On the Impact of Geospace Weather on the Occurrence of M7.8/M7.5 Earthquakes on 6 February 2023 (Turkey), Possibly Associated with the Geomagnetic Storm of 7 November 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study for M = 7.8 and M = 7.5 of 6 February 2023
2.2. Case Study of M = 7.0 of 30 October 2020
2.3. Case Study of M = 7.1 of 23 October 2011
2.4. Case Study for M = 7.2 of 12 November 1999
2.5. Case Study for M = 7.6 of 17 August 1999
2.6. Case Study for M = 7.3 of 24 November 1976
2.7. Case Study for M = 7.2 28 March 1970
2.8. Case Study for M = 7.3 of 22 July 1967
3. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sobolev, G.A.; Zakrzhevskaya, N.A.; Kharin, E.P. On the relation between seismicity and magnetic storms. Phys. Solid Earth 2001, 37, 917–927. [Google Scholar]
- Urata, N.; Duma, G.; Freund, F. Geomagnetic Kp Index and Earthquakes. Open J. Earthq. Res. 2018, 7, 39–52. [Google Scholar] [CrossRef]
- Chen, H.; Wang, R.; Miao, M.; Liu, X.; Ma, Y.; Hattori, K.; Han, P. A Statistical Study of the Correlation between Geomagnetic Storms and M ≥ 7.0 Global Earthquakes during 1957–2020. Entropy 2020, 22, 1270. [Google Scholar] [CrossRef]
- Ouzounov, D.; Khachikyan, G. Studying the Impact of the Geospace Environment on Solar Lithosphere Coupling and Earthquake Activity. Remote Sens. 2024, 16, 24. [Google Scholar] [CrossRef]
- Marchetti, D.; DeSantis, A.; Campuzano, S.A.; Zhu, K.; Soldani, M.; D’Arcangelo, S.; Orlando, M.; Wang, T.; Cianchini, G.; Di Mauro, D.; et al. Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space. Remote Sens. 2022, 14, 2649. [Google Scholar] [CrossRef]
- Love, J.J.; Thomas, J.N. Insignificant solar-terrestrial triggering of earthquakes. Geophys. Res. Lett. 2013, 40, 1165–1170. [Google Scholar] [CrossRef]
- Yesugey, S.C. Comparative evaluation of the influencing effects of geomagnetic solar storms on earthquakes in Anatolian peninsula. Earth Sci. Res. J. 2009, 13, 82–89. [Google Scholar]
- Sorokin, V.; Yaschenko, A.; Mushkarev, G.; Novikov, V. Telluric Currents Generated by Solar Flare Radiation: Physical Model and Numerical Estimations. Atmosphere 2023, 14, 458. [Google Scholar] [CrossRef]
- Ivarsen, M.F.; Jin, Y.; Spicher, A.; St-Maurice, J.-P.; Park, J.; Billett, D. GNSS scintillations in the cusp, and the role of precipitating particle energy fluxes. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031849. [Google Scholar] [CrossRef]
- Goertz, C.K. Kinetic Alfven waves on auroral field lines. Planet. Space Sci. 1984, 32, 1387–1392. [Google Scholar] [CrossRef]
- Lühr, H.; Rother, M.; Köhler, W.; Ritter, P.; Grunwaldt, L. Thermospheric up-welling in the cusp region: Evidence from CHAMP observations. Geophys. Res. Lett. 2004, 31, L06805. [Google Scholar] [CrossRef]
- Kervalishvili, G.N.; Lühr, H. The relationship of thermospheric density anomaly with electron temperature, small-scale FAC, and ion up-flow in the cusp region, as observed by CHAMP and DMSP satellites. Ann. Geophys. 2013, 31, 541–554. [Google Scholar] [CrossRef]
- Pitout, F.; Bogdanova, Y.V. The polar cusp seen by Cluster. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029582. [Google Scholar] [CrossRef]
- Escoubet, C.P.; Fehringer, M.; Goldstein, M. The Cluster mission. Ann. Geophys. 2001, 19, 1197–1200. [Google Scholar] [CrossRef]
- Pitout, F.; Escoubet, C.P.; Klecker, B.; Rème, H. Cluster survey of the middle altitude cusp: 1. size, location, and dynamics. Ann. Geophys. 2006, 24, 3011–3026. [Google Scholar] [CrossRef]
- Crooker, N.U. Dayside merging and cusp geometry. J. Geophys. Res. 1979, 84, 951–959. [Google Scholar] [CrossRef]
- Russell, C.T. Polar Eyes the Cusp Cluster-II Workshop: Multiscale/Multipoint Plasma Measurements. In Proceedings of the Workshop Held at Imperial College, London, UK, 22–24 September 1999; European Space Agency (ESA), ESA-SP: Paris, Italy, 2000; p. 47, ISBN 9290927968. Available online: https://articles.adsabs.harvard.edu//full/2000ESASP.449...47R/0000050.000.html (accessed on 20 February 2023).
- Wanliss, J.A.; Showalter, K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. 2006, 111, A02202. [Google Scholar] [CrossRef]
- Loewe, C.A.; Prolss, G.W. Classification and Mean Behavior of Magnetic Storms. J. Geophys. Res. 1997, 102, 14209. [Google Scholar] [CrossRef]
- Novikov, V.; Ruzhin, Y.; Sorokin, V.; Yaschenko, A. Space weather and earthquakes: Possible triggering of seismic activity by strong solar flares. Ann. Geophys. 2020, 63, PA554. [Google Scholar] [CrossRef]
- Shestopalov, I.P.; Kharin, E.P. Secular variations of solar activity and seismicity of the Earth. Geophys. J. 2006, 28, 59–70. [Google Scholar]
- Zhang, G.Q. Relationship between global seismicity and solar activities. Acta Seismol. Sin. 1998, 11, 495–500. [Google Scholar] [CrossRef]
- Huzaimy, J.M.; Yumoto, K. Possible correlation between solar activity and global seismicity. In Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace), Penang, Malaysia, 12–13 July 2011; pp. 138–141. [Google Scholar]
- Boutsi, A.Z.; Balasis, G.; Dimitrakoudis, S.; Daglis, I.A.; Tsinganos, K.; Papadimitriou, C.; Giannakis, O. Investigation of the geomagnetically induced current index levels in the Mediterranean region during the strongest magnetic storms of solar cycle 24. Space Weather 2023, 21, e2022SW003122. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, C.; Sun, T.R.; Liu, C.M.; Wang, K.R. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation. Space Weather 2015, 13, 643–655. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Usoskin, I.G.; Flückiger, E.O.; Harrison, R.G.; Desorgher, L.; Bütikofer, R.; Krainev, M.B.; Makhmutov, V.S.; Stozhkov, Y.I.; Svirzhevskaya, A.K.; et al. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 2008, 137, 149–173. [Google Scholar] [CrossRef]
- Phillips, T.; Johnson, S.; Koske-Phillips, A.; White, M.; Yarborough, A.; Lamb, A.; Schultz, J. Space weather ballooning. Space Weather 2016, 14, 697–703. [Google Scholar] [CrossRef]
- Kavanagh, A.J.; Cobbett, N.; Kirsch, P. Radiation Belt Slot Region Filling Events: Sustained Energetic Precipitation Into the Mesosphere. J. Geophys. Res. Space Phys. 2018, 123, 7999–8020. [Google Scholar] [CrossRef]
- Uyeda, S.; Kamogawa, M.; Tanaka, H. Analysis of electrical activity and seismicity in the natural time domain for the volcanic-seismic swarm activity in 2000 in the Izu Island region, Japan. J. Geophys. Res. 2009, 114, B02310. [Google Scholar] [CrossRef]
- Hattori, K.; Serita, A.; Gotoh, K.; Yoshino, C.; Harada, M.; Isezaki, N.; Hayakawa, M. ULF geomagnetic anomaly associated with 2000 Izu Islands earthquake swarm, Japan. Phys. Chem. Earth Parts A/B/C 2004, 29, 425–435. [Google Scholar] [CrossRef]
- Nicholas, V.S.; Efthimios, S.S.; Stavros-Richard, G.C.; Panayiotis, K.V. Identifying the Occurrence Time of the Destructive Kahramanmaraş-Gazientep Earthquake of Magnitude M7.8 in Turkey on 6 February 2023. Appl. Sci. 2024, 14, 1215. [Google Scholar] [CrossRef]
- Miller, S.A. The Role of Fluids in Tectonic and Earthquake Processes. Adv. Geophys. 2013, 54, 1–38. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Igarashi, G.; Ishikawa, T.; Tokonami, S.; Shinogi, M. Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration. Appl. Geochem. 2006, 21, 1064–1072. [Google Scholar] [CrossRef]
- Pulinets, S.A. Physical mechanism of the vertical electric field generation over active tectonic faults. Adv. Space Res. 2009, 44, 767–773. [Google Scholar] [CrossRef]
- Gold, T. The Deep Hot Biosphere. In The Myth of Fossil Fuels; Springer: Heidelberg, Germany, 1998; p. 243. [Google Scholar]
- Soter, S.; Gold, T. The Deep-Earth-Gas Hypothesis. Sci. Am. Mag. 1980, 242, 154. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Liu, J.-Y.; Hattori, K.; Han, P. Multiparameter Assessment of Pre-Earthquake Atmospheric Signals. In Pre-Earthquake Processes; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; American Geophysical Union; John Wiley & Sons: Hoboken, NJ, USA, 2018; 385p. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Khachikyan, G.Y. Unitary Variation in the Seismic Regime of the Earth: Carnegie-Curve Matching. Geomagn. Aeron 2020, 60, 787–792. [Google Scholar] [CrossRef]
- Pulinets, S.; Khachikyan, G. The Global Electric Circuit and Global Seismicity. Geosciences 2021, 11, 491. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Direct interconnection of seismicity with variations of the Earth’s electric and magnetic field before major earthquakes. Europhys. Lett. 2024, 146, 22001. [Google Scholar] [CrossRef]
Earthquake Catalog (USGS) | Geomagnetic Storm (Date, Intensity, Time of Storm Onset, and Positive SYM/H Index (nT) | Magnetic Local Time in the Epicenter at Time of Storm Onset (Hour) | Time Lag between Storm Onset and EQ (Days) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Date Time (UTC) | Lat./Long. | H (km) | M | Date | Intensity (nT) | Class | Onset (UTC) | |||
1 | 6 February 2023, 01:17:34 | 37.226° N, 37.014° E | 10 | 7.8 | 7 November 2022 | −117 | Strong | +10 nT at 08:04 | 10.96 | 91 |
2 | 6 February 2023, 10:24:48 | 38.011° N, 37.196° E | 7.4 | 7.5 | 7 November 2022 | −117 | Strong | +10 nT at 08:04 | 10.97 | 91 |
3 | 30 October 2020, 11:51:27 | 37.897° N 26.784° E | 21 | 7 | 2 August 2020 | −39 | Small | +27 nT at 09:23 | 11.66 | 89 |
5 October 2020 | −37 | Small | +1 nT at 08.12 | 10.48 | 25 | |||||
4 | 23 October 2011, 10:41:23 | 38.721° N, 43.508° E | 18 | 7.1 | 9 September 2011 | −77 | Moderate | +74 nT at 13:16 | 16.63 | 44 |
17 September 2011 | −43 | Small | +61 nT at 8:10 | 11.53 | 36 | |||||
26 September 2011 | −111 | Strong | +62 nT at12:38 | 15.99 | 27 | |||||
5 | 12 November 1999, 16:57:19 | 40.758° N, 31.161° E | 10 | 7.2 | 22 September 1999 | −166 | Strong | +33 nT at 12:34 | 15.27 | 51 |
21 October 1999 | −211 | Powerful | +42 nT at 7:06 * | 9.8 | 21 | |||||
6 | 17 August 1999, 00:01:39 | 40.748° N, 29.864° E | 17 | 7.6 | 16 April 1999 | −123 | Strong | +10 nT at 11:25 | 14.04 | 123 |
15 August 1999 | −44 | Small | +36 nT at 11:52 | 14.49 | 1.5 | |||||
7 | 24 November 1976, 12:22:18 | 39.121° N, 44.029° E | 36 | 7.3 | 30 October 1976 | −57 | Moderate | +18 nT at 10:30 | 14.03 | 25 |
8 | 28 March 1970, 21:02:26 | 39.098° N 29.570° E | 25 | 7.2 | 15 January 1970 | −51 | Small | +20 nT at 9:30 | 12.2 | 72 |
27 March 1970 | −52 | Small | +44 nT at 8:30 | 11.2 | 1.5 | |||||
9 | 22 July 1967, 16:57:00 | 40.751° N, 30.8° E | 30 | 7.3 | 25 May 1967 | −387 | Extreme | +55 nT at 12:30 | 15.29 | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouzounov, D.; Khachikyan, G. On the Impact of Geospace Weather on the Occurrence of M7.8/M7.5 Earthquakes on 6 February 2023 (Turkey), Possibly Associated with the Geomagnetic Storm of 7 November 2022. Geosciences 2024, 14, 159. https://doi.org/10.3390/geosciences14060159
Ouzounov D, Khachikyan G. On the Impact of Geospace Weather on the Occurrence of M7.8/M7.5 Earthquakes on 6 February 2023 (Turkey), Possibly Associated with the Geomagnetic Storm of 7 November 2022. Geosciences. 2024; 14(6):159. https://doi.org/10.3390/geosciences14060159
Chicago/Turabian StyleOuzounov, Dimitar, and Galina Khachikyan. 2024. "On the Impact of Geospace Weather on the Occurrence of M7.8/M7.5 Earthquakes on 6 February 2023 (Turkey), Possibly Associated with the Geomagnetic Storm of 7 November 2022" Geosciences 14, no. 6: 159. https://doi.org/10.3390/geosciences14060159
APA StyleOuzounov, D., & Khachikyan, G. (2024). On the Impact of Geospace Weather on the Occurrence of M7.8/M7.5 Earthquakes on 6 February 2023 (Turkey), Possibly Associated with the Geomagnetic Storm of 7 November 2022. Geosciences, 14(6), 159. https://doi.org/10.3390/geosciences14060159