Late Cretaceous Tectono-Metamorphic Events in the Skyros Upper Metamorphic Unit (Olympus Mountain), Aegean Sea, Greece
Abstract
:1. Introduction
2. Geological Setting
- (1)
- A thick Triassic–Jurassic carbonate platform, belonging to the Sub-Pelagonian Unit, stratigraphically overlying a Permian–Triassic volcano-sedimentary sequence of more than 300 m in thickness.
- (2)
- A thin layer of ophiolite rocks imbricated with thin tectonic wedges of the Triassic–Jurassic platform carbonates. The ophiolite outcrops belong to the Vardar/Axios oceanic basin (H4 in Figure 1) and were tectonically emplaced on top of the carbonate platform (H3 in Figure 1) during Late Jurassic–Early Cretaceous [2,10,30].
- (3)
- Upper Cretaceous carbonate rocks (Ks) of several hundred meters in thickness, overlain by a flysch. These formations are not metamorphosed and form a tectonic zone of imbrications and tectonic wedges between the underlying Sub-Pelagonian and ophiolite rocks and the overlying metamorphic rocks.
- (4)
- A wedge-shaped tectonic unit of metamorphic rocks, comprising meta-volcanic rocks, meta-sediments, and pelagic silicate marbles, imbricated with ophiolites. This unit was known as the “Fere-Note” formation [29,33] and was renamed by [10,25] as the “Eo-Hellenic nappe” of Skyros. In fact, it forms the Lower Metamorphic Unit of Skyros (LMU in Figure 2 and Figure 3). Its thickness becomes more than 1 km towards the NE, whereas, towards the SW, it thins out and there are small tectonic wedges/klippen having a thickness of a few tens of meters up to the western coast of Skyros Island. (5) On top of all previous tectonic units there is a tectonic klippe of a metamorphic nappe (UMU), forming the highest peak of the Skyrian Olympus Mountain (403 m). This unit was known as the “Skyros tectonic unit” [25] and is here called the Upper Metamorphic Unit of Skyros (UMU in Figure 2 and Figure 3). It comprises pelagic silicate marbles and intercalations of gneisses-schists. Its metamorphic grade is higher than that of the underlying Lower Skyros metamorphic nappe. A strong differentiation of the structural fabric of the Skyros tectonic units is observed with distinction of tectonic structures belonging to the Paleo-Alpine orogenic phase from those of the Alpine orogenic phase [34].
3. The Skyros Upper Metamorphic Unit (Olympus Mountain)
3.1. Mesoscale Observations
3.2. Microscale Observations
4. PT Estimation of UMU and LMU
5. Analytical Methods
5.1. Petrographic and Microprobe Analyses
5.2. PT pseudosection Modelling
5.3. 40Ar/39Ar Dating
6. Results
7. Discussion
7.1. Late Cretaceous Ages in the UMU
7.2. Tectonic Implications
- (i)
- A first tectonic phase with intra-oceanic subduction of an Axios/Vardar oceanic segment, which was imbricated with ophiolites and acquired low-grade metamorphism during the Late Jurassic–Early Cretaceous. This segment is the LMU.
- (ii)
- At a later stage, probably during the Early Cretaceous, this metamorphic unit was tectonically emplaced/obducted upon the Sub-Pelagonian carbonate platform and formed the Eo-Hellenic nappe. This process is typical of the Paleo-Alpine orogenic events.
- (iii)
- During the Late Cretaceous, the previously deformed area was transgressed, and shallow water carbonates were deposited, followed by Eocene flysch. At the same period, in another more internal domain of the orogenic arc, where the volcanic arc was formed, we have the Late Cretaceous metamorphic events of the UMU.
- (iv)
- During the Early Cenozoic, the UMU was tectonically emplaced at a shallow tectonic level together with the detached Upper Cretaceous sediments over the paleo-tectonized units (LMU and Sub-Pelagonian).
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papanikolaou, D. The Geology of Greece; Springer International Publishing: Cham, Switzerland, 2021; p. 340. [Google Scholar]
- Papanikolaou, D. Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 2009, 108, 262–280. [Google Scholar] [CrossRef]
- Papanikolaou, D. Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides. Tectonophysics 2013, 595, 1–24. [Google Scholar] [CrossRef]
- Papanikolaou, D.; Bargathi, H.; Dabovski, C.; Dimitriu, R.; El-Hawat, A.; Ioane, D.; Kranis, H.; Obeidi, A.; Oaie, C.; Seghedi, A.; et al. TRANSMED Transect VII: East European Craton–Scythian Platform–Dobrogea–1B7 alkanides–Rhodope Massif—Hellenides–East Mediterranean–Cyrenaica. In The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Stampfli, G., Ziegler, P., Eds.; Springer: Heidelberg, Germany, 2004. [Google Scholar]
- van Hinsbergen, D.J.J.; Hafkenscheid, E.; Spakman, W.; Meulenkamp, J.E.; Wortel, R. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 2005, 33, 325–328. [Google Scholar] [CrossRef]
- Celet, P.; Ferriere, J. Les Hellenides internes: Le Pelagonien. Eclogae Geol. Helv. 1978, 71, 467–495. [Google Scholar]
- Sengor, A.M.C.; Yilmaz, Y.; Sungurlu, O. Tectonics of the Mediterranean Cimmerides: Nature and evolution of the western termination of Palaeo-Tethys. Geol. Soc. London Spec. Publ. 1984, 17, 77–112. [Google Scholar] [CrossRef]
- Brunn, J.H. Les zones helléniques internes et leur extension; Reflexions sur l’orogenèse alpine. Bull. Soc. Géol. Fr. 1960, S7-II, 470–486. [Google Scholar] [CrossRef]
- Mercier, J. Étude Géologique des Zones Internes des Hellénides en Macédonie Centrale (Grèce): Contribution à L’étude du Métamorphisme et de L’évolution Magmatique des Zones Internes des Hellénides. Ph.D. Dissertation, Faculté des Sciences de l’Université de Paris, Paris, France, 1968. [Google Scholar]
- Jacobshagen, V.; Risch, H.; Roeder, D. Die eohellenische phase. Definition und Interpretation. Z. Dtsch. Geol. Ge. 1976, 127, 133–145. [Google Scholar]
- Vergely, P. Tectonique des Ophiolites Dans les Hellenides Internes. Consequences sur L’evolution des Regions Tethysiennes Occidentales. Ph.D. Dissertation, Université de Paris Sud, Paris, France, 1984. [Google Scholar]
- Vergely, P. Chevauchement vers 1’Ouest et retrocarriage vers 1’Est des ophiolites: Deux phases tectonique au cours du Jurassique superieur—Eocretace dans le Hellenides internes. Bull. Soc. Géol. Fr. 1976, 18, 223–244. [Google Scholar]
- Altherr, R.; Schliestedt, M.; Okrusch, M.; Seidel, E.; Kreuzer, H.; Harre, W.; Lenz, H.; Wendt, I.; Wagner, G.A. Geochronology of high-pressure rocks on Sifnos (Cyclades, Greece). Contrib. Mineral. Petrol. 1979, 70, 245–255. [Google Scholar] [CrossRef]
- Andriessen, P.; Boelriik, N.; Hebeda, E.; Priem, H.; Verdumen, E.; Verschure, R. Dating of the events of metamorphism and granitic magmatism in the Alpine Orogen of Naxos (Cyclades, Greece). Contrib. Mineral. Petrol. 1979, 69, 215–225. [Google Scholar] [CrossRef]
- Schliestedt, M.; Altherr, R.; Matthews, A. Evolution of the Cycladic crystalline complex. Petrology, isotope geochemistry and geochronofogy. In Chemical Transport in Metasomatic Processes; Helgeson, H.C., SchuJing, R.D., Eds.; Springer: Utrecht, The Netherlands, 1987; pp. 76–94. [Google Scholar]
- Seidel, E.; Kreuzer, H.; Harre, W. A Late Oligocene/Early Miocene high pressure belt in the External Hellenides. Geol. Jahrb. Hess. 1982, E23, 165–206. [Google Scholar]
- Lippolt, H.J.; Baranyi, I. Oberkretazische Biotit—und Gesteinsalter aus Kreta. Neues Jahrb. Geol. Palaontol. Abh. 1976, 7, 405–414. [Google Scholar]
- Seidel, E.; Okrusch, M.; Kreuzer, H.; Raschka, H.; Harre, W. Eo-Alpine metamorphism in the uppermost unit of the Cretan nappe system. Petrology and geochronology: Part 1. The Léndas Area (Asteroúsia Mountains). Contrib. Mineral. Petrol. 1976, 57, 259–275. [Google Scholar] [CrossRef]
- Seidel, E.; Okrusch, M.; Kreuzer, H.; Raschka, H.; Harre, W. Eo-alpine metamorphism in the uppermost unit of the Cretan nappe system. Petrology and geochronology: Part 2. Synopsis of high temperature metamorphism and associated ophiolites. Contrib. Mineral. Petrol. 1981, 76, 351–361. [Google Scholar] [CrossRef]
- Dürr, S.; Altherr, R.; Keller, J.; Okrusch, M.; Seidel, E. The median Aegean crystalline belt: Stratigraphy, structure, metamorphism, magmatism. In Alps, Apennines, Hellenides. Geodynamic Investigations along Geotraverses by an International Group of Geoscientists; Closs, H., Roeder, D.H., Schmidt, K., Eds.; Schweizerbart: Stuttgart, Germany, 1978; pp. 455–477. [Google Scholar]
- Reinecke, T.; Altherr, R.; Hartung, B.; Hatzipanagiotou, K.; Kreuzer, H.; Harre, W.; Klein, H.; Keller, J.; Geenen, E.; Boger, E. Remnants of a late Cretaceous high temperature belt on the island of Anafi (Cyclades, Greece). Neues Jahrb. Fur Mineral. Abh. 1982, 145, 157–182. [Google Scholar]
- Martha, S.O.; Dörr, W.; Gerdes, A.; Petschick, R.; Schastok, J.; Xypolias, P.; Zulauf, G. New structural and U–Pb zircon data from Anafi crystalline basement (Cyclades, Greece): Constraints on the evolution of a Late Cretaceous magmatic arc in the Internal Hellenides. Int. J. Earth Sci. 2016, 105, 2031–2060. [Google Scholar] [CrossRef]
- Soukis, K.; Stockli, D.F. Structural and thermochronometric evidence for multi-stage exhumation of southern Syros, Cycladic islands, Greece. Tectonophysics 2013, 595, 148–164. [Google Scholar] [CrossRef]
- Patzak, M.; Okrusch, M.; Kreuzer, H. The Akrotiri Unit on the island of Tinos, Cyclades, Greece, witness to a lost terrane of late Cretaceous age. Neues Jahrb. Geol. Palaeontol. Abh. 1994, 194, 211–252. [Google Scholar] [CrossRef]
- Jacobshagen, V.; Matarangas, D. Skyros Island. In Geological Map of Greece at scale 1/50,000; IGME: Athens, Greece, 1983. [Google Scholar]
- Papanikolaou, D.; Royden, L. Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults—Or what happened at Corinth? Tectonics 2007, 26, TC5003. [Google Scholar] [CrossRef]
- Papanikolaou, D.; Nomikou, P.; Papanikolaou, I.; Lampridou, D.; Rousakis, G.; Alexandri, S. Active tectonics and seismic hazard in Skyros Basin, North Aegean Sea, Greece. Mar. Geol. 2019, 407, 94–110. [Google Scholar] [CrossRef]
- Harder, H.; Jacobshagen, V.; Skala, W.; Arafeh, M.; Berndsen, J.; Hofmann, A. Geologische Entwicklung und Struktur der Insel Skyros, Nord-Sporaden, Griechenland. Berl. Geowiss. Abh. 1983, 48, 7–40. [Google Scholar]
- Ktenas, C. Report on the geological research effected during 1928–1929. Proc. Acad. Athens 1930, 5, 92–107. [Google Scholar]
- Jacobshagen, V.; Skala, W.; Wallbrecher, E. Alpine structure and development of the southern Pelion peninsula and the North Sporades. In Alps, Apennines, Hellenides. Geodynamic Investigations along Geotraverses by an International Group of Geoscientists; Closs, H., Roeder, D.H., Schmidt, K., Eds.; Schweizerbart: Stuttgart, Germany, 1978; pp. 484–488. [Google Scholar]
- Jacobshagen, V.; Wallbrecher, E. Pre-Neogene nappe structure and metamorphism of the North Sporades and the southern Pelion peninsula. Geol. Soc. London Spec. Publ. 1984, 17, 591–602. [Google Scholar] [CrossRef]
- Papastamatiou, J. Quelques observations sur la géologie et la metallogénie de l’île deSkyros. BGSG 1961, 1, 219–237. [Google Scholar]
- Philippson, A. Beitrage zur Kenntnis der grienchischen Inselwelt. Peterm. Milt. Ergänzungsheft 1901, 134, 1–172. [Google Scholar]
- Boundi, D.; Papanikolaou, D. Differentiation of the structural fabric of the Skyros tectonic units from the Paleo-Alpine to the Alpine orogenic events. In Proceedings of the 16th International Congress of the Geological Society of Greece, Patras, Greece, 17–19 October 2022. [Google Scholar]
- Whitney, D.L.; Evans, W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Boundi, D.; Baziotis, I.; Berndt, J.; Klemme, S. P-T constraints on upper and lower metamorphic unit rocks from Skyros Island. In Proceedings of the 16th International Congress of the Geological Society of Greece, Patras, Greece, 17–19 October 2022. [Google Scholar]
- Boundi, D. Deciphering Alpine from Paleo-Alpine Events and Intergration of the Skyros Tectonic Units to the Geodynamic and Paleogeographic Frame of the Hellenides. Ph.D. Dissertation, University of Athens, Athens, Greece, 2024. [Google Scholar]
- Kouketsu, Y.; Mizukami, T.; Mori, H.; Endo, S.; Aoya, M.; Hara, H.; Nakamura, D.; Wallis, S. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Isl. Arc 2014, 23, 33–50. [Google Scholar] [CrossRef]
- Connolly, J.A.D. Multivariable phase diagrams: An algorithm based on generalized thermodynamics. Am. J. Sci. 1990, 290, 666–718. [Google Scholar] [CrossRef]
- Connolly, J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 2005, 236, 24–541. [Google Scholar] [CrossRef]
- Connolly, J.A.D. The geodynamic equation of state: What and how. Geochem. Geophys. Geosystems 2009, 10, Q10014. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T. Relating formulations of the thermodynamics of mineral solid solutions; activity modeling of pyroxenes, amphiboles, and micas. Am. Mineral. 1999, 84, 1–14. [Google Scholar] [CrossRef]
- Massonne, H.-J.; Willner, A.P. Phase relations and dehydration behaviour of psammopelite and mid-ocean ridge basalt at very-low-grade to low-grade metamorphic conditions. Eur. J. Mineral. 2008, 20, 867–879. [Google Scholar] [CrossRef]
- Green, E.; Holland, T.; Powell, R. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. Am. Mineral. 2007, 92, 1181–1189. [Google Scholar] [CrossRef]
- Andersen, D.J.; Lindsley, D.H. Internally consistent solution models for Fe-Mg-Mn-Ti oxides; Fe-Ti oxides. Am. Mineral. 1988, 73, 714–726. [Google Scholar]
- Fuhrman, M.L.; Lindsley, D.H. Ternary-feldspar modeling and thermometry. Am. Mineral. 1988, 73, 201–215. [Google Scholar]
- Baziotis, I.; Tsai, C.-H.; Ernst, W.G.; Jahn, B.-M.; Iizuka, Y. New P–T constraints on the Tamayen glaucophane-bearing rocks, eastern Taiwan: Perple_X modelling results and geodynamic implications. J. Metamorph. Petrol. 2017, 35, 35–54. [Google Scholar] [CrossRef]
- Renne, P.R.; Swisher, C.C.; Deino, A.L.; Karner, D.B.; Owens, T.L.; De Paolo, D.J. Intercalibration of standards, absolute ages, and uncertainties in 40Ar/39Ar dating. Chem. Geol. 1998, 145, 117–152. [Google Scholar] [CrossRef]
- Bosio, G.; Malinverno, E.; Villa, I.M.; Di Celma, C.; Gariboldi, K.; Gioncada, A.; Barberini, V.; Urbina, M.; Bianucci, G. Tephrochronology and chronostratigraphy of the Miocene Chilcatay and Pisco formations (East Pisco Basin, Peru). Newsl. Stratigr. 2020, 53, 213–247. [Google Scholar] [CrossRef]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics; Springer: Berlin, Germany, 2005. [Google Scholar]
- Heri, A.R.; Robyr, M.; Villa, I.M. Petrology and geochronology of the “muscovite standard” B4M. In 40Ar/39Ar Dating: From Geochronology to Thermochronology, from Archaeology to Planetary Sciences; Jourdan, F., Mark, D., Verati, C., Eds.; Geological Society, London, Special Publications: London, UK, 2014; Volume 378, pp. 69–78. [Google Scholar]
- Villa, I.M.; Hanchar, J.M. Age discordance and mineralogy. Am. Mineral. 2017, 102, 2422–2439. [Google Scholar] [CrossRef]
- Montemagni, C.; Villa, I.M. Geochronology of Himalayan shear zones: Unravelling the timing of thrusting from structurally complex fault rocks. J. Geol. Soc. London 2021, 178, 1–13. [Google Scholar] [CrossRef]
- Villa, I.M. The in vacuo release of Ar from minerals: 1. hydrous minerals. Chem. Geol. 2021, 564, 120076. [Google Scholar] [CrossRef]
- Villa, I.M. Dating deformation: The role of atomic-scale processes. J. Geol. Soc. London 2022, 179, jgs2021-098. [Google Scholar] [CrossRef]
- Villa, I.M. Radiogenic isotopes in fluid inclusions. Lithos 2001, 55, 115–124. [Google Scholar] [CrossRef]
- Bosse, V.; Villa, I.M. Petrochronology and hygrochronology of tectono-metamorphic events. Gondwana Res. 2019, 71, 76–90. [Google Scholar] [CrossRef]
- Ferrière, J. Sur la signification de séries du massif d’Othris (Grèce continentale centrale): La zone isopique maliaque. Ann. Soc. Geol. Nord. 1976, 96, 121–134. [Google Scholar]
- Baltatzis, E. Distribution of elements between coexisting phengite and chlorite from low grade rocks from Skyros island, Greece. Mineral. Petrol. 1988, 37, 293–303. [Google Scholar]
- Mercier, J.; Vergely, P. Les mélanges colorés (colored mélanges) de la zone d’ Almopias (Macedoine, Grece). CR Somm. Soc. Géol. Fr. 1972, 70–73. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boundi, D.; Papanikolaou, D.; Bosio, G.; Montemagni, C. Late Cretaceous Tectono-Metamorphic Events in the Skyros Upper Metamorphic Unit (Olympus Mountain), Aegean Sea, Greece. Geosciences 2024, 14, 69. https://doi.org/10.3390/geosciences14030069
Boundi D, Papanikolaou D, Bosio G, Montemagni C. Late Cretaceous Tectono-Metamorphic Events in the Skyros Upper Metamorphic Unit (Olympus Mountain), Aegean Sea, Greece. Geosciences. 2024; 14(3):69. https://doi.org/10.3390/geosciences14030069
Chicago/Turabian StyleBoundi, Dimitra, Dimitrios Papanikolaou, Giulia Bosio, and Chiara Montemagni. 2024. "Late Cretaceous Tectono-Metamorphic Events in the Skyros Upper Metamorphic Unit (Olympus Mountain), Aegean Sea, Greece" Geosciences 14, no. 3: 69. https://doi.org/10.3390/geosciences14030069