Thermal State and Thickness of the Lithospheric Mantle Beneath the Northern East-European Platform: Evidence from Clinopyroxene Xenocrysts in Kimberlite Pipes from the Arkhangelsk Region (NW Russia) and Its Applications in Diamond Exploration
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Arkhangelskaya Kimberlite Pipe
4.2. Lomonosovskaya Kimberlite Pipe
4.3. TSNIGRI-Arkhangelskaya Kimberlite Pipe
4.4. V. Grib Kimberlite Pipe
4.4.1. Crater Part
4.4.2. Diatreme Part
4.4.3. Garnet Peridotites, Garnet-Clinopyroxene Intergrowths and Cr-Rich Clinopyroxene Megacrysts
5. Discussion
5.1. Comparison of the P–T Calculation Results for Single, Mantle-Derived, Clinopyroxene Xenocrysts
5.2. The Efficiency of Mantle Sampling with Depth
5.3. The Thermal State and Thickness of the Lithospheric Mantle and Their Relationship with the Diamond Content of Kimberlite Pipes
5.4. The Amount of “Diamond-Associated” Garnets and Their Relationship to the Diamond Grade of Kimberlite Pipes
5.5. The Efficiency of Mantle Sampling and Its Relationship to the Diamond Content of Kimberlite Pipes
5.6. Unsampled Range in the Deepest Part of the Lithospheric Mantle
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grütter, H. Pyroxene xenocryst geotherms: Techniques and application. Lithos 2009, 112, 1167–1178. [Google Scholar] [CrossRef]
- Nimis, P.; Preston, R.; Perritt, S.H.; Chinn, I.L. Diamond’s depth distribution systematics. Lithos 2020, 376–377, 105729. [Google Scholar] [CrossRef]
- Nimis, P.; Taylor, W.R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 2000, 139, 541–554. [Google Scholar] [CrossRef]
- Sudholz, Z.J.; Yaxley, G.M.; Jaques, A.L.; Chen, J. Experimental recalibration of the Cr-in-clinopyroxene geobarometer: Improved precision and reliability above 4.5 GPa. Contrib. Mineral. Petrol. 2021, 176, 11. [Google Scholar] [CrossRef]
- Nimis, P.; Grütter, H. Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib. Mineral. Petrol. 2010, 159, 411–427. [Google Scholar] [CrossRef]
- Ziberna, L.; Nimis, P.; Kuzmin, D.; Malkovets, V.G. Error sources in single clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. Am. Mineral. 2016, 101, 2222–2232. [Google Scholar] [CrossRef]
- Priyatkina, N.; Khudoley, A.K.; Ustinov, V.N.; Kullerud, K. 1.92 Ga kimberlitic rocks from Kimozero, NW Russia: Their geochemistry, tectonic setting and unusual field occurrence. Precambrian Res. 2014, 249, 162–179. [Google Scholar] [CrossRef]
- O’Brien, H.; Phillips, D.; Spencer, R. Isotopic ages of Lentiira-Kuhmo-Kostomuksha olivine lamproite-Group II kimberlites. Bull. Geol. Soc. Finl. 2007, 79, 203–215. [Google Scholar] [CrossRef]
- O’Brien, H. Kimberlite-Hosted Diamonds in Finland. In Mineral Deposits of Finland; Maier, W.D., Lahtinen, R., O’Brien, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 345–375. [Google Scholar] [CrossRef]
- Beard, A.D.; Downes, H.; Hegner, E.; Sablukov, S.M.; Vetrin, V.R.; Balogh, K. Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: Implications for the petrogenesis of kimberlites and melilitites. Contrib. Mineral. Petrol. 1998, 130, 288–303. [Google Scholar] [CrossRef]
- Bogatikov, O.A.; Kononova, V.A.; Nosova, A.A.; Kondrashov, I.A. Kimberlites and lamproites of the East-European Platform: Petrology and geochemistry. Petrology 2007, 15, 315–334. [Google Scholar] [CrossRef]
- Bogatikov, O.A.; Garanin, V.K.; Kononova, V.A.; Kudryavceva, G.P.; Vasil’eva, E.R.; Verzhak, V.V.; Verichev, E.M.; Parsadanyan, K.S.; Posuhova, T.V. The Arkhangelsk Diamondiferous Province; Izd. MGU: Moscow, Russia, 1999; 524p. (In Russian) [Google Scholar]
- Pervov, V.A.; Bogomolov, V.S.; Larchenko, V.A.; Levskii, L.K.; Minchenko, G.V.; Sablukov, S.M.; Sergeev, S.A.; Stepanov, V.P. Rb–Sr age of kimberlites of the Pionerskaya pipe (Arkhangelsk diamondiferous province). Dokl. Earth Sci. 2005, 400, 67–71. [Google Scholar]
- Larionova, Y.O.; Sazonova, L.V.; Lebedeva, N.M.; Nosova, A.A.; Tretyachenko, V.V.; Travin, A.V.; Kargin, A.V.; Yudin, D.S. Kimberlite age in the Arkhangelsk Province, Russia: Isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite. Petrology 2016, 24, 562–593. [Google Scholar] [CrossRef]
- Lehtonen, M.L.; O’Brien, H.E. Mantle transect of the Karelian Craton from margin to core based on P-T data from garnet and clinopyroxene xenocrysts in kimberlites. B Geol. Soc. Finl. 2009, 81, 79–102. [Google Scholar] [CrossRef]
- Kukkonen, I.T.; Peltonen, P. Xenolith-controlled geotherm for the central Fennoscandian Shield: Implications for lithosphere–asthenosphere relations. Tectonophysics 1999, 304, 301–315. [Google Scholar] [CrossRef]
- Kukkonen, I.T.; Kinnunen, K.A.; Peltonen, P. Mantle xenoliths and thick lithosphere in the Fennoscandian Shield. Phys. Chem. Earth Parts A/B/C 2003, 28, 349–360. [Google Scholar] [CrossRef]
- Lehtonen, M.L.; O’Brien, H.E.; Peltonen, P.; Johanson, B.S.; Pakkanen, L.K. Layered mantle at the Karelian Craton margin: P–T of mantle xenocrysts and xenoliths from the Kaavi–Kuopio kimberlites, Finland. Lithos 2004, 77, 593–608. [Google Scholar] [CrossRef]
- Agasheva, E.V. Magmatic material in sandstone shows prospects for new diamond deposits within the Northern East European platform. Minerals 2021, 11, 339. [Google Scholar] [CrossRef]
- Shchukina, E.V.; Golovin, N.N.; Mal’kovets, V.G.; Pokhilenko, N.P. Mineralogy and equilibrium P–T estimates for peridotite assemblages from the V. Grib kimberlite pipe (Arkhangelsk Kimberlite Province). Dokl. Earth Sci. 2012, 444, 776–781. [Google Scholar] [CrossRef]
- Shchukina, E.V.; Agashev, A.M.; Kostrovitsky, S.I.; Pokhilenko, N.P. Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province). Russ. Geol. Geophys. 2015, 56, 1701–1716. [Google Scholar] [CrossRef]
- Shchukina, E.V.; Agashev, A.M.; Zedgenizov, D.A. Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): Evidence from mineral geochemistry and the U–Pb and Lu–Hf isotope compositions of zircon. Mineral. Petrol. 2018, 112, 85–100. [Google Scholar] [CrossRef]
- Shchukina, E.V.; Agashev, A.M.; Soloshenko, N.G.; Streletskaya, M.V.; Zedgenizov, D.A. Origin of V. Grib pipe eclogites (Arkhangelsk region, NW Russia): Geochemistry, Sm–Nd and Rb–Sr isotopes and relation to regional Precambrian tectonics. Mineral. Petrol. 2019, 113, 593–612. [Google Scholar] [CrossRef]
- Kargin, A.V.; Sazonova, L.V.; Nosova, A.A.; Tretyachenko, V.V. Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: Evidence for mantle metasomatism associated with kimberlite melts. Lithos 2016, 262, 442–455. [Google Scholar] [CrossRef]
- Kargin, A.V.; Sazonova, L.V.; Nosova, A.A.; Pervov, V.A.; Minevrina, E.V.; Khvostikov, V.A.; Burmii, Z.P. Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkhangelsk Diamond Province, Russia: Texture, composition, and origin. Geosci. Front. 2017, 8, 653–669. [Google Scholar] [CrossRef]
- Lebedeva, N.M.; Nosova, A.A.; Kargin, A.V.; Larionova, Y.O.; Sazonova, L.V.; Tikhomirova, Y.S. Sr-Nd-O isotopic evidence of variable sources of mantle metasomatism in the subcratonic lithospheric mantle beneath the Grib kimberlite, northwestern Russia. Lithos 2020, 376–377, 105779. [Google Scholar] [CrossRef]
- Lebedeva, N.M.; Nosova, A.A.; Sazonova, L.V.; Larionova, Y.O. Metasomatized Xenoliths of Mantle Eclogites and Garnet Pyroxenites from the V. Grib Kimberlite, Arkhangelsk Province. Petrology 2022, 30, 479–498. [Google Scholar] [CrossRef]
- Golovin, A.V.; Tarasov, A.A.; Agasheva, E.V. Mineral Assemblage of Olivine-Hosted Melt Inclusions in a Mantle Xenolith from the V. Grib Kimberlite Pipe: Direct Evidence for the Presence of an Alkali-Rich Carbonate Melt in the Mantle Beneath the Baltic Super-Craton. Minerals 2023, 13, 645. [Google Scholar] [CrossRef]
- Pollack, H.; Chapman, D. Mantle heat flow. Earth Planet. Sci. Lett. 1977, 34, 174–184. [Google Scholar] [CrossRef]
- Lehtonen, M.; O’Brien, H.; Peltonen, P.; Kukkonen, I.; Ustinov, V.; Verzhak, V. Mantle xenocrysts from the Arkhangelskaya kimberlite (Lomonosov mine, NW Russia): Constraints on the composition and thermal state of the diamondiferous lithospheric mantle. Lithos 2009, 112, 924–933. [Google Scholar] [CrossRef]
- Gudimova, A.I.; Agasheva, E.V.; Agashev, A.M.; Pokhilenko, N.P. Composition, structure, and thermal regime of the lithospheric mantle in the area of the highly diamondiferous V. Grib kimberlite pipe, Arkhangelsk diamondiferous province: Data on the chemical composition of garnet and chrome-diopside xenocrysts. Dokl. Earth Sci. 2022, 505, 439–445. [Google Scholar] [CrossRef]
- Afanasiev, V.P.; Ashchepkov, I.V.; Verzhak, V.V.; O’Brien, H.O.; Palessky, S.V. PT conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia. J. Asian Earth Sci. 2013, 70–71, 45–63. [Google Scholar] [CrossRef]
- Hasterok, D.; Chapman, D.S. Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 2011, 307, 59–70. [Google Scholar] [CrossRef]
- Shchukina, E.V.; Agashev, A.M.; Pokhilenko, N.P. Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. Geosci. Front. 2017, 8, 641–651. [Google Scholar] [CrossRef]
- Agasheva, E.V.; Gudimova, A.I.; Chervyakovskii, V.S.; Agashev, A.M. Contrasting Diamond Potentials of Kimberlites of the V. Grib and TsNIGRI-Arkhangelskaya Pipes (Arkhangelsk Diamondiferous Province) as a Result of the Different Compositions and Evolution of the Lithospheric Mantle: Data on the Contents of Major and Trace Elements in Garnet Xenocrysts. Russ. Geol. Geophys. 2023, 64, 1459–1480. [Google Scholar] [CrossRef]
- Gudimova, A.I.; Zyryanova, L.V.; Agasheva, E.V. Reconstruction of the main parameters of the lithospheric mantle benath the Lomonosovskaya (Zolotitsa field) and An-693 (Kepino field) kimberlite pipes, Arkhangelsk diamondiferous province. In Proceedings of the TSNIGRI ORE SCHOOL 2023, IV Youth Scientific and Educational Conference TsNIGRI, FSBI TsNIGRI, Moscow, Russia, 15–17 February 2023. (In Russian). [Google Scholar]
- Canil, D. The Ni-in-garnet geothermometer: Calibration at natural abundances. Contrib. Mineral. Petrol. 1999, 136, 240–246. [Google Scholar] [CrossRef]
- Shchukina, E.V.; Shchukin, V.S. Diamond exploration potential of the northern East European Platform. Minerals 2018, 8, 189. [Google Scholar] [CrossRef]
- Pearson, D.G.; Scott, J.M.; Liu, J.; Schaeffer, A.; Wang, L.H.; van Hunen, J.; Szilas, K.; Chacko, T.; Kelemen, P.B. Deep continental roots and cratons. Nature 2021, 596, 199–210. [Google Scholar] [CrossRef]
- Ustinov, V.N.; Neruchev, S.S.; Zagainyi, A.K.; Antashchuk, M.G.; Lobkova, L.P.; Mikoev, I.I.; Nikolaeva, E.V.; O’Brien, H.; Peltonen, P.; Pendelyak, R.N. Diamond Potential of the North of the East European Platform; Nauka: St. Petersburg, Russia, 2021; 410p. (In Russian) [Google Scholar]
- Parsadanyan, K.S.; Kononova, V.A.; Bogatikov, O.A. Sources of heterogeneous magmatism of the Arkhangelsk diamondiferousprovince. Petrology 1996, 4, 460–479. [Google Scholar]
- Beard, A.D.; Downes, H.; Hegner, E.; Sablukov, S.M. Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: Evidence for transitional kimberlite magma types. Lithos 2000, 51, 47–73. [Google Scholar] [CrossRef]
- Mahotkin, I.L.; Gibson, S.A.; Thompson, R.N.; Zhuravlev, D.Z.; Zherdev, P.U. Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Arkhangelsk region, Russia. J. Petrol. 2000, 41, 201–227. [Google Scholar] [CrossRef]
- Garanin, V.; Garanin, K.; Kriulina, G.; Samosorov, G. Diamonds from the Arkhangelsk Province, NW Russia; Springer Mineralogy: Cham, Switzerland, 2021; 248p. [Google Scholar] [CrossRef]
- Verichev, E.M. Geologic Conditions of Formation and Exploration of the V. Grib Diamond Deposit. Ph.D. Thesis, Moscow State University, Moscow, Russia, 2002. (In Russian). [Google Scholar]
- Kononova, V.A.; Golubeva, Y.Y.; Bogatikov, O.A.; Kargin, A.V. Diamond resource potential of kimberlites from the Zimny Beregfield, Arkhangel’sk oblast. Geol. Ore Deposit. 2007, 49, 421–441. [Google Scholar] [CrossRef]
- Petrov, O.V.; Lokhov, K.I.; Shevchenko, S.S.; Sergeev, S.S.; Bogomolov, E.S.; Antonov, A.V.; Lepekhina, E.N.; Sablukov, S.M. Isotope research at VSEGEI: Prospects for using the results to predict and search for diamond deposits. Reg. Geol. Metallog. 2006, 27, 158–167. (In Russian) [Google Scholar]
- Agasheva, E.V.; Zyryanova, L.V.; Agashev, A.M.; Pokhilenko, N.P. Recent Data on the Isotope–Geochemical Composition of Kimberlites in the TSNIGRI-Arkhangelskaya Pipe, Arkhangelsk Diamondiferous Province (Northern East European Platform). Dokl. Earth Sci. 2024, 517, 1152–1159. [Google Scholar] [CrossRef]
- Golubeva, Y.Y.; Shcherbakova, T.E.; Kolesnikova, T.I. Compositional features of the TSNIGRI-Arkhangelskaya kimberlite, Zimneberezhnoe pole. Rudy I Met. 2009, 4, 66–73. (In Russian) [Google Scholar]
- Agashev, A.M.; Watanabe, T.; Bydaev, D.A.; Pokhilenko, N.P.; Fomin, A.S.; Maehara, K.; Maeda, J. Geochemistry of kimberlites from the Nakyn field, Siberia: Evidence for unique source composition. Geology 2001, 29, 267–270. [Google Scholar] [CrossRef]
- Golubev, Y.K.; Prusakova, N.A.; Golubeva, Y.Y. Kepino kimberlites, Arkhangelsk Region. Rudy Met. 2010, 1, 38–45. (In Russian) [Google Scholar]
- Tretyachenko, V.V. Mineragenic Zoning of the Kimberlite Field of the Southeastern White Sea Area. Ph.D. Thesis, ZAO Alrosa, Moscow, Russia, 2008. (In Russian). [Google Scholar]
- Korolyuk, V.N.; Lavrent’ev, Y.G.; Usova, L.V.; Nigmatulina, E.N. JXA-8100 microanalyzer: Accuracy of analysis of rock-formingminerals. Russ. Geol. Geophys. 2008, 49, 165–168. [Google Scholar] [CrossRef]
- Lavrent’ev, Y.G.; Korolyuk, V.N.; Usova, L.V.; Nigmatulina, E.N. Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ. Geol. Geophys. 2015, 56, 1428–1436. [Google Scholar] [CrossRef]
- Pasyanos, M.E.; Masters, T.G.; Laske, G.; Ma, Z. LITHO1.0: An updated crust and lithospheric model of the Earth. J. Geophys. Res. Solid Earth 2014, 119, 2153–2173. [Google Scholar] [CrossRef]
- Ramsay, R.R.; Tompkins, L.A. The geology, heavy mineral concentrate mineralogy, and diamond prospectivity of the Boa Esperança and Cana Verde pipes, Corrego D’anta, Minas Gerais, Brazil. In Proceedings of the 5th International Kimberlite Conference, Araxa, Brazil, 18 June–4 July 1991; Meyer, H.O.A., Leonardos, O.H., Eds.; CPRM Special Publication: Brasilia, Brazil, 1994; pp. 329–345. [Google Scholar]
- Day, H.W. A revised diamond-graphite transition curve. Am. Mineral. 2012, 97, 52–62. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of Pyroxenes. Mineral. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Kostrovitsky, S.I.; Malkovets, V.G.; Verichev, E.M.; Garanin, V.K.; Suvorova, L.V. Megacrysts from the V. Grib kimberlite pipe. Lithos 2004, 77, 511–523. [Google Scholar] [CrossRef]
- Nickel, K. Phase equilibria in the system SiO2-MgO-Al2O3-CaO-Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships. Neues Jahrb. Miner. Abh. 1986, 155, 259–287. [Google Scholar]
- Brey, G.; Köhler, T.; Nickel, K. Geothermobarometry in four-phase lherzolites I. Experimental results from 10 to 60 kb. J. Petrol. 1990, 31, 1313–1352. [Google Scholar] [CrossRef]
- Taylor, W. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrb. Miner. Abh. 1998, 172, 381–408. [Google Scholar] [CrossRef]
- Nimis, P. The pressures and temperatures of formation of diamond based on thermobarometry of chromian diopside inclusions. Can. Mineral. 2002, 40, 871–884. [Google Scholar] [CrossRef]
- Shirey, S.B.; Cartigny, P.; Frost, D.J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the geology of mantle carbon. Rev. Miner. Geochem. 2013, 75, 355–421. [Google Scholar] [CrossRef]
- Nickel, K.; Green, D. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett. 1985, 73, 158–170. [Google Scholar] [CrossRef]
- Carswell, D.A. The garnet–orthopyroxene Al barometer: Problematic application to natural garnet lherzolite assemblages. Mineral. Mag. 1991, 55, 19–31. [Google Scholar] [CrossRef]
- Walter, M.J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 1998, 39, 29–60. [Google Scholar] [CrossRef]
- Shaikh, A.M.; Tappe, S.; Viljoen, F.; de Wit, M.C.J. The Elusive Congo Craton Margin During Gondwana Breakup: Insights from Lithospheric Mantle Structure and Heat Flow beneath the Xaudum Kimberlite Province, NW Botswana. J. Petrol. 2024, 65, egae002. [Google Scholar] [CrossRef]
- Schaeffer, A.J.; Lebedev, S. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 2013, 194, 417–449. [Google Scholar] [CrossRef]
- Artemieva, I.M.; Thybo, H.; Kaban, M.K. Deep Europe today: Geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga. Geol. Soc. Spec. Publ. 2006, 32, 11–41. [Google Scholar] [CrossRef]
- Artemieva, I.M. Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform. Earth Planet. Sci. Lett. 2003, 213, 431–446. [Google Scholar] [CrossRef]
- Gudimova, A.I.; Zyryanova, L.V.; Agasheva, E.V. Metasomatic processes in the lithospheric mantle beneath the Lomonosovskaya kimberlite pipe. In Proceedings of the TSNIGRI ORE SCHOOL 2024, V Youth Scientific and Educational Conference TsNIGRI, FSBI TsNIGRI, Moscow, Russia, 14–16 February 2024. [Google Scholar]
- Sobolev, N.V. Coesite as an indicator of ultrahigh pressure in continental lithosphere. Russ. Geol. Geophys. 2006, 47, 94–104. [Google Scholar]
- Sobolev, N.V.; Kaminsky, F.V.; Griffin, W.L.; Yefimova, E.S.; Win, T.T.; Ryan, C.G.; Botkunov, A.I. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 1997, 39, 135–157. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Zedgenizov, D.A.; Seryotkin, Y.V.; Yefimova, E.S.; Floss, C.; Taylor, L.A. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: A comparative study. Lithos 2004, 77, 225–242. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Zedgenizov, D.A.; Pokhilenko, N.P.; Kuzmin, D.V.; Sobolev, A.V. Olivine inclusions in Siberian diamonds: High-precision approach to minor elements. Eur. J. Mineral. 2008, 20, 305–315. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Zedgenizov, D.A.; Pokhilenko, N.P.; Malygina, E.V.; Kuzmin, D.V.; Sobolev, A.V. Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 2009, 112, 701–713. [Google Scholar] [CrossRef]
- Stachel, T.; Viljoen, K.S.; Brey, G.; Harris, J.W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett. 1998, 159, 1–12. [Google Scholar] [CrossRef]
- Stachel, T.; Aulbach, S.; Harris, J.W. Mineral inclusions in lithospheric diamonds. Rev. Miner. Geochem. 2022, 88, 307–391. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32. [Google Scholar] [CrossRef]
- Stachel, T.; Luth, R.W. Diamond formation—Where, when and how? Lithos 2015, 220–223, 200–220. [Google Scholar] [CrossRef]
- Aulbach, S.; Stachel, T. Evidence for oxygen-conserving diamond formation in redox-buffered subducted oceanic crust sampled as eclogite. Nat. Commun. 2022, 13, 1924. [Google Scholar] [CrossRef]
- Nowicki, T.E.; Moore, R.O.; Gurney, J.; Baumgartner, M.C. Diamonds and associated heavy minerals in kimberlite: A review of key concepts and applications. Dev. Sedimentol. 2007, 58, 1235–1267. [Google Scholar] [CrossRef]
- Zozulya, D.R.; O’Brien, H.; Peltonen, P.; Lehtonen, M. Thermobarometry of mantle-derived garnets and pyroxenes of Kola region (NW Russia): Lithosphere composition, thermal regime and diamond prospectivity. B Geol. Soc. Finl. 2009, 81, 143–158. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Lavrent’ev, Y.G.; Pokhilenko, N.P.; Usova, L.V. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib. Miner. Pet. Petrol. 1973, 40, 39–52. [Google Scholar] [CrossRef]
- Nimis, P. Evaluation of diamond potential from the composition of peridotitic chromian diopside. Eur. J. Miner. 1998, 10, 505–519. [Google Scholar] [CrossRef]
- Grütter, H.S.; Gurney, J.J.; Menzies, A.H.; Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 2004, 77, 841–857. [Google Scholar] [CrossRef]
- Griffin, W.L.; O’Reilly, S.Y. Upper mantle composition: Tools for smarter diamond exploration. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 7–10. [Google Scholar] [CrossRef]
- Griffin, W.L.; Shee, S.R.; Ryan, C.G.; Win, T.T.; Wyatt, B.A. Harzburgite to lherzolite and back again: Metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberly, South Africa. Contrib. Miner. Petrol. 1999, 134, 232–250. [Google Scholar] [CrossRef]
- Ziberna, L.; Nimis, P.; Zanetti, A.; Marzoli, A.; Sobolev, N.V. Metasomatic processes in the central Siberian cratonic mantle: Evidence from garnet xenocrysts from the Zagadochnaya kimberlite. J. Petrol. 2013, 54, 2379–2409. [Google Scholar] [CrossRef]
- Shchukina, E.V.; Agashev, A.M.; Shchukin, V.S. Diamondbearing root beneath the northern East European Platform (Arkhangelsk region, Russia): Evidence from Cr-pyrope trace-element geochemistry. Minerals 2019, 9, 261. [Google Scholar] [CrossRef]
- Ragozin, A.L.; Agashev, A.M.; Zedgenizov, D.A.; Denisenko, A.A. Evolution of the lithospheric mantle beneath the Nakyn kimberlite field: Evidence from garnets in the peridotite xenoliths of the Nyurba and Botuoba pipes. Geochem. Int. 2021, 59, 743–756. [Google Scholar] [CrossRef]
- Skuzovatov, S.; Shatsky, V.S.; Ragozin, A.L.; Smelov, A.P. The evolution of refertilized lithospheric mantle beneath the northeastern Siberian craton: Links between mantle metasomatism, thermal state and diamond potential. Geosci. Front. 2022, 13, 101455. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Yefimova, E.S.; Reymers, L.F.; Zakharchenko, O.D.; Makhin, A.I.; Usova, L.V. Mineral inclusions in diamonds of the Arkhangelsk kimberlite province. Russ. Geol. Geophys. 1997, 38, 379–393. [Google Scholar]
- Malkovets, V.G.; Zedgenizov, D.A.; Sobolev, N.V.; Gibsher, A.A.; Shchukina, E.V.; Golovin, N.N.; Verichev, E.M.; Pokhilenko, N.P. Contents of trace elements in olivines from diamonds and peridotite xenoliths of the V. Grib kimberlite pipe (Arkhangel’sk diamondiferous province, Russia). Dokl. Earth Sci. 2011, 436, 219–223. [Google Scholar] [CrossRef]
- Rubanova, E.V.; Palazhchenko, O.V.; Garanin, V.K. Diamonds from the V. Grib pipe, Arkhangelsk kimberlite province, Russia. Lithos 2009, 112, 880–885. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Malkovets, V.G.; Griffin, W.L. Composition of diamond-forming media in cuboid diamonds from the V. Grib kimberlite pipe (Arkhangelsk province, Russia). Geochem. J. 2017, 51, 205–213. [Google Scholar] [CrossRef]
- Galimov, E.M.; Zakharchenko, O.D.; Mal’tsev, K.A.; Makhin, A.I. Carbon isotope composition of diamonds from kimberlite pipes of the Arkhangelsk Region. Geokhimiya 1994, 1, 74–76. (In Russian) [Google Scholar]
- Galimov, E.M.; Palazhchenko, O.V.; Verichev, E.M.; Garanin, V.K.; Golovin, N.N. Carbon isotopic composition of diamonds from the Archangelsk diamond province. Geochem. Int. 2008, 46, 961–970. [Google Scholar] [CrossRef]
- Khachatryan, G.K. Nitrogen and hydrogen in diamond crystals in the aspect of geological, genetic, and forecasting problems of diamond deposits. Otechestvennaya Geol. 2013, 2, 29–42. (In Russian) [Google Scholar]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Stachel, T. Diamonds. Mineralogical Association of Canada Short Course 44, Tucson AZ. February 2014, pp. 1–28. Available online: https://www.researchgate.net/publication/269401567_Diamond (accessed on 20 August 2024).
- Smith, C.B.; Gurney, J.J.; Skinner, E.M.W.; Clement, C.R.; Ebrahim, N. Geochemical character of Southern African kimberlites: A new approach based on isotopic constraints. Trans. Geol. Soc. S. Afr. 1985, 88, 267–280. [Google Scholar]
- Taylor, W.R.; Tompkins, L.A.; Haggerty, S.E. Comparative geochemistry of West African kimberlites: Evidence for a micaceous kimberlite endmember of sublithospheric origin. Geochim. Cosmochim. Acta 1994, 58, 4017–4037. [Google Scholar] [CrossRef]
- Becker, M.; Le Roex, A.P. Geochemistry of South African on- and off-craton, Group I and Group II kimberlites: Petrogenesis and source region evolution. J. Petrol. 2006, 47, 673–703. [Google Scholar] [CrossRef]
- Arndt, N.T.; Guitreau, M.; Boullier, A.-M.; Le Roex, A.; Tommasi, A.; Cordier, P.; Sobolev, A. Olivine, and the origin of kimberlite. J. Petrol. 2010, 51, 573–602. [Google Scholar] [CrossRef]
P-T calculation according to NT00 | ||||||
Object of study | matching geotherms (mW/m2) | depth range of sampling (km) | width of sampling (km) | best-fit geotherm (mW/m2) | missfit (±ΔT °) | LAB (km) |
Arkhangelskaya (this study) * | 34–37 | 120–187 | 67 | 35.3 | 48 | 257 |
Arkhangelskaya [30] * | 34–37 | 117–184 | 67 | 35.8 | 40 | 247 |
Arkhangelskaya all data | 34–37 | 117–187 | 70 | 35.7 | 45 | 251 |
Lomonosovskaya | 34–37 | 128–214 | 86 | 35.3 | 51 | 259 |
TSNIGRI-Arkhangelskaya | 37–40 | 157–196 | 39 | 38.1 | 46 | 211 |
V. Grib crater part | 35–39 | 96–197 | 101 | 36.4 | 46 | 236 |
V. Grib diatreme part | 34–38 | 93–211 | 118 | 35.7 | 42 | 250 |
V. Grib crater + diatrem parts | 34–39 | 93–211 | 118 | 36.0 | 46 | 243 |
P-T calculation according to NT00/SUD21 | ||||||
Object of study | matching geotherms (mW/m2) | depth range of sampling (km) | width of sampling (km) | best-fit geotherm (mW/m2) | missfit (±ΔT °) | LAB (km) |
Arkhangelskaya (this study) * | 33–36 | 129–196 | 67 | 34.3 | 53 | 278 |
Arkhangelskaya [30] * | 34–37 | 135–190 | 55 | 34.7 | 50 | 271 |
Arkhangelskaya all data | 33–37 | 129–196 | 67 | 34.6 | 51 | 274 |
Lomonosovskaya | 33–36 | 131–221 | 90 | 34.6 | 53 | 273 |
TSNIGRI-Arkhangelskaya | 36–39 | 186–203 | 17 | 37.2 | 48 | 224 |
V. Grib crater part | 33–39 | 106–211 | 105 | 35.2 | 57 | 261 |
V. Grib diatreme part | 33–37 | 106–223 | 117 | 34.6 | 44 | 275 |
V. Grib crater + diatreme parts | 33–39 | 106–223 | 117 | 34.8 | 57 | 268 |
P-T calculations for the V. Grib pipe garnet peridotites | ||||||
Data source | matching geotherms (mW/m2) | depth range of sampling (km) | width of sampling (km) | best-fit geotherm (mW/m2) | missfit (±ΔT °) | LAB (km) |
data from [21] | 36–38 | 76–161 | 85 | 36.7 | 25 | 231 |
data from [21,24] | 35–40 | 76–216 | 140 | 36.8 | 47 | 230 |
P-T calculations for the V. Grib pipe garnet peridotites, cpx xenocrysts, cpx-grt intergrowths and cpx megacrysts | ||||||
Calculation method | matching geotherms (mW/m2) | depth range of sampling (km) | width of sampling (km) | best-fit geotherm (mW/m2) | missfit (±ΔT °) | LAB (km) |
P-T calculation according to NT00 | 33–40 | 76–216 | 140 | 36.2 | 52 | 241 |
P-T calculation according to NT00/SUD21 | 33–40 | 76–223 | 147 | 35.1 | 64 | 262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agasheva, E.; Gudimova, A.; Malygina, E.; Agashev, A.; Ragozin, A.; Murav’eva, E.; Dymshits, A. Thermal State and Thickness of the Lithospheric Mantle Beneath the Northern East-European Platform: Evidence from Clinopyroxene Xenocrysts in Kimberlite Pipes from the Arkhangelsk Region (NW Russia) and Its Applications in Diamond Exploration. Geosciences 2024, 14, 229. https://doi.org/10.3390/geosciences14090229
Agasheva E, Gudimova A, Malygina E, Agashev A, Ragozin A, Murav’eva E, Dymshits A. Thermal State and Thickness of the Lithospheric Mantle Beneath the Northern East-European Platform: Evidence from Clinopyroxene Xenocrysts in Kimberlite Pipes from the Arkhangelsk Region (NW Russia) and Its Applications in Diamond Exploration. Geosciences. 2024; 14(9):229. https://doi.org/10.3390/geosciences14090229
Chicago/Turabian StyleAgasheva, Elena, Alyona Gudimova, Elena Malygina, Alexey Agashev, Alexey Ragozin, Elena Murav’eva, and Anna Dymshits. 2024. "Thermal State and Thickness of the Lithospheric Mantle Beneath the Northern East-European Platform: Evidence from Clinopyroxene Xenocrysts in Kimberlite Pipes from the Arkhangelsk Region (NW Russia) and Its Applications in Diamond Exploration" Geosciences 14, no. 9: 229. https://doi.org/10.3390/geosciences14090229
APA StyleAgasheva, E., Gudimova, A., Malygina, E., Agashev, A., Ragozin, A., Murav’eva, E., & Dymshits, A. (2024). Thermal State and Thickness of the Lithospheric Mantle Beneath the Northern East-European Platform: Evidence from Clinopyroxene Xenocrysts in Kimberlite Pipes from the Arkhangelsk Region (NW Russia) and Its Applications in Diamond Exploration. Geosciences, 14(9), 229. https://doi.org/10.3390/geosciences14090229