; Rivera-Rivera, J.S.; Gómez Fontalva, J.; Aguilera, H.; Ruiz-Bermudo, F.; Rodríguez-Rodríguez, M. Enhancing groundwater management with GRACE-based groundwater estimates from GLDAS-2.2: A case study of the Almonte-Marismas aquifer, Spain. Hydrogeol. J. 2024, 32, 1833–1852. [Google Scholar] [CrossRef]




| Case Study/Sensor | Before Preprocessing | After Preprocessing |
|---|---|---|
| Central High Atlas, Morocco (Sentinel-2 MSI) | Spectral confusion between carbonate and silicate units; reduced classification accuracy due to lack of atmospheric correction | Radiometric calibration and atmospheric correction improved spectral separability; lithological discrimination accuracy exceeded 85%. |
| Nisyros island, Greece (Sentinel-1 SAR) | Speckle noise and geometric distortions masked deformation patterns linked to hydrothermal activity | Co-registration, noise filtering, and coherence computation revealed coherence loss zones correlated with hydrothermal activity. |
| Nisyros island, Greece (ASTER, Landsat-8 OLI, Sentinel-2 MSI) | Topographic shading and noise contamination reduced reliability of spectral indices; alteration zones poorly delineated. | Radiometric calibration, atmospheric correction, and spectral subsetting improved mapping accuracy of minerals by 20–30%. |
| Italy (PRISMA hyperspectral) | Atmospheric distortions and spectral overlaps limited discrimination of phyllosilicate and carbonate minerals. | Radiometric calibration, atmospheric correction, and spectral subsetting improved mapping accuracy of minerals by 20–30%. |
| Satellite | Sensor | Processing Method | Spectral Library Used |
|---|---|---|---|
| Sentinel-2 | MSI | Pixel-based (spectral indices, SVM, RF) | Customized |
| Sentinel-1 | C-band sensor | SAR Interferometry (SBAS, PSInSAR) | N/A |
| Landsat 8 | OLI | Pixel-based (spectral indices, PCA) | Customized |
| Terra | ASTER (VNIR, SWIR, TIR) | Pixel-based (spectral indices, PCA) | Customized |
| Terra/Aqua | MODIS | Pixel-based (thermal time-series) | N/A |
| EO-1 | Hyperion | Sub-pixel (MESMA, spectral libraries) | USGS |
| PRISMA | HYC + PAN | Sub-pixel (spectral unmixing, indices) | USGS, Customized |
| EnMAP | HIS | Sub-pixel (unmixing, RTM models) | USGS, Customized |
| Sentinel-2 + Ground Data | MSI + Gamma-ray | Pixel-based (SVM, RF) | Customized |
| Landsat + DEM | OLI + DTM | Pixel-based (spectral indices) | Customized |
| Sentinel-1 + Landsat | C-band sensor + OLI | Mixed (SAR + DBSCAN, fuzzy C-means) | Customized |
| ALOS, TerraSAR-X, Sentinel-1 | PALSAR (L-band), X-band, C-band sensor | SAR Interferometry (SBAS, MTInSAR) | N/A |
| Aspect | Pixel-Based Methods | Sub-Pixel Methods |
|---|---|---|
| Classification accuracy | High (>80%) in homogeneous terrains (e.g., Troodos ophiolite, Cyprus); declines (<65%) in spectrally mixed terrains like Iberian Pyrite Belt (Portugal). | Consistently higher in heterogeneous terrains; improvements of +15–25% accuracy reported in Morocco, Portugal, and Cyprus. |
| Sensitivity to vegetation/urban cover | Strongly affected; vegetation and urban features increase misclassification. | More robust; can extract mineral signals even under partial vegetation or weathered surfaces. |
| Geological context suitability | Best for simple and homogeneous terrains (volcanic islands, sedimentary basins). | Best for complex, heterogeneous, or mineralized terrains (e.g., Iberian Pyrite Belt, hydrothermal zones in Morocco). |
| Dependence on spectral libraries | Moderate; often uses global libraries (e.g., USGS). | High; requires accurate end member spectra (USGS or custom local libraries validated with XRD/XRF). |
| Computational cost | Low to moderate (fast training/classification). | High (iterative unmixing, end member optimization, ML-based decomposition). |
| Interoperability | High (clear class assignments per pixel). | Moderate (requires abundance maps and unmixing validation). |
| Integration with ground truth data | Limited; often validated with surface geology maps. | Strong; commonly integrated with XRD, XRF, and petrography for validation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tompolidi, A.-M.; Mantovani, L.; Frigeri, A.; Nazzareni, S. Remote Sensing Applications for Geological Mapping in the Mediterranean Region: A Review. Geosciences 2025, 15, 425. https://doi.org/10.3390/geosciences15110425
Tompolidi A-M, Mantovani L, Frigeri A, Nazzareni S. Remote Sensing Applications for Geological Mapping in the Mediterranean Region: A Review. Geosciences. 2025; 15(11):425. https://doi.org/10.3390/geosciences15110425
Chicago/Turabian StyleTompolidi, Athanasia-Maria, Luciana Mantovani, Alessandro Frigeri, and Sabrina Nazzareni. 2025. "Remote Sensing Applications for Geological Mapping in the Mediterranean Region: A Review" Geosciences 15, no. 11: 425. https://doi.org/10.3390/geosciences15110425
APA StyleTompolidi, A.-M., Mantovani, L., Frigeri, A., & Nazzareni, S. (2025). Remote Sensing Applications for Geological Mapping in the Mediterranean Region: A Review. Geosciences, 15(11), 425. https://doi.org/10.3390/geosciences15110425

