Geostatistical Analysis of Lineament Domains: The Study Case of the Apennine Seismic Province of Italy
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Image Data
3.2. Automated Lineament Detection
3.3. Domain Grouping/Identification via Polymodal Gaussian Grid Analysis
3.3.1. Azimuthal Analysis of Lineament Orientation
3.3.2. Spatial Correlation between Azimuth Orientations and Identification of Potential Domains
3.3.3. Domain Classification
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Hobbs, W.H. Lineaments of the Atlantic Border region. Geol. Soc. Am. Bull. 1904, 15, 483–506. [Google Scholar] [CrossRef]
- Wise, D.U. Pseudo-radar topographic shadowing for detection of sub-continental sized fracture systems. In Proceedings of the Sixth International Symposium in Remote Sensing of Environment; University of Michigan: Ann Arbor, MI, USA, 1969; pp. 603–615. [Google Scholar]
- Funiciello, R.; Parotto, M.; Salvini, F.; Locardi, E.; Wise, D.U. Correlazione tra lineazioni rilevate con il metodo shadow e assetto tettonico dell’area vulcanica\Lazio. Boll. Di Geod. E Sci. Affin. 1977, 36, 451–470. [Google Scholar]
- Bodechtel, J.; Munzer, U. Satellite lineaments of the central Mediterranean region (Sicily/Calabria). In Alps, Apennines, Hellenides: Interunion Commission on Geodynamics Science Report 38; Cloos, H., Roeder, D., Schimdt, K., Eds.; Schweizerbart: Stuttgart, Germany, 1978; pp. 354–368. [Google Scholar]
- Wise, D.U.; Funiciello, R.; Parotto, M.; Salvini, F. Topographic lineament swarms: Clues to their origin from domain analysis of Italy. Geol. Soc. Am. Bull. 1985, 96, 952–967. [Google Scholar] [CrossRef]
- Patterson, G.W.; Head, J.W. Segmented lineaments on Europa: Implications for the formation of ridge complexes and bright bands. Icarus 2010, 205, 528–539. [Google Scholar] [CrossRef]
- Cianfarra, P.; Salvini, F. Lineament domain of regional strike-slip corridor: Insight from the Neogene transtensional De Geer transform fault in NW Spitsbergen. Pure Appl. Geophys. 2015, 172, 1185–1201. [Google Scholar] [CrossRef]
- Rossi, C.; Cianfarra, P.; Salvini, F.; Mitri, G.; Massé, M. Evidence of transpressional tectonics on the Uruk Sulcus region, Ganymede. Tectonophysics 2018, 749, 72–87. [Google Scholar] [CrossRef]
- Balbi, E.; Marini, F. Lineament Domain Analysis to Unravel Tectonic Settings on Planetary Surfaces: Insights from the Claritas Fossae (Mars). Geosciences 2024, 14, 79. [Google Scholar] [CrossRef]
- Cianfarra, P.; Salvini, F. Ice sheet surface lineaments as nonconventional indicators of East Antarctica bedrock tectonics. Geosphere 2014, 10, 1411–1418. [Google Scholar] [CrossRef]
- Rossi, C.; Cianfarra, P.; Salvini, F.; Bourgeois, O.; Tobie, G. Tectonics of Enceladus’ South Pole: Block rotation of the Tiger Stripes. J. Geophys. Res. Planets 2020, 125, e2020JE006471. [Google Scholar] [CrossRef]
- Mazzarini, F.; Salvini, F. Tectonic blocks in North Victoria Land (Antarctica): Geological and structural constraints by satellite lineament domain analysis. Terra Antarct. 1994, 1, 74–77. [Google Scholar]
- Lucianetti, G.; Cianfarra, P.; Mazza, R. Lineament domain analysis to infer groundwater flow paths: Clues from the Pale di San Martino fractured aquifer, Eastern Italian Alps. Geosphere 2017, 13, 1729–1746. [Google Scholar] [CrossRef]
- Pinheiro, M.R.; Cianfarra, P.; Villela, F.N.J.; Salvini, F. Tectonics of the Northeastern border of the Parana Basin (Southeastern Brazil) revealed by lineament domain analysis. J. South Am. Earth Sci. 2019, 94, 102231. [Google Scholar] [CrossRef]
- Campbell, J.B. Introduction to Remote Sensing; The Guilford Press: New York, NY, USA, 1987. [Google Scholar]
- Koch, M.; Mather, P.M. Lineament mapping for groundwater resource assessment: A comparison of digital Synthetic Aperture Radar (SAR) imagery and stereoscopic Large Format Camera (LFC) photographs in the Red Sea Hills, Sudan. Int. J. Remote Sens. 1997, 18, 1465–1482. [Google Scholar] [CrossRef]
- Haeberlin, Y.; Turberg, P.; Retiere, A.; Senegas, O.; Parriaux, A. Validation of Spot-5 satellite imagery for geological hazard iden-tification and risk assessment for landslides, mud and debris flows in Matagalpa, Nicaragua. Nat. Resour. Canada 2004, 35, 273–278. [Google Scholar]
- Gómez, H.; Kavzoglu, T. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [Google Scholar] [CrossRef]
- Solomon, S.; Ghebreab, W. Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. J. Afr. Earth Sci. 2006, 46, 371–378. [Google Scholar] [CrossRef]
- Morelli, M.; Piana, F. Comparison between remote sensed lineaments and geological structures in intensively uncultivated hills (Moanferrato and Langhe domains, NW Italy). Int. J. Remote Sens. 2006, 26, 1463–1475. [Google Scholar]
- Pal, S.K.; Majumdar, T.J.; Bhattacharya, A.K. Extraction of linear and anomalous features using ERS SAR data over Singhbhum Shear Zone, Jharkhand using fast Fourier transform. Int. J. Remote Sens. 2006, 27, 4513–4528. [Google Scholar] [CrossRef]
- Gaber, A.; Mohamed, A.K.; ElGalladi, A.; Abdelkareem, M.; Beshr, A.M.; Koch, M. Mapping the Groundwater Potentiality of West Qena Area, Egypt, Using Integrated Remote Sensing and Hydro-Geophysical Techniques. Remote Sens. 2020, 12, 1559. [Google Scholar] [CrossRef]
- Nappi, R.; Alessio, G.; Sessa, E.B. A case study comparing landscape metrics to geologic and seismic data from the Ischia Island (Southern Italy). Appl. Geomatics 2010, 2, 73–82. [Google Scholar] [CrossRef]
- Luiso, P.; Paoletti, V.; Nappi, R.; Gaudiosi, G.; Cella, F.; Fedi, M. Testing the value of a multi-scale gravimetric analysis in characterizing active fault 2 geometry at hypocentral depths: The 2016–2017 central Italy seismic sequence. Ann. Geophys. 2018, 61, 29. [Google Scholar] [CrossRef]
- Wise, D.U.; Funiciello, R.; Parotto, M.; Salvini, F. Domini di lineamenti e fratture in Italia. Pubbl. Dell’istituto Di Geol. E Paleontol. Dell’universita Degli Studi Di Roma 1979, 42, 1–53. [Google Scholar]
- Wise, D.U. Previously unreported fracture systems over vast areas of the Appalachians, U.S. Cordillera and Europe. Trans. AGU 1967, 48, 214. [Google Scholar]
- Salvini, F.; Ambrosetti, P.L.; Conti, A.M.; Carraro, F.; Funiciello, R.; Ghisetti, A.; Parotto, M.; Praturlon, A.; Vezzani, L. Tentativi di correlazione tra distribuzioni statistiche di lineamenti morfologici ed elementi di neotettonica. Contr. Prel. Carta Neotettonica d’Italia, 1979 pubbl. n. 51 P.F. Geodinamica, CNR. In Origem e Evolução de Bacias Sedimentares; Petrobras: Rio de Janeiro, Brazil, 1979. [Google Scholar]
- Cianfarra, P.; Salvini, F. Geodynamic constraints of the peri-Tyrrhenian orogen (Tyrrenian Sea-Apennines) from lineament swarm analysis. Rend. Line Della Soc. Geol. Ital. 2012, 21, 166. [Google Scholar]
- Mabee, S.B.; Hardcastle, K.C.; Wise, D.U. A Method of collecting and analyzing lineaments for regional-scale fractured-bedrock aquifer studies. Groundwater 1994, 32, 884–894. [Google Scholar] [CrossRef]
- Guo, G.; George, S.A.; Lindsey, R.P. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs. In Reservoir Characterization-Recent Advances, AAPG Memoir 71; Jordan, R.S.A.J., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1999; Chapter 16; pp. 221–250. [Google Scholar]
- Pischiutta, M.; Anselmi, M.; Cianfarra, P.; Rovelli, A.; Salvini, F. Directional site effects in a non-volcanic gas emission area (Mefite d’Ansanto, southern Italy): Evidence of a local transfer fault transversal to large NW–SE extensional faults? Phys. Chem. Earth 2013, 63, 116–123. [Google Scholar] [CrossRef]
- Mazzarini, F.; D’Orazio, M. Spatial distribution of cones and satellite-detected lineaments in the Pali Aike Volcanic Field (south-ernmost Patagonia): Insight into the tectonic setting of a Neogene rift system. J. Volcanol. Geotherm. Res. 2003, 125, 291–305. [Google Scholar] [CrossRef]
- Norini, G.; Groppelli, G.; Capra, L.; De Beni, E. Morphological analysis of Nevado de Toluca volcano (Mexico): New insights into the structure and evolution of an andesitic to dacitic stratovolcano. Geomorphology 2004, 62, 47–61. [Google Scholar] [CrossRef]
- Pardo, N.; Macias, J.L.; Giordano, G.; Cianfarra, P.; Avellán, D.R.; Bellatreccia, F. The ∼1245 yr BP Asososca maar eruption: The youngest event along the Nejapa–Miraflores volcanic fault, Western Managua, Nicaragua. J. Volcanol. Geotherm. Res. 2009, 184, 292–312. [Google Scholar] [CrossRef]
- Giordano, G.; Pinton, A.; Cianfarra, P.; Baez, W.; Chiodi, A.; Viramonte, J.; Norini, G.; Groppelli, G. Structural control on geothermal circulation in the Cerro Tuzgle–Tocomar geothermal volcanic area (Puna plateau, Argentina). J. Volcanol. Geotherm. Res. 2013, 249, 77–94. [Google Scholar] [CrossRef]
- Carmignani, L.; Cello, G.; Cerrina Feroni, A.; Funiciello, R.; Kalin, O.; Meccheri, M.; Patacca, E.; Pertusati, P.; Plesi, G.; Salvini, F.; et al. Analisi del campo di fratturazione superficiale indotto dal terremoto Campano-Lucano del 23/11/19Rend. Soc. Geol. It. 1981, 4, 451–465. [Google Scholar]
- Villani, F.; Pucci, S.; Civico, R.; De Martini, P.M.; Cinti, F.R.; Pantosti, D. Surface faulting of the 30 October 2016 Mw 6.5 central Italy earthquake: Detailed analysis of a complex coseismic rupture. Tectonics 2018, 37, 3378–3410. [Google Scholar] [CrossRef]
- Porreca, M.; Minelli, G.; Ercoli, M.; Brobia, A.; Mancinelli, P.; Cruciani, F.; Giorgetti, C.; Carboni, F.; Mirabella, F.; Cavinato, G.; et al. Seismic Reflection Profiles and Subsurface Geology of the Area Interested by the 2016–2017 Earthquake Sequence (Central Italy). Tectonics 2018, 37, 1116–1137. [Google Scholar] [CrossRef]
- Barchi, M.R.; Carboni, F.; Michele, M.; Ercoli, M.; Giorgetti, C.; Porreca, M.; Azzaro, S.; Chiaraluce, L. The influence of subsurface geology on the distribution of earthquakes during the 2016–2017 Central Italy seismic sequence. Tectonophysics 2021, 807, 228797. [Google Scholar] [CrossRef]
- Barchi, M.R.; Carboni, F.; Michele, M.; Ercoli, M.; Giorgetti, C.; Porreca, M.; Azzaro, S.; Chiaraluce, L. The impact of structural complexity, fault segmentation, and reactivation on seismotectonics: Constraints from the upper crust of the 2016–2017 Central Italy seismic sequence area. Tectonophysics 2021, 810, 228861. [Google Scholar] [CrossRef]
- Dodge, R.E.; Hobbs, W.H. Earth features and their meaning. Bull. Am. Geogr. Soc. 1912, 44, 384. [Google Scholar] [CrossRef]
- Wise, D.U. Linesmanship and the practice of linear geo-art. GSA Bull. 1982, 93, 886. [Google Scholar] [CrossRef]
- Scheiber, T.; Fredin, O.; Viola, G.; Jarna, A.; Gasser, D.; Łapińska-Viola, R. Manual extraction of bedrock lineaments from high-resolution LiDAR data: Methodological bias and human perception. GFF 2015, 137, 362–372. [Google Scholar] [CrossRef]
- Ghirotto, A.; Armadillo, E.; Crispini, L.; Zunino, A.; Tontini, F.C.; Ferraccioli, F. The Sub-Ice Structure of Mt. Melbourne Volcanic Field (Northern Victoria Land, Antarctica) Uncovered by High-Resolution Aeromagnetic Data. Journal of Geophysical Research. Solid Earth 2023, 128, e2022JB025687. [Google Scholar] [CrossRef]
- Salvini, F. Slope-intercept-density plots—A new method for line detection in images. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS’85), Amherst, MA, USA, 7–9 October 1985; pp. 715–720. [Google Scholar]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. (Eds.) CPTI15, The 2015 Version of the Parametric Catalogue of Italian; Earthquakes; Istituto Nazionale di Geofisica e Vulcanologia: Rome, Italy, 2016. [CrossRef]
- Jolivet, L.; Faccenna, C. Mediterranean extension and the Africa-Eurasia collision. Tectonics 2000, 19, 1095–1106. [Google Scholar] [CrossRef]
- Barchi, M.; Landuzzi, A.; Minelli, G.; Pialli, G. Outer northern Apennines. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean BasinsI; Springer: Dordrecht, The Netherlands, 2001; pp. 215–253. [Google Scholar]
- Catalano, S.; Monaco, C.; Tortorici, L.; Paltrinieri, W.; Steel, N. Neogene-Quaternary tectonic evolution of the southern Apennines. Tectonics 2004, 23, 1–9. [Google Scholar] [CrossRef]
- Faccenna, C.; Piromallo, C.; Crespo-Blanc, A.; Jolivet, L.; Rossetti, F. Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics 2004, 23, TC1012. [Google Scholar] [CrossRef]
- Royden, L.; Faccenna, C. Subduction Orogeny and the Late Cenozoic Evolution of the Mediterranean Arcs. Annu. Rev. Earth Planet. Sci. 2018, 46, 261–289. [Google Scholar] [CrossRef]
- Corradino, M.; Morelli, D.; Ceramicola, S.; Scarfì, L.; Barberi, G.; Monaco, C.; Pepe, F. Active tectonics in the Calabrian Arc: Insights from the Late Miocene to Recent structural evolution of the Squillace Basin (offshore eastern Calabria). Tectonophysics 2023, 851, 229772. [Google Scholar] [CrossRef]
- Alvarez, W. A former continuation of the Alps. Geol. Soc. Am. Bull. 1976, 87, 891–896. [Google Scholar]
- Alvarez, W. Tectonic evolution of the Corsica-Apennines-Alps region studied by the method of successive approximations. Tectonics 1991, 10, 936–947. [Google Scholar] [CrossRef]
- Advokaat, E.L.; van Hinsbergen, D.J.; Maffione, M.; Langereis, C.G.; Vissers, R.L.; Cherchi, A.; Schroeder, R.; Madani, H.; Columbu, S. Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth Planet. Sci. Lett. 2014, 401, 183–195. [Google Scholar] [CrossRef]
- Arragoni, S.; Maggi, M.; Cianfarra, P.; Salvini, F. The Cenozoic fold-and-thrust belt of Eastern Sardinia: Evidences from the integration of field data with numerically balanced geological cross section. Tectonics 2016, 35, 1404–1422. [Google Scholar] [CrossRef]
- Salvini, F.; Arragoni, S.; Cianfarra, P.; Maggi, M. Reply to Comments on “the Cenozoic Fold-and-Thrust Belt of Eastern Sardinia: Evidences from the Integration of Field Data With Numerically Balanced Geological Cross Section” by Arragoni et al. (2016). Tectonics 2017, 36, 2273–2278. [Google Scholar] [CrossRef]
- Arragoni, S.; Fernández, L.P.; Cuesta, A.; Maggi, M.; Cianfarra, P.; Salvini, F. Origin of exotic clasts in the Central-Southern Apennines: Clues to the Cenozoic fold-and-thrust collisional belt in the Central Mediterranean area. Geol. Mag. 2017, 155, 479–505. [Google Scholar] [CrossRef]
- Marani, M.P.; Gamberi, F. Structural framework of the Tyrrhenian Sea unveiled by seafloor morphology. Mem. Descr. Carta Geol. d’It. 2004, 44, 97–108. [Google Scholar]
- Favali, P.; Funiciello, R.; Mattietti, G.; Mele, G.; Salvini, F. An active margin across the Adriatic Sea (central Mediterranean Sea). Tectonophysics 1993, 219, 109–117. [Google Scholar] [CrossRef]
- Parotto, M.; Praturlon, A. The Southern Apennine Arc. In Geology of Italy; Special Volume of the Italian Geological Society for the IGC 32 Florence; Crescenti, U., D’Offizi, S., Merlino, S., Sacchi, L., Eds.; Società Geologica Italiana: Rome, Italy, 2004; pp. 33–58. [Google Scholar]
- Ghisetti, F.; Barchi, M.; Bally, A.W.; Moretti, I.; Vezzani, L. Conflicting balanced structural sections across the Central Apennines (Italy): Problems and implications. In Generation, Accumulation and Production of Europe’s Hydrocarbons; European Association of Petroleum Geoscientists, Special Publication; Spencer, A.M., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 3, pp. 219–231. [Google Scholar]
- Barchi, M.R. The Neogene-Quaternary evolution of the Northern Apennines: Crustal structure, style of deformation and seismicity. J. Virtual Explor. 2010, 36, 11. [Google Scholar] [CrossRef]
- Sartori, R.; Torelli, L.; Zitellini, N.; Carrara, G.; Magaldi, M.; Mussoni, P. Crustal features along a W–E Tyrrhenian transect from Sardinia to Campania margins (Central Mediterranean). Tectonophysics 2004, 383, 171–192. [Google Scholar] [CrossRef]
- Parotto, M.; Salvini, F.; Tozzi, M. Geologia di superficie e geometrie profonde nell’Italia Centrale: Per un profilo di previsione CROP 11 da Civitavecchia a Vasto. Mem. Soc. Geol. It. 1996, 51, 63–70. [Google Scholar]
- Patacca, E.; Scandone, P.; DI Luzio, E.; Cavinato, G.; Parotto, M. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics 2008, 27, TC3006. [Google Scholar] [CrossRef]
- Montone, P.; Mariucci, M.T. The new release of the Italian contemporary stress map. Geophys. J. Int. 2016, 205, 1525–1531. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Chou, T.; Woodhouse, J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 1981, 86, 2825–2852. [Google Scholar] [CrossRef]
- Ekström, G.; Nettles, M.; Dziewoński, A. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 2012, 200–201, 1–9. [Google Scholar] [CrossRef]
- USGS/ANSS Comprehensive Catalog. Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 29 April 2021).
- Salvini, F.; Cianfarra, P.; Maggi, M. Preliminary geodynamic section of central Italy between the 41° and 42°N parallels. Rend. Line Della Soc. Geol. Ital. 2012, 21 Pt 1, 183–184. [Google Scholar]
- Catalano, S.; Cianfarra, P.; Maggi, M.; Romagnoli, G.; Salvini, F.; Tortorici, G.; Tortorici, L. The architecture of the peri-Tyrrhenian collision belt from Central Apennines to Sicily and the dynamics of the central Mediterranean. Rend. Line Della Soc. Geol. Ital. 2013, 29, 27–30. [Google Scholar]
- Meletti, C.; Patacca, E.; Scandone, P. Construction of a Seismotectonic Model: The Case of Italy. Pure Appl. Geophys. 2000, 157, 11–35. [Google Scholar] [CrossRef]
- Morelli, D.; Locatelli, M.; Crispini, L.; Corradi, N.; Cianfarra, P.; Federico, L.; Brandolini, P. 3D Modelling of Late Quaternary coastal evolution between Albenga and Loano (Western Liguria, Italy). J. Maps 2023, 19, 2227211. [Google Scholar] [CrossRef]
- Bally, A.W.; Burbi, L.; Cooper, C.; Ghelardoni, R. Balanced sections and seismic reflection profiles across the central Apennines. Mem. Soc. Geol. Ital. 1986, 35, 257–310. [Google Scholar]
- Mostardini, F.; Merlini, S. Appennino centro-meridionale: Sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. Ital. 1986, 35, 177–202. [Google Scholar]
- Faccenna, C.; Becker, T.W.; Miller, M.S.; Serpelloni, E.; Willett, S.D. Isostasy, dynamic topography, and the elevation of the Apennines of Italy. Earth Planet. Sci. Lett. 2014, 407, 163–174. [Google Scholar] [CrossRef]
- Galadini, F.; Meletti, C.; Vittori, E. Major active faults in Italy: Available surficial data. Neth. J. Geosci. 2001, 80, 273–296. [Google Scholar] [CrossRef]
- Cosentino, D.; Asti, R.; Nocentini, M.; Gliozzi, E.; Kotsakis, T.; Mattei, M.; Esu, D.; Spadi, M.; Tallini, M.; Cifelli, F.; et al. New insights into the onset and evolution of the central Apennine extensional intermontane basins based on the tectonically active L’Aquila Basin (central Italy). Bull. Geol. Soc. Am. 2017, 129, 1314–1336. [Google Scholar] [CrossRef]
- Galadini, F.; Galli, P. Active tectonics in the Central Apennines (Italy)—Input Data for Seismic Hazard Assesment. Nat. Hazards 2000, 22, 225–270. [Google Scholar] [CrossRef]
- Frepoli, A.; Amato, A. Contemporaneous extension and compression in the northern Apennines from earthquake fault-plane solutions. Geophys. J. Int. 1997, 129, 368–388. [Google Scholar] [CrossRef]
- D’Agostino, N.; Mantenuto, S.; D’Anastasio, E.; Giuliani, R.; Mattone, M.; Calcaterra, S.; Gambino, P.; Bonci, L. Evidence for localized active extension in the central Apennines (Italy) from global positioning system observations. Geology 2011, 39, 291–294. [Google Scholar] [CrossRef]
- Bricalli, L.L.; Mello, C.L. Padrões de lineamentos relacionados a litoestrutura e fraturamento neotectônico(estado do espírito santo, -se do brasil). Rev. Bras. Geomorfol. 2014, 14. [Google Scholar] [CrossRef]
- Rossi, C.; Cianfarra, P.; Salvini, F. Structural geology of Ganymede regional groove systems (60° N–60° S). J. Maps 2020, 16, 6–16. [Google Scholar] [CrossRef]
- USGS The Global Data Explorer. Available online: http://gdex.cr.usgs.gov/gdex/ (accessed on 1 September 2016).
- Tachikawa, T.; Hato, M.; Kaku, M.; Iwasaki, A. Characteristics of ASTER GDEM version 2. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium—Proceedings: Vancouver, British Columbia, Institute of Electrical and Electronic Engineers, Vancouver, BC, Canada, 24–29 July 2011; pp. 3657–3660. [Google Scholar] [CrossRef]
- Drury, S. Image Interpretation in Geology (Third Edition); Blackwell Science Inc.: Malden, MA, USA, 2001; 304p. [Google Scholar]
- Salvini, F.; Billi, A.; Wise, D.U. Strike-slip fault propagation cleavage in carbonate rocks: The Mattinata fault zone, southern Ap-ennines, Italy. J. Struct. Geol. 1999, 21, 1731–1749. [Google Scholar] [CrossRef]
- Cianfarra, P.; Salvini, F. Quantification of fracturing within fault damage zones affecting Late Proterozoic carbonates in Svalbard. Rendiconti Lincei-Sci. Fis. Nat. 2016, 27, 229–241. [Google Scholar] [CrossRef]
- Cianfarra, P.; Locatelli, M.; Capponi, G.; Crispini, L.; Rossi, C.; Salvini, F.; Federico, L. Multiple Reactivations of the Rennick Graben Fault System (Northern Victoria Land, Antarctica): New Evidence From Paleostress Analysis. Tectonics 2022, 41, e2021TC007124. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Brown, S.R. Fractals and Chaos in Geology and Geophysics. Phys. Today 1993, 46, 68. [Google Scholar] [CrossRef]
- Ciaccio, M.G.; Di Stefano, R.; Improta, L.; Mariucci, M.T. BSI Working Group First-motion focal mechanism solutions for 2015–2019 M ≥ 4.0 Italian earthquakes. Front. Earth Sci. 2021, 9, 630116. [Google Scholar] [CrossRef]
- Di Bucci, D.; Burrato, P.; Vannoli, P.; Valensise, G. Tectonic evidence for the ongoing Africa-Eurasia convergence in central Mediterranean foreland areas: A journey among long-lived shear zones, large earthquakes, and elusive fault motions. J. Geophys. Res. 2010, 115, 1–17. [Google Scholar] [CrossRef]
ID | Region Name | Date (d/m/y) | Magnitude | Lat °N | Long °E | Nodal Planes | T Axis | N Axis | P Axis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(USGS) | Strike (°) | Dip (°) | Slip (°) | Strike (°) | Dip (°) | Slip (°) | Azimuth (°) | Plunge (°) | Azimuth (°) | Plunge (°) | Azimuth (°) | Plunge (°) | |||||
#1 | Central Itay | 13 January 1915 | 6.7 | 42.014 | 13.53 | ||||||||||||
#2 | Central Italy | 5 September 1950 | 5.7 | 42.55 | 13.318 | ||||||||||||
#3 | Central Itay | 19 September 1979 | 5.9 | 42.81 | 13.06 | 183 | 28 | −70 | 341 | 64 | −100 | 79 | 19 | 346 | 9 | 231 | 69 |
#4 | Central Italy | 29 April 1984 | 5.7 | 43.26 | 12.56 | 143 | 21 | −72 | 304 | 70 | −97 | 39 | 25 | 306 | 6 | 203 | 64 |
#5 | Southern Italy | 7 May 1984 | 5.9 | 41.77 | 13.89 | 174 | 31 | −52 | 312 | 66 | −110 | 57 | 19 | 320 | 19 | 189 | 63 |
#6 | Southern Italy | 11 May 1984 | 5.5 | 41.83 | 13.95 | 156 | 43 | −76 | 317 | 49 | −103 | 56 | 3 | 326 | 10 | 164 | 80 |
#7 | Central Italy | 26 September 1997 | 5.7 | 43.05 | 12.88 | 156 | 38 | −71 | 312 | 54 | −105 | 52 | 8 | 320 | 12 | 176 | 75 |
#8 | Central Italy | 26 September 1997 | 6 | 43.08 | 12.81 | 142 | 39 | −87 | 318 | 51 | −92 | 50 | 6 | 320 | 2 | 214 | 84 |
#9 | Central Italy | 6 October 1997 | 5.5 | 43.04 | 12.84 | 149 | 23 | −73 | 310 | 68 | −97 | 46 | 22 | 313 | 7 | 67 | 207 |
#10 | Central Italy | 6 April 2009 | 6.3 | 42.33 | 13.33 | 120 | 54 | −113 | 336 | 42 | −62 | 226 | 7 | 134 | 18 | 335 | 70 |
#11 | Central Italy | 7 April 2009 | 5.5 | 42.28 | 13.46 | 102 | 57 | −137 | 345 | 55 | −41 | 223 | 1 | 132 | 38 | 314 | 52 |
#12 | Central Italy | 24 August 2016 | 6.2 | 42.72 | 13.19 | 145 | 38 | −101 | 339 | 52 | −83 | 63 | 7 | 154 | 7 | 286 | 80 |
#13 | Central Italy | 24 August 2016 | 5.6 | 42.84 | 13.15 | 128 | 41 | −111 | 335 | 52 | −73 | 53 | 6 | 144 | 13 | 299 | 75 |
#14 | Central Italy | 26 October 2016 | 5.5 | 42.85 | 13.05 | 156 | 32 | −97 | 344 | 58 | −86 | 71 | 13 | 162 | 4 | 267 | 77 |
#15 | Central Italy | 26 October 2016 | 6.1 | 42.96 | 13.07 | 152 | 35 | −94 | 336 | 56 | −87 | 65 | 10 | 155 | 2 | 256 | 79 |
#16 | Central Italy | 30 October 2016 | 6.6 | 42.86 | 13.1 | 154 | 37 | −96 | 342 | 53 | −85 | 68 | 8 | 159 | 4 | 274 | 81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cianfarra, P.; Morelli, D.; Salvini, F. Geostatistical Analysis of Lineament Domains: The Study Case of the Apennine Seismic Province of Italy. Geosciences 2024, 14, 131. https://doi.org/10.3390/geosciences14050131
Cianfarra P, Morelli D, Salvini F. Geostatistical Analysis of Lineament Domains: The Study Case of the Apennine Seismic Province of Italy. Geosciences. 2024; 14(5):131. https://doi.org/10.3390/geosciences14050131
Chicago/Turabian StyleCianfarra, Paola, Danilo Morelli, and Francesco Salvini. 2024. "Geostatistical Analysis of Lineament Domains: The Study Case of the Apennine Seismic Province of Italy" Geosciences 14, no. 5: 131. https://doi.org/10.3390/geosciences14050131
APA StyleCianfarra, P., Morelli, D., & Salvini, F. (2024). Geostatistical Analysis of Lineament Domains: The Study Case of the Apennine Seismic Province of Italy. Geosciences, 14(5), 131. https://doi.org/10.3390/geosciences14050131