Modeling Magma Intrusion-Induced Oxidation: Impact on the Paleomagnetic TRM Signal in Titanomagnetite
Abstract
1. Introduction
2. Equipment and Experimental Procedure
2.1. Selection and Preparation of Samples
- 1.
- Samples should be from the central part of the piece (all samples adjacent to the hardening zone were rejected);
- 2.
- Curie temperature of different parts of the fragment is the same within the measurement error;
2.2. CRM Acquisition Experiment Scheme
- 1.
- Primary TRM acquisition: Samples were heated to 400 and cooled to room temperature () in a controlled magnetic field oriented along the z-axis.
- 2.
- Initial state preparation: Samples were reheated to and cooled to in zero magnetic field, establishing a partial thermoremanent magnetization (pTRM) in the 260 –400 interval.
- 3.
- Isothermal annealing: Samples underwent thermal processing in a non-magnetic furnace according to the protocol:
- 3.1
- Heating to in zero field
- 3.2
- Isothermal exposure at for durationsin field
- 3.3
- Return to in zero magnetic field
2.3. Instruments
- Tescan Vega TS5130MM SEM (Tescan, Brno, Czech Republic) with INCA Energy 450 EDS (Si(Li) PentaFET x3 detector) (Oxford Instruments, AGICO, Abingdon, UK)
- Tescan Vega II XMU SEM (Tescan, Czech Republic) with INCA Energy 450 EDS (Si(Li) x-sight) and WDS (INCA Wave 700) (Oxford Instruments, UK)
3. Results
3.1. Properties of the P72/4 Basalt in Initial State
3.2. Phase, Structural and Magnetic Characteristics of the P72/4 Basalt Sample After Annealing
3.3. Thellier Experiments on Oxidized Titanomagnetite
- -
- For moderately oxidized samples ( after h), specimen 72/4(98) yielded T versus T (deviation∼3%), consistent with favorable statistical parameters: quality factor , fraction used , and mean deviation ; Table 2).
- -
- Under advanced oxidation ( after h), specimen 72/4(138) demonstrated significant overestimation (T versus T, ). This distortion correlates with compromised quality metrics: although remains formally acceptable, the reduced usable fraction () and elevated approach critical thresholds.
- -
- After brief annealing (12.5 h, ), specimens showed severe overestimation (∼), exemplified by specimen 72/4(153) yielding T versus T despite acceptable q-factor.
- -
- Under advanced oxidation (400–1300 h, ), results shifted to consistent underestimation (∼17–18%). Specimen 72/4(157) () returned T, while 72/4(160) () showed identical underestimation (), both exhibiting degraded q-factors and elevated DRAT values.
4. Discussion
5. Conclusions
- CRM and TRM components exhibit distinct coercivity and unblocking temperature spectra, enabling their discrimination in orthogonal field configurations. The CRM component () demonstrated higher magnetic stability in fields >17–20 mT and broader unblocking temperature distributions compared to TRM (Figure 3).
- The Lowrie method confirmed the single-phase oxidation nature of titanomagnetite, as evidenced by smooth thermal demagnetization of three-component IRM without discrete unblocking temperatures characteristic of multi-phase systems (Figure 2).
- Thellier-Coe analysis revealed two-sloped Arai-Nagata diagrams, with reliable TRM preservation below 360 and chemical alteration artifacts above 360 despite argon-atmosphere protocols.
- Magnetic field orientation during oxidation critically influenced paleointensity accuracy. Parallel field annealing preserved TRM fidelity ( vs. ), while perpendicular fields introduced systematic biases (up to 38% overestimation and 20% underestimation). This directional dependence arises from magnetostatic interactions in core-shell structured grains during single-phase oxidation.
- Marine basalt studies require stringent sample pre-selection for oxidation degree and directional field alignment during paleointensity experiments to mitigate CRM-TRM interference.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NRM | Natural Remanent Magnetization |
TRM | Thermoremanent Magnetization |
CRM | Chemical Remanent Magnetization |
TCRM | Thermochemical Remanent Magnetization |
pTRM | partial Thermoremanent Magnetization |
PSD | Pseudo-Single-Domain |
AFD | Alternating Field Demagnetization |
TD | Thermal Demagnetization |
IRM | Isothermal Remanent Magnetization |
SEM | Scanning Electron Microscopy |
EDS | Energy-Dispersive X-ray Spectroscopy |
WDS | Wavelength-Dispersive X-ray Spectroscopy |
BSE | Backscattered Electrons |
RAS | Russian Academy of Sciences |
TMA | Thermomagnetic Analysis |
Appendix A
References
- Nishitani, T.; Kono, M. Curie temperature and lattice constant of oxidized titanomagnetite. Geophys. J. Int. 1983, 74, 585–600. [Google Scholar]
- Bowles, J.A.; Jackson, M.J.; Berquó, T.S.; Sølheid, P.A.; Gee, J.S. Inferred time-and temperature-dependent cation ordering in natural titanomagnetites. Nat. Commun. 2013, 4, 1916. [Google Scholar] [CrossRef] [PubMed]
- Bowles, J.A.; Jackson, M.J. Effects of titanomagnetite reordering processes on thermal demagnetization and paleointensity experiments. Geochem. Geophys. Geosyst. 2016, 17, 4848–4858. [Google Scholar] [CrossRef]
- Dunlop, D.J.; Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers; Number 3 in Cambridge Studies in Magnetism; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- O’Reilly, W. The identification of titanomaghemites: Model mechanisms for the maghemitization and inversion processes and their magnetic consequences. Phys. Earth Planet. Inter. 1983, 31, 65–76. [Google Scholar] [CrossRef]
- Haggerty, S.E. Oxidation of opaque mineral oxides in basalts. Oxide Minerals 1976, 3, Hg1–Hg100. [Google Scholar]
- Haggerty, S.E. Opaque mineral oxides in terrestrial igneous rocks. Oxide Miner. Short Course Notes 1976, 3. [Google Scholar]
- Johnson, H.; Merrill, R. Low-temperature oxidation of a titanomagnetite and the implications for paleomagnetism. J. Geophys. Res. 1973, 78, 4938–4949. [Google Scholar] [CrossRef]
- Ozima, M.; Larson, E. Low-and high-temperature oxidation of titanomagnetite in relation to irreversible changes in the magnetic properties of submarine basalts. J. Geophys. Res. 1970, 75, 1003–1017. [Google Scholar] [CrossRef]
- Geissman, J.W.; Van der Voo, R. Thermochemical remanent magnetization in Jurassic silicic volcanics from Nevada, USA. Earth Planet. Sci. Lett. 1980, 48, 385–396. [Google Scholar] [CrossRef]
- Bleil, U.; Petersen, N. Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature 1983, 301, 384–388. [Google Scholar] [CrossRef]
- Brown, K.; O’Reilly, W. The effect of low temperature oxidation on the remanence of TRM-carrying titanomagnetite Fe2.4Ti0.6O4. Phys. Earth Planet. Inter. 1988, 52, 108–116. [Google Scholar] [CrossRef]
- Tanaka, H.; Kono, M. Preliminary results and reliability of palaeointensity studies on historical and 14C dated Hawaiian lavas. J. Geomagn. Geoelectr. 1991, 43, 375–388. [Google Scholar] [CrossRef]
- Smirnov, A.V.; Tarduno, J.A. Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak? J. Geophys. Res. Solid Earth 2005, 110, B06103. [Google Scholar] [CrossRef]
- Draeger, U.; Prévot, M.; Poidras, T.; Riisager, J. Single-domain chemical, thermochemical and thermal remanences in a basaltic rock. Geophys. J. Int. 2006, 166, 12–32. [Google Scholar] [CrossRef]
- Fabian, K.; Shcherbakov, V.P. The magnetization of the ocean floor: Stress and fracturing of titanomagnetite particles by low-temperature oxidation. Geophys. J. Int. 2020, 221, 2104–2112. [Google Scholar] [CrossRef]
- Maksimochkin, V.I.; Tselebrovskiy, A.N. The influence of the chemical magnetization of oceanic basalts on determining the geomagnetic field paleointensity by the Thellier method. Mosc. Univ. Phys. Bull. 2015, 70, 566–576. [Google Scholar] [CrossRef]
- Maksimochkin, V.I.; Grachev, R.A.; Tselebrovskiy, A.N. Determination of the formation field of artificial CRM and pTRM by the Thellier method at different oxidation stages of natural titanomagnetite. Izv. Phys. Solid Earth 2020, 56, 413–424. [Google Scholar] [CrossRef]
- Gribov, S.; Dolotov, A.; Shcherbakov, V. Experimental modeling of the chemical remanent magnetization and Thellier procedure on titanomagnetite-bearing basalts. Izv. Phys. Solid Earth 2017, 53, 274–292. [Google Scholar] [CrossRef]
- Gapeev, A.K.; Gribov, S.K. Kinetics of single-phase oxidation of titanomagnetite. Phys. Earth Planet. Inter. 1990, 63, 58–65. [Google Scholar] [CrossRef]
- Özdemir, Ö.; Dunlop, D.J. An experimental study of chemical remanent magnetizations of synthetic monodomain titanomaghemites with initial thermoremanent magnetizations. J. Geophys. Res. Solid Earth 1985, 90, 11513–11523. [Google Scholar] [CrossRef]
- Walderhaug, H.J.; Torsvik, T.H.; Løvlie, R. Experimental CRM production in a basaltic rock; evidence for stable, intermediate palaeomagnetic directions. Geophys. J. Int. 1991, 105, 747–756. [Google Scholar] [CrossRef][Green Version]
- Trukhin, V.I.; Bezaeva, N.S. Self-reversal of the magnetization of natural and synthesized ferrimagnets. Physics-Uspekhi 2006, 49, 489. [Google Scholar] [CrossRef]
- Krása, D.; Shcherbakov, V.P.; Kunzmann, T.; Petersen, N. Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites. Geophys. J. Int. 2005, 162, 115–136. [Google Scholar] [CrossRef]
- Doubrovine, P.V.; Tarduno, J.A. Self-reversed magnetization carried by titanomaghemite in oceanic basalts. Earth Planet. Sci. Lett. 2004, 222, 959–969. [Google Scholar] [CrossRef]
- Maksimochkin, V.; Grachev, R.; Tselebrovskiy, A. Effect of Single-Phase Oxidation of Titanomagnetite in Basalts on the Determination of Intensity and Direction of Paleomagnetic Field. Izv. Phys. Solid Earth 2022, 58, 216–229. [Google Scholar] [CrossRef]
- Shcherbakov, V.; Lhuillier, F.; Gribov, S.; Tselmovich, V.; Aphinogenova, N. Potential bias in volcanic paleomagnetic records due to superimposed chemical remanent magnetization. Geophys. Res. Lett. 2024, 51, e2024GL109630. [Google Scholar] [CrossRef]
- Shcherbakov, V.; Gribov, S.; Lhuillier, F.; Aphinogenova, N.; Tsel’movich, V. On the reliability of absolute palaeointensity determinations on basaltic rocks bearing a thermochemical remanence. J. Geophys. Res. Solid Earth 2019, 124, 7616–7632. [Google Scholar] [CrossRef]
- Shreider, A.A.e.a. Detailed Geomagnetic Investigations of the Rift Zone in the Southern Red Sea. Oceanology 1982, 22, 439–445. (In Russian) [Google Scholar]
- Bogdanov, Y.A.; Zhuleva, E.V.; Zonenshajn, L.P.; Matveenkov, V.V.; Mirlin, E.G.; Sagilevich, A.M.; Sborschikov, I.M. Atlas of Underwater Photographs of the Red Sea Rift; Nauka: Moscow, Russia, 1983; p. 139. (In Russian) [Google Scholar]
- Maksimochkin, V.I.; Trukhin, V.I.; Garifullin, N.M.; Khasanov, N.A. Automated High-Sensitivity Vibrational Magnetometer. Instruments Exp. Tech. 2003, 46, 132–137. [Google Scholar] [CrossRef]
- Dunlop, D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. Solid Earth 2002, 107, EPM-4. [Google Scholar] [CrossRef]
- Gribov, S.; Shcherbakov, V.; Aphinogenova, N. Magnetic properties of artificial CRM created on titanomagnetite-bearing oceanic basalts. In Proceedings of the Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism: International Conference on Geomagnetism, Paleomagnetism and Rock Magnetism, Kazan, Russia, 14 December 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 173–194. [Google Scholar]
- Fabian, K.; Shcherbakov, V.P.; McEnroe, S.A. Measuring the Curie temperature. Geochem. Geophys. Geosyst. 2013, 14, 947–961. [Google Scholar] [CrossRef]
- Lowrie, W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett. 1990, 17, 159–162. [Google Scholar] [CrossRef]
- Thellier, E. Sur l’intensite du shamp magnetique terrestre dans le passe historique et geologique. Ann. Geophys. 1959, 15, 285–376. [Google Scholar]
- Coe, R.S. The determination of paleo-intensities of the Earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behavior in Thellier’s method. J. Geomagn. Geoelectr. 1967, 19, 157–179. [Google Scholar] [CrossRef]
- Paterson, G.A.; Tauxe, L.; Biggin, A.J.; Shaar, R.; Jonestrask, L.C. On improving the selection of Thellier-type paleointensity data. Geochem. Geophys. Geosyst. 2014, 15, 1180–1192. [Google Scholar] [CrossRef]
, | , | , | , | , | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hours | , A/m | , A/m | , A/m | , A/m | SI/g | mT | A/m | |||||
0 | – | 30 | – | 28 | 0.54 | 17.3 | 1.28 | 2400 | 0.37 | 260 | 265 | 0 |
12.5 | – | 33.8 | 2.8 | 24.4 | 0.59 | 17.4 | 1.28 | 2520 | 0.36 | 301 | 260 | 0.15 |
100 | – | 32.3 | 3.1 | 22.7 | 0.65 | 16.4 | 1.29 | 2730 | 0.35 | 340 | 267 | 0.31 |
400 | – | 33.3 | 4.4 | 21.9 | 0.73 | 14.4 | 1.29 | 2820 | 0.30 | 350–415 | 269 | 0.48 |
1300 | – | 33.9 | 6.1 | 21.6 | 0.83 | 14.3 | 1.34 | 3030 | 0.31 | 370–435 | 285 | 0.56 |
Sample | , | Field | Z | , | , | N | g | f | q | , | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number | Hours | Orientation | C | T | % | |||||||
95 | 0 | – | 0 | 20–400 | 48.9 | 15 | 0.92 | 0.96 | 0.98 | 0.0447 | 19.25 | 2.2 |
92 | 12.5 | ∥ | 0.15 | 260–360 | 51.8 | 10 | 0.86 | 0.59 | 1.04 | 0.0221 | 23.89 | 1.7 |
153 | 12.5 | ⊥ | 0.15 | 260–360 | 69.2 | 11 | 0.87 | 0.58 | 1.38 | 0.0239 | 29.37 | 6.4 |
96 | 100 | ∥ | 0.31 | 260–360 | 52.5 | 10 | 0.87 | 0.55 | 1.05 | 0.0142 | 35.59 | 1.0 |
155 | 100 | ⊥ | 0.31 | 260–360 | 51.4 | 11 | 0.86 | 0.50 | 1.03 | 0.0275 | 15.97 | 3.4 |
98 | 400 | ∥ | 0.48 | 260–360 | 48.5 | 10 | 0.84 | 0.49 | 0.97 | 0.0180 | 22.38 | 3.6 |
157 | 400 | ⊥ | 0.48 | 260–360 | 41.2 | 11 | 0.84 | 0.40 | 0.82 | 0.0226 | 12.33 | 6.9 |
138 | 1300 | ∥ | 0.56 | 260–360 | 60.2 | 10 | 0.80 | 0.36 | 1.20 | 0.0162 | 21.26 | 5.5 |
160 | 1300 | ⊥ | 0.56 | 260–360 | 41.2 | 11 | 0.79 | 0.35 | 0.82 | 0.0142 | 15.89 | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grachev, R.; Maksimochkin, V.; Rytov, R.; Tselebrovskiy, A.; Nekrasov, A. Modeling Magma Intrusion-Induced Oxidation: Impact on the Paleomagnetic TRM Signal in Titanomagnetite. Geosciences 2025, 15, 372. https://doi.org/10.3390/geosciences15100372
Grachev R, Maksimochkin V, Rytov R, Tselebrovskiy A, Nekrasov A. Modeling Magma Intrusion-Induced Oxidation: Impact on the Paleomagnetic TRM Signal in Titanomagnetite. Geosciences. 2025; 15(10):372. https://doi.org/10.3390/geosciences15100372
Chicago/Turabian StyleGrachev, Roman, Valery Maksimochkin, Ruslan Rytov, Aleksey Tselebrovskiy, and Aleksey Nekrasov. 2025. "Modeling Magma Intrusion-Induced Oxidation: Impact on the Paleomagnetic TRM Signal in Titanomagnetite" Geosciences 15, no. 10: 372. https://doi.org/10.3390/geosciences15100372
APA StyleGrachev, R., Maksimochkin, V., Rytov, R., Tselebrovskiy, A., & Nekrasov, A. (2025). Modeling Magma Intrusion-Induced Oxidation: Impact on the Paleomagnetic TRM Signal in Titanomagnetite. Geosciences, 15(10), 372. https://doi.org/10.3390/geosciences15100372