Studying Natural Radioactivity of Coals and Ash and Slag Waste as Potential Raw Materials for Quality Assessment and Extraction of Rare Earth Elements
Abstract
1. Introduction
- -
- Studying radiogeochemical and petrophysical features of the NRN and REE distribution in coals and ash and slag waste;
- -
- Analytical assessing of the possibility of using ash and slag waste of coal power plants as a potentially promising source of REE extraction based on nuclear radiometric studies;
- -
- Studying the spectrometry of natural gamma radiation of natural radionuclides for assessing the quality of coals.

2. Materials and Methods
3. Results
4. Conclusions
- The instrumental nuclear radiometric analysis of test samples of Ekibastuz and Karaganda coals have shown that the contents of REE (Ce, La, Nd, Sm, etc.) and NRN (uranium, thorium and their decay products) are comparable to the clarke values. In coal power plant ash and slag waste, the concentrations of these elements increase significantly.
- Correlations were found between the concentrations of individual REE and the concentrations of uranium and thorium. The most stable (significant) relationships were found between the sum of REE (Ce, La, Nd, Sm) and the thorium content, as well as the total content of thorium and uranium. This indicates a probable geochemical relationship between REE and NRN.
- Comparatively high concentrations of REE in coal power plant ash and slag waste and the close correlations found between the concentrations of REE and NRN allow for the prompt assessment of the REE content using gamma-radiometric measurements.
- In the context of the global economy, growing demand for REE and the search for alternative sources of their production, ash and slag waste seem to be the most accessible raw material for their extraction.
- The studies have established that the integral intensity of natural gamma radiation of coals is a complex function depending on the ash content of coal, the specific activity of radionuclides, the energy composition of natural gamma radiation and the spectrometer hardware parameters. It is proposed to select the optimal energy discrimination threshold from the point of view of minimal statistical error and maximum sensitivity to the ash content. Spectrometric signals from analytical gamma lines of NRN as benchmarks taking into account variability of the sampled coals have been found, which will increase the sensitivity and accuracy of the coal ash content assessment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Pak, Y.N.; Pak, D.Y.; Ibragimova, D.A.; Matonin, V.; Tebayeva, A.Y. Assessment of Natural Radioactivity and Trace Element Composition of Coals and Ash and Slag Waste in Kazakhstan. Atmosphere 2025, 16, 125. [Google Scholar] [CrossRef]
- Pak, Y.N.; Pak, D.Y.; Nuguzhinov, Z.S.; Tebaeva, A.I. Natural radioactivity of coal in the context of radioecological safety and rational use. Izv. Vyss. Uchebn. Zaved. Gorn. Zh. 2021, 1, 97–106. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Wu, L.; Ma, L.; Huang, G.; Li, J. Distribution and Speciation of Rare Earth Elements in Coal Fly Ash from the Qianxi Power Plant, Guizhou Province, Southwest China. Minerals 2022, 12, 1089. [Google Scholar] [CrossRef]
- Scott, C.; Kolker, A. Rare Earth Elements in Coal and Coal Fly Ash; U.S. Geological Survey Fact Sheet 2019-3048; U.S. Geological Survey: Reston, VA, USA, 2019; 4p, ISSN 2327-6932. [Google Scholar] [CrossRef]
- Choudhary, A.K.S.; Kumar, S.; Maity, S. A review on mineralogical speciation, global occurrence and distribution of rare earth and Yttrium (Rey) in coal ash. J. Earth Syst. Sci. 2022, 131, 188. [Google Scholar] [CrossRef]
- Hower, J.C.; Kolker, A.; Hsu-Kim, H.; Plata, D.L. Rare earth elements in coal fly ash and their potential recovery. In Rare Earth Elements: Sustainable Recovery, Processing, and Purification; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2024. [Google Scholar] [CrossRef]
- Dai, S.; Wang, P.; Ward, C.R.; Tang, Y.; Song, X.; Jiang, J.; Hower, J.C.; Li, T.; Seredin, V.V.; Wagner, N.J.; et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 2015, 152, 19–46. [Google Scholar] [CrossRef]
- Adamczyk, J.; Smolka-Danielowska, D.; Krzątała, A.; Krzykawski, T. Rare earth elements, uranium, and thorium in ashes from biomass and hard coal combustion/co-combustion. Gospod. Surowcami Miner. 2023, 39, 87–108. [Google Scholar] [CrossRef]
- Nowak, J.; Adamczyk, Z.; Komorek, J.; Lewandowska, M.; Klupa, A. Ashes from bituminous coal burning in fluidized bed boilers as a potential source of rare earth elements. Gospod. Surowcami Miner.—Miner. Resour. Manag. 2018, 34, 21–36. [Google Scholar] [CrossRef]
- Seredin, V.V. Rare earth element-bearing coals from the Russian Far East deposits. Int. J. Coal Geol. 1996, 30, 101–129. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Chekryzhov, I.Y.; Spears, D.A.; Ilenok, S.S.; Soktoev, B.R.; Popov, N.Y. Geology, geochemistry, mineralogy and genesis of the Spetsugli high-germanium coal deposit in the Pavlovsk coal- field, Russian Far East. Ore Geol. Rev. 2021, 139, 104537. [Google Scholar] [CrossRef]
- Vyalov, V.I.; Larichev, A.I.; Kuzevanova, E.V.; Bogomolov, A.K.; Gamov, M.I. Rare metals in brown coal deposits of Primorye and their resource potential. Reg. Geol. Metallog. 2012, 51, 96–105. [Google Scholar]
- Seredin, V.V. Metal content of coals: Formation conditions and development prospects. In Coal Base of Russia; Geoinformmark Publisher: Moscow, Russia, 2004; Volume VI, pp. 453–519. [Google Scholar]
- Kizilshtein, L.Y. Eco-Geochemistry of Elements-Impurities in Coals; SKNC VSH Publishing House: Rostov on Don, Russia, 2002; 296p, ISBN 5-87872-182-1. [Google Scholar]
- Taylor, S.R.; McLennan, S.H. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; 312p. [Google Scholar]
- Blisset, R.S.; Smalley, N.; Rowson, N.A. Studying into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel 2014, 119, 236–239. [Google Scholar] [CrossRef]
- Seredin, V.; Arbuzov, S.; Alekseyev, V. Sc-bearing coals from Yakhlinsk deposit, Western Siberia. Rep. Earth Sci. 2006, 409, 967–972. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Dai, S.; Zou, J.; Jiang, Y.; Ward, C.R.; Wang, X.; Li, T.; Xue, W.; Liu, S.; Tian, H.; Sun, X.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol. 2012, 94, 250–270. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhou, Y.; Zhang, M.; Song, X.; Song, W.; Zhao, C. Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. Int. J. Coal Geol. 2014, 121, 53–78. [Google Scholar] [CrossRef]
- Hower, J.C.; Ruppert, L.F.; Eble, C.F. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int. J. Coal Geol. 1999, 39, 141–153. [Google Scholar] [CrossRef]
- Mardon, S.M.; Hower, J.C. Impact of coal properties on coal combustion by-product quality: Examples from a Kentucky power plant. Int. J. Coal Geol. 2004, 59, 153–169. [Google Scholar] [CrossRef]
- Ermagambet, B.T.; Nurgaliyev, N.U.; Kasenova, Z.M.; Urlibay, R.K.; Bolat, O.S.; Semenova, Y.A. Technology of Processing Ash and Slag Waste of Kazakhstan/Collection of Abstracts for the Scientific and Practical Conference: “Coal Thermal Power Engineering in Kazakhstan: Problems. Solutions. Development Prospects”. Institute of Coal Chemistry and Technology: Nur-Sultan, Kazakhstan, 2020; pp. 82–86. Available online: https://nur.nu.edu.kz/server/api/core/bitstreams/1a776562-9e3e-4fbf-99c7-03c08a047551/content (accessed on 1 November 2025).
- Ibragimova, D.A.; Arbuzov, S.I.; Portnov, V.S. Metalliferous coals of Shubarkol deposit (Central Kazakhstan). Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2023, 334, 26–39. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Chekryzhov, I.Y.; Finkelman, R.B.; Sun, Y.Z.; Zhao, C.L.; Ilenok, S.S.; Blokhin, M.G.; Zarubina, N.V. Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of north Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan). Int. J. Coal Geol. 2019, 206, 106–120. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Toropov, A.; Ilenok, S.S.; Ivanov, V.P. Modes of occurrence of tungsten in coals: A review. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2024, 335, 121–140. [Google Scholar] [CrossRef]
- Breger, J.A.; Deul, M.; Rubinstein, S. Geochemistry and mineralogy of a uraniferous lignite. Econ. Geol. 1955, 50, 206–226. [Google Scholar] [CrossRef]
- Wine, J.D. Uranium-Containing Coals in the United States. In Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, Switzerland, 8–20 August 1955; Volume 6: Geology of Uranium and Thorium, pp. 525–531. [Google Scholar]
- Smolka-Danielowska, D.; Walencik-Lata, A. The Occurrence of Selected Radionuclides and Rare Earth Elements in Waste at the Mine Heap from the Polish Mining Group. Minerals 2021, 11, 504. [Google Scholar] [CrossRef]
- Kozłowska, B.; Walencik, A.; Dorda, J.; Zipper, W. Radioactivity of dumps in mining areas of The Upper Silesian Coal Basin in Poland. EPJ Web Conf. 2012, 24, 05006. [Google Scholar] [CrossRef]
- Liu, G.; Luo, Q.; Ding, M.; Feng, J. Natural radionuclides in soil near a coal-fired power plant in the high background radiation area, South China. Environ. Monit. Asses. 2015, 187, 356. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Cao, Q.; Yang, L.; Huang, S. Uranium in Chinese coals: Concentration, spatial distribution, and modes of occurrence. J. Environ. Radioact. 2022, 246, 106848. [Google Scholar] [CrossRef]
- Filipov, E.M. Nuclear Exploration of Minerals: Reference Book; Naukova Dumka: Kyiv, Ukraine, 1978; 588p. [Google Scholar]
- Sebestyen, K. Geophysical investigation of coal exploration drilling. Ann. Univ. Sci. Budapest. Sec. Geol. 1965, 8, 161–174. [Google Scholar]
- Andrade, B.V.; Abichequer, L.A.; Gasper, G.O.; Eduardo de Souza, L. Using geophysical density logging to estimate the thickness and density of coal seams in the Southern region of Brazil. Geosciences 2024, 77, e230084. [Google Scholar] [CrossRef]
- Milanovsky, E.E. Tectonic Map of Russia, Adjacent Territories, and Water Areas. M:1:4000000. Available online: https://www.geokniga.org (accessed on 10 August 2020).
- GOST 11022-95 (ISO 1171-97); Interstate Standard. Solid Mineral Fuel—Methods for Determining Ash Content. International Organization for Standardization: Genève, Switzerland, 2006.
- Aycik, G.A.; Ercan, A. Radioactivity measurements of coals and ashes from coalfired power plants in the southwestern part of Turkey. J. Environ. Radioact. 1997, 35, 23–35. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbona-ceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, G.; Chou, C.L.; Qi, C.; Zhang, Y. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China. J. Asian Earth Sci. 2007, 31, 167–176. [Google Scholar] [CrossRef]
- Hower, J.C.; Groppo, J.G.; Henke, K.R.; Graham, U.M.; Hood, M.M.; Joshi, P.; Preda, D.V. Ponded and landfilled fly ash as a source of rare earth elements from a Kentucky power plant. Coal Combust. Gasif. Prod. 2017, 9, 1–21. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Papastefanou, C. Radiological impact from atmospheric releases of 226Ra from coal-fired power plants. J. Environ. Radioact. 1996, 32, 105–114. [Google Scholar] [CrossRef]
- Lu, X.; Jia, X.; Wang, F. Natural radioactivity of coal and its by-products in the Baoji coal-fired power plant, China. Curr. Sci. 2006, 91, 1508–1511. [Google Scholar]
- Khan, I.U.; Sun, W.; Lewis, E. Review of low-level background radioactivity studies conducted from 2000 to date in people Republic of China. J. Radiat. Res. Appl. Sci. 2020, 13, 406–415. [Google Scholar] [CrossRef]
- Pak, Y.N.; Pak, D.Y.; Akhmetov, B.S.; Demin, V.F.; Shaikhova, G.S.; Tebayeva, A.Y.; Rabatuly, M.; Li, E.S. Nuclear-Radiometric Method of Testing Solid Fuel. Eurasian Patent No. 050547, 2025. Available online: https://old.eapo.org/en/publications/publicat/viewpubl.php?id=50547&publ=A&list=-812461001756512519 (accessed on 24 July 2025).








| Element | Coal | ASW | Concentration Factor |
|---|---|---|---|
| Sm | |||
| Ce | |||
| Lu | |||
| U | |||
| Th | |||
| Yb | |||
| Nd | |||
| Tb | |||
| Eu | |||
| La | |||
| K40 |
| Sample | La | Ce | Nd | Eu | Sm | Tb | Yb | Lu | Th | U |
|---|---|---|---|---|---|---|---|---|---|---|
| 3–8 | 27.6 | 66.3 | 31.4 | 1.82 | 7.03 | 1.27 | 4.7 | 0.69 | 7.13 | 2.72 |
| 3–10 | 28.8 | 67 | 34.8 | 1.95 | 7.58 | 1.28 | 5.15 | 0.74 | 7.49 | 2.85 |
| 3–12 | 27.9 | 66.2 | 31.4 | 1.88 | 7.4 | 1.3 | 4.93 | 0.72 | 7.39 | 3.04 |
| 3–14 | 29.8 | 71.1 | 33.9 | 1.97 | 7.87 | 1.44 | 5.11 | 0.76 | 8.06 | 3.08 |
| 3–2 | 29 | 67.3 | 31.7 | 1.85 | 7.62 | 1.26 | 4.93 | 0.73 | 7.51 | 2.97 |
| 3–6 | 28.2 | 66.1 | 34.9 | 1.85 | 7.27 | 1.22 | 4.73 | 0.69 | 7.32 | 2.8 |
| Element | Clarke in Coal (mg/kg) | Concentration Factor | |
|---|---|---|---|
| La | 11.00 | 1.27 | |
| Ce | 23.00 | 1.38 | |
| Nd | 12.00 | 1.47 | |
| Eu | 0.43 | 2.0 | |
| Sm | 2.20 | 1.75 | |
| Tb | 0.31 | 1.9 | |
| Yb | 1.00 | 2.31 | |
| Lu | 0.20 | 1.55 | |
| Th | 3.20 | 1.2 | |
| U | 1.90 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pak, Y.; Pak, D.; Kropachev, P.; Matonin, V.; Ibragimova, D.; Tebayeva, A.; Timoshenko, P.; Tsoy, N.; Tseshkovskaya, Y. Studying Natural Radioactivity of Coals and Ash and Slag Waste as Potential Raw Materials for Quality Assessment and Extraction of Rare Earth Elements. Geosciences 2025, 15, 420. https://doi.org/10.3390/geosciences15110420
Pak Y, Pak D, Kropachev P, Matonin V, Ibragimova D, Tebayeva A, Timoshenko P, Tsoy N, Tseshkovskaya Y. Studying Natural Radioactivity of Coals and Ash and Slag Waste as Potential Raw Materials for Quality Assessment and Extraction of Rare Earth Elements. Geosciences. 2025; 15(11):420. https://doi.org/10.3390/geosciences15110420
Chicago/Turabian StylePak, Yuriy, Dmitriy Pak, Pyotr Kropachev, Vladimir Matonin, Diana Ibragimova, Anar Tebayeva, Pavel Timoshenko, Natalya Tsoy, and Yelena Tseshkovskaya. 2025. "Studying Natural Radioactivity of Coals and Ash and Slag Waste as Potential Raw Materials for Quality Assessment and Extraction of Rare Earth Elements" Geosciences 15, no. 11: 420. https://doi.org/10.3390/geosciences15110420
APA StylePak, Y., Pak, D., Kropachev, P., Matonin, V., Ibragimova, D., Tebayeva, A., Timoshenko, P., Tsoy, N., & Tseshkovskaya, Y. (2025). Studying Natural Radioactivity of Coals and Ash and Slag Waste as Potential Raw Materials for Quality Assessment and Extraction of Rare Earth Elements. Geosciences, 15(11), 420. https://doi.org/10.3390/geosciences15110420

