Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry
Abstract
1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Geological Position of Dated Samples
3.2. Analytical Techniques
4. Results
4.1. Detrital Rutile Geochemistry
4.1.1. Sample 7-v15-9
4.1.2. Sample 15AP30
4.1.3. Sample 11-V15-11
4.2. U-Pb Dating of Rutile
4.2.1. Sample 7-v15-9
4.2.2. Sample 15AP30
4.2.3. Sample 11-V15-1
5. Provenance Interpretation
5.1. Previous Provenance Study
5.2. Detrital Rutile
5.3. Comparison between U-Pb Dating of Rutiles and Zircons, (U-Th)/He Dating of Zircons and Their Application to Provenance Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, W.E.; Hobday, D.K. Terrigenous Clastic Depositional Systems; Springer: New York, NY, USA, 1983; ISBN 978-1-4684-0172-1. [Google Scholar]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer: New York, NY, USA, 1987; ISBN 978-0-387-96350-. [Google Scholar]
- Jamil, M.; Siddiqui, N.A.; Ahmed, N.; Usman, M.; Umar, M.; Rahim, H.U.; Imran, Q.S. Facies Analysis and Sedimentary Architecture of Hybrid Event Beds in Submarine Lobes: Insights from the Crocker Fan, NW Borneo, Malaysia. JMSE 2021, 9, 1133. [Google Scholar] [CrossRef]
- Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. Detrital Zircon Record and Tectonic Setting. Geology 2012, 40, 875–878. [Google Scholar] [CrossRef]
- Fedo, C.M.; Sircombe, K.N.; Rainbird, R.H. Detrital Zircon Analysis of the Sedimentary Record. In Zircon; Hanchar, J.M., Hoskin, P.W.O., Eds.; De Gruyter: Berlin, Germany, 2003; pp. 277–304. ISBN 978-1-5015-0932-2. [Google Scholar]
- Gehrels, G. Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities. In Tectonics of Sedimentary Basins; Busby, C., Azor, A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 45–62. [Google Scholar] [CrossRef]
- Hadlari, T.; Swindles, G.T.; Galloway, J.M.; Bell, K.M.; Sulphur, K.C.; Heaman, L.M.; Beranek, L.P.; Fallas, K.M. 1.8 Billion Years of Detrital Zircon Recycling Calibrates a Refractory Part of Earth’s Sedimentary Cycle. PLoS ONE 2015, 10, e0144727. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, J.; Von Eynatten, H.; Dunkl, I.; Weltje, G.J. Detrital Zircon Geochronology and Heavy Mineral Analysis as Complementary Provenance Tools in the Presence of Extensive Weathering, Reworking and Recycling: The Neogene of the Southern North Sea Basin. Geol. Mag. 2021, 158, 1572–1584. [Google Scholar] [CrossRef]
- Schwartz, T.M.; Schwartz, R.K.; Weislogel, A.L. Orogenic Recycling of Detrital Zircons Characterizes Age Distributions of North American Cordilleran Strata. Tectonics 2019, 38, 4320–4334. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Lawton, T.F.; Gehrels, G.E. Recycling Detrital Zircons: A Case Study from the Cretaceous Bisbee Group of Southern Arizona. Geology 2009, 37, 503–506. [Google Scholar] [CrossRef]
- Andersen, T.; Van Niekerk, H.; Elburg, M.A. Detrital Zircon in an Active Sedimentary Recycling System: Challenging the ‘Source-to-sink’ Approach to Zircon-based Provenance Analysis. Sedimentology 2022, 69, 2436–2462. [Google Scholar] [CrossRef]
- Burnham, A.D. Zircon. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018; p. B978012409548910911X. ISBN 978-0-12-409548-9. [Google Scholar]
- Chew, D.M.; Sylvester, P.J.; Tubrett, M.N. U–Pb and Th–Pb Dating of Apatite by LA-ICPMS. Chem. Geol. 2011, 280, 200–216. [Google Scholar] [CrossRef]
- Gaschnig, R.M. Benefits of a Multiproxy Approach to Detrital Mineral Provenance Analysis: An Example from the Merrimack River, New England, USA. Geochem. Geophys. Geosyst. 2019, 20, 1557–1573. [Google Scholar] [CrossRef]
- Zack, T.; Stockli, D.F.; Luvizotto, G.L.; Barth, M.G.; Belousova, E.; Wolfe, M.R.; Hinton, R.W. In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib. Mineral. Petrol. 2011, 162, 515–530. [Google Scholar] [CrossRef]
- Zack, T.; Kronz, A.; Foley, S.F.; Rivers, T. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol. 2002, 184, 97–122. [Google Scholar] [CrossRef]
- Triebold, S.; von Eynatten, H.; Zack, T. A recipe for the use of rutile in sedimentary provenance analysis. Sediment. Geol. 2012, 282, 268–275. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and Its Applications in Earth Sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Okay, N.; Zack, T.; Okay, A.I.; Barth, M. Sinistral Transport along the Trans-European Suture Zone: Detrital Zircon–Rutile Geochronology and Sandstone Petrography from the Carboniferous Flysch of the Pontides. Geol. Mag. 2011, 148, 380–403. [Google Scholar] [CrossRef]
- Cherniak, D.J. Pb Diffusion in Rutile. Contrib. Miner. Petrol. 2000, 139, 198–207. [Google Scholar] [CrossRef]
- Vry, J.K.; Baker, J.A. LA-MC-ICPMS Pb–Pb Dating of Rutile from Slowly Cooled Granulites: Confirmation of the High Closure Temperature for Pb Diffusion in Rutile. Geochim. Cosmochim. Acta 2006, 70, 1807–1820. [Google Scholar] [CrossRef]
- Pereira, I.; Storey, C.D. Detrital rutile: Records of the deep crust, ores and fluids. Lithos 2023, 438–439, 107010. [Google Scholar] [CrossRef]
- Thomsen, T.B.; Knudsen, C.; Hinchey, A.M. Investigations of Detrital Zircon, Rutile and Titanite from Present-Day Labrador Drainage Basins: Fingerprinting the Grenvillean Front. GEUS Bull. 2015, 33, 77–80. [Google Scholar] [CrossRef]
- Pereira, I.; Storey, C.D.; Strachan, R.A.; Bento Dos Santos, T.; Darling, J.R. Detrital rutile ages can deduce the tectonic setting of sedimentary basins. Earth Planet. Sci. Lett. 2020, 537, 116193. [Google Scholar] [CrossRef]
- Rösel, D.; Zack, T.; Möller, A. Interpretation and Significance of Combined Trace Element and U–Pb Isotopic Data of Detrital Rutile: A Case Study from Late Ordovician Sedimentary Rocks of Saxo-Thuringia, Germany. Int. J. Earth Sci. 2019, 108, 1–25. [Google Scholar] [CrossRef]
- Kotowski, J.; Nejbert, K.; Olszewska-Nejbert, D. Rutile Mineral Chemistry and Zr-in-Rutile Thermometry in Provenance Study of Albian (Uppermost Lower Cretaceous) Terrigenous Quartz Sands and Sandstones in Southern Extra-Carpathian Poland. Minerals 2021, 11, 553. [Google Scholar] [CrossRef]
- Bracciali, L.; Najman, Y.; Parrish, R.R.; Akhter, S.H.; Millar, I. The Brahmaputra Tale of Tectonics and Erosion: Early Miocene River Capture in the Eastern Himalaya. Earth Planet. Sci. Lett. 2015, 415, 25–37. [Google Scholar] [CrossRef]
- Bracciali, L.; Parrish, R.R.; Najman, Y.; Smye, A.; Carter, A.; Wijbrans, J.R. Plio-Pleistocene Exhumation of the Eastern Himalayan Syntaxis and Its Domal ‘Pop-Up’. Earth-Sci. Rev. 2016, 160, 350–385. [Google Scholar] [CrossRef]
- Drachev, S.S. Fold Belts and Sedimentary Basins of the Eurasian Arctic. Arktos 2016, 2, 21. [Google Scholar] [CrossRef]
- Drachev, S.S.; Malyshev, N.A.; Nikishin, A.M. Tectonic History and Petroleum Geology of the Russian Arctic Shelves: An Overview. In Geological Society, London, Petroleum Geology Conference Series; The Geological Society of London: London, UK, 2010; Volume 7, pp. 591–619. [Google Scholar] [CrossRef]
- Henriksen, E.; Ryseth, A.E.; Larssen, G.B.; Heide, T.; Rønning, K.; Sollid, K.; Stoupakova, A.V. Chapter 10. Tectonostratigraphy of the Greater Barents Sea: Implications for Petroleum Systems. Geol. Soc. Lond. Mem. 2011, 35, 163–195. [Google Scholar] [CrossRef]
- Pease, V.; Drachev, S.; Stephenson, R.; Zhang, X. Arctic Lithosphere—A Review. Tectonophysics 2014, 628, 1–25. [Google Scholar] [CrossRef]
- Dibner, V.D. (Ed.) Geology of Franz Josef Land; Nor. Polarinst. Meddelelser: Tromsø, Norway, 1998; Volume 146, 199p. [Google Scholar]
- Gramberg, I.S.; Shkola, I.V.; Bro, E.G.; Shekhodanov, V.A.; Armishev, A.M. Parametric Wells on the Islands of the Barents and Kara Seas. Sov. Geol. 1985, 1, 95–98. (In Russian) [Google Scholar]
- Makariev, A.A. (Ed.) State Geological Map of the Russian Federation. Scale 1: 1,000,000 (New Series). Sheet U-37-40—Franz Josef Land (Northern Islands). Explanatory Letter; Publishing House of VSEGEI: Saint Petersburg, Russia, 2006; 272p. (In Russian) [Google Scholar]
- Ershova, V.; Prokopiev, A.; Stockli, D.; Kurapov, M.; Kosteva, N.; Rogov, M.; Khudoley, A.; Petrov, E.O. Provenance of the Mesozoic succession of Franz Josef Land (north-eastern Barents Sea): Paleogeographic and tectonic implications for the High Arctic. Tectonics 2022, 41, e2022TC007348. [Google Scholar] [CrossRef]
- Corfu, F.; Polteau, S.; Planke, S.; Faleide, J.I.; Svensen, H.; Zayoncheck, A.; Stolbov, N. U–Pb Geochronology of Cretaceous Magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province. Geol. Mag. 2013, 150, 1127–1135. [Google Scholar] [CrossRef]
- Senger, K.; Tveranger, J.; Ogata, K.; Braathen, A.; Planke, S. Late Mesozoic Magmatism in Svalbard: A Review. Earth-Sci. Rev. 2014, 139, 123–144. [Google Scholar] [CrossRef]
- Levskii, L.K.; Stolbov, N.M.; Bogomolov, E.S.; Vasil’eva, I.M.; Makar’eva, E.M. Sr-Nd-Pb Isotopic Systems in Basalts of the Franz Josef Land Archipelago. Geochem. Int. 2006, 44, 327–337. [Google Scholar] [CrossRef]
- Makariev, A.A. (Ed.) State Geological Map of the Russian Federation. Scale 1: 1000 000 (Third Generation). Series North-Karsko-Barents Sea. Sheet U-41-44-Franz Josef Land (Eastern Islands). Explanatory Note; Publishing House of VSEGEI: Saint Petersburg, Russia, 2011; 220p. (In Russian) [Google Scholar]
- Kosteva, N.N. Stratigraphy of Jurassic-Cretaceous deposits of Franz Joseph Land. Arctica Antarct. 2005, 4, 16–32. [Google Scholar]
- Repin, Y.S.; Fedorova, A.A.; Bystrova, V.V.; Kulikova, N.K.; Polubotko, I.V. Mesozoic strata of Barents Sea sedimentary basin. In Stratigraphy and Its Role in Develop of Oil and Gas Complex of Russia; VNIGRII: Saint Petersburg, Russia, 2007; pp. 112–137. (In Russian) [Google Scholar]
- Abashev, V.V.; Metelkin, D.V.; Vernikovsky, V.A.; Vasyukova, E.A.; Mikhaltsov, N.E. Early Cretaceous Basalts of the Franz Josef Land Archipelago: Correspondence of New 40Ar/39Ar and Paleomagnetic Data. Dokl. Earth Sci. 2020, 493, 495–498. [Google Scholar] [CrossRef]
- Grachev, A.F. A new view on the origin of magmatism of the Franz Joseph Land. Izvestiya Phys. Solid Earth 2001, 9, 49–61. [Google Scholar]
- Karyakin, Y.V.; Sklyarov, E.V.; Travin, A.V. Plume Magmatism at Franz Josef Land. Petrology 2021, 29, 528–560. [Google Scholar] [CrossRef]
- Koryakin, Y.V.; Shipilov, E.V. Geochemical Specifics and 40Ar/39Ar Age of the Basaltoid Magmatism of the Alexander Land, Northbrook, Hooker, and Hayes Islands (Franz Josef Land Archipelago). Dokl. Earth Sci. 2009, 425, 260–263. [Google Scholar] [CrossRef]
- Shipilov, E.V.; Karyakin, Y.V. Dikes of Hayes Island (Frantz Josef Land Archipelago): Tectonic Position and Geodynamic Interpretation. Dokl. Earth Sci. 2014, 457, 814–818. [Google Scholar] [CrossRef]
- Luvizotto, G.L.; Zack, T.; Meyer, H.P.; Ludwig, T.; Triebold, S.; Kronz, A.; Münker, C.; Stockli, D.F.; Prowatke, S.; Klemme, S.; et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem. Geol. 2009, 261, 346–369. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 70. [Google Scholar]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanal. Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Tomkins, H.S.; Powell, R.; Ellis, D.J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 2007, 25, 703–713. [Google Scholar] [CrossRef]
- Bucher, K.; Grapes, R. Petrogenesis of Metamorphic Rocks; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-540-74168-8. [Google Scholar]
- Andersson, U.B.; Sjöström, H.; Högdahl, K.H.O.; Eklund, O. The Transscandinavian Igneous Belt, evolutionary models. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of Its Character and Evolution; Special Paper; Geological Survey of Finland: Espoo, Finland, 2004; Volume 37, pp. 104–112. [Google Scholar]
- Bogdanova, S.V.; Bingen, B.; Gorbatschev, R.; Kheraskova, T.N.; Kozlov, V.I.; Puchkov, V.N.; Volozh, Y.A. The East European Craton (Baltica) before and during the Assembly of Rodinia. Precambr. Res. 2008, 160, 23–45. [Google Scholar] [CrossRef]
- Gorbatschev, R. The Transscandinavian Igneous Belt—Introduction and background. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of Its Character and Evolution; Special Paper; Geological Survey of Finland: Espoo, Finland, 2004; Volume 37, pp. 9–15. [Google Scholar]
- Korja, A.; Lahtinen, R.; Nironen, M. The Svecofennian Orogen: A Collage of Microcontinents and Island Arcs. Geol. Soc. Lond. Mem. 2006, 32, 561–578. [Google Scholar] [CrossRef]
- Gee, D.G.; Pease, V. The Neoproterozoic Timanide Orogen of Eastern Baltica: Introduction. Geol. Soc. Lond. Mem. 2004, 30, 1–3. [Google Scholar] [CrossRef]
- Kuznetsov, N.; Soboleva, A.; Udoratina, O.; Hertseva, M.; Andreichev, V. Pre-Ordovician Tectonic Evolution and Volcano–Plutonic Associations of the Timanides and Northern Pre-Uralides, Northeast Part of the East European Craton. Gondwana Res. 2007, 12, 305–323. [Google Scholar] [CrossRef]
- Lorenz, H.; Gee, D.G.; Whitehouse, M.J. New Geochronological Data on Palaeozoic Igneous Activity and Deformation in the Severnaya Zemlya Archipelago, Russia, and Implications for the Development of the Eurasian Arctic Margin. Geol. Mag. 2007, 144, 105–125. [Google Scholar] [CrossRef]
- Prokopiev, A.V.; Ershova, V.B.; Sobolev, N.N.; Korago, E.; Petrov, E.; Khudoley, A.K. New Data on Geochemistry, Age and Geodynamic Settings of Felsic and Mafic Magmatism of the Northeastern Part of October Revolution Island (Severnaya Zemlya Archipelago). AGU Chapman Conference on «Large-Scale Volcanism in the Arctic: The Role of the Mantle and Tectonics». Selfoss, Iceland. 2019. Available online: https://higherlogicdownload.s3.amazonaws.com/AGU/181026d4-2440-440a-a114-8fcd2fc3ada8/UploadedImages/Chapmans/Arctic_Volcanism/ChapmanPresentedAbstracts_ArcticVolcanism.pdf (accessed on 1 October 2023).
- Kurapov, M.; Ershova, V.; Khudoley, A.; Makariev, A.; Makarieva, E. The First Evidence of Late Ordovician Magmatism of the October Revolution Island (Severnaya Zemlya Archipelago, Russian High Arctic): Geochronology, Geochemistry and Geodynamic Settings. NJG 2020, 100, 1–15. [Google Scholar] [CrossRef]
- Pogrebitskii, Y.E. (Ed.) Novaya Zemlya and Vaygach Island. In Geological Structure and Minerageny; VNIIOkeangeologiya: St. Petersburg, Russia, 2004; 174p. [Google Scholar]
- Ershova, V.; Anfinson, O.; Prokopiev, A.; Khudoley, A.; Stockli, D.; Faleide, J.I.; Gaina, C.; Malyshev, N. Detrital Zircon (U-Th)/He Ages from Paleozoic Strata of the Severnaya Zemlya Archipelago: Deciphering Multiple Episodes of Paleozoic Tectonic Evolution within the Russian High Arctic. J. Geodyn. 2018, 119, 210–220. [Google Scholar] [CrossRef]
- Brown, D.; Spadea, P.; Puchkov, V.; Alvarez-Marron, J.; Herrington, R.; Willner, A.P.; Hetzel, R.; Gorozhanina, Y.; Juhlin, C. Arc–Continent Collision in the Southern Urals. Earth-Sci. Rev. 2006, 79, 261–287. [Google Scholar] [CrossRef]
- Puchkov, V.N. The Evolution of the Uralian Orogen. Geol. Soc. Lond. Spec. Publ. 2009, 327, 161–195. [Google Scholar] [CrossRef]
- Zonenshain, L.P.; Kuz’min, M.I.; Natapov, L.M. Plate Tectonics of the USSR Territory: A Plate Tectonic Synthesis; Geodynamics Series; American Geophysical Union: Washington, DC, USA, 1990. [Google Scholar]
- Scott, R.A.; Howard, J.P.; Guo, L.; Schekoldin, R.; Pease, V. Offset and Curvature of the Novaya Zemlya Fold-and-Thrust Belt, Arctic Russia. In Geological Society, London, Petroleum Geology Conference Series; The Geological Society of London: London, UK, 2010; Volume 7, pp. 645–657. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’In, B.A.; Burtman, V.S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Kurapov, M.; Ershova, V.; Khudoley, A.; Luchitskaya, M.; Makariev, A.; Makarieva, E.; Vishnevskaya, I. Late Palaeozoic Magmatism of Northern Taimyr: New Insights into the Tectonic Evolution of the Russian High Arctic. Int. Geol. Rev. 2021, 63, 1990–2012. [Google Scholar] [CrossRef]
- Vernikovsky, V.; Vernikovskaya, A.; Proskurnin, V.; Matushkin, N.; Proskurnina, M.; Kadilnikov, P.; Larionov, A.; Travin, A. Late Paleozoic–Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events. Minerals 2020, 10, 571. [Google Scholar] [CrossRef]
- Bracciali, L. Coupled Zircon-Rutile U-Pb Chronology: LA ICP-MS Dating, Geological Significance and Applications to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region. Geosciences 2019, 9, 467. [Google Scholar] [CrossRef]
- Mueller, M.A.; Licht, A.; Möller, A.; Condit, C.B.; Fosdick, J.C.; Ocakoğlu, F.; Campbell, C. An Expanded Workflow for Detrital Rutile Provenance Studies: An Application from the Neotethys Orogen in Anatolia; Geochronological data analysis/statistics/modelling. EGUsphere 2023. preprint. [Google Scholar] [CrossRef]
- Rösel, D.; Boger, S.D.; Möller, A.; Gaitzsch, B.; Barth, M.; Oalmann, J.; Zack, T. Indo-Antarctic derived detritus on the northern margin of Gondwana. Evidence for continental-scale sediment transport. Terra Nova 2014, 26, 64–71. [Google Scholar] [CrossRef]
- Rösel, D.; Zack, T.; Boger, S.D. LA–ICP–MS U–Pb dating of detrital rutile and zircon from the Reynolds Range. A window into the Palaeoproterozoic tectonosedimentary evolution of the North Australian Craton. Precambrian Res. 2014, 255, 381–400. [Google Scholar] [CrossRef]
- Avigad, D.; Morag, N.; Abbo, A.; Gerdes, A. Detrital Rutile U-Pb Perspective on the Origin of the Great Cambro-Ordovician Sandstone of North Gondwana and Its Linkage to Orogeny. Gondwana Res. 2017, 51, 17–29. [Google Scholar] [CrossRef]
- Allen, C.M.; Campbell, I.H. Spot dating of detrital rutile by LA–Q–ICP–MS: A powerful provenance tool. In GSA Denver Annual Meeting, Abstract Paper; The Geological Society of America (GSA): Boulder, CO, USA, 2007; pp. 196–212. [Google Scholar]
- Small, D.; Parrish, R.R.; Austin, W.E.N.; Cawood, P.A.; Rinterknecht, V. Provenance of North Atlantic Ice-Rafted Debris during the Last Deglaciation—A New Application of U-Pb Rutile and Zircon Geochronology. Geology 2013, 41, 155–158. [Google Scholar] [CrossRef]
- Zack, T.; Von Eynatten, H.; Kronz, A. Rutile Geochemistry and Its Potential Use in Quantitative Provenance Studies. Sediment. Geol. 2004, 171, 37–58. [Google Scholar] [CrossRef]
- Khudoley, A.K.; Verzhbitsky, V.E.; Zastrozhnov, D.A.; O’Sullivan, P.; Ershova, V.B.; Proskurnin, V.F.; Tuchkova, M.I.; Rogov, M.A.; Kyser, T.K.; Malyshev, S.V.; et al. Late Paleozoic—Mesozoic Tectonic Evolution of the Eastern Taimyr-Severnaya Zemlya Fold and Thrust Belt and Adjoining Yenisey-Khatanga Depression. J. Geodyn. 2018, 119, 221–241. [Google Scholar] [CrossRef]
- Raimondo, T.; Hand, M.; Collins, W.J. Compressional Intracontinental Orogens: Ancient and Modern Perspectives. Earth-Sci. Rev. 2014, 130, 128–153. [Google Scholar] [CrossRef]
Sample Number | Latitude | Longitude | Rock Composition |
---|---|---|---|
7-v15-9 | N 80°25.563′ | E 059°39.570′ | Medium-grained polymictic sandstone |
11-v15-1 | N 80°24.695′ | E 059°42.964′ | Fine-grained arkosic arenite sandstone |
15AP30 | N 80°06′13.9″ | E 057°53′02.1″ | Medium-grained polymictic sandstone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershova, V.; Prokopiev, A.; Stockli, D. Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry. Geosciences 2024, 14, 41. https://doi.org/10.3390/geosciences14020041
Ershova V, Prokopiev A, Stockli D. Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry. Geosciences. 2024; 14(2):41. https://doi.org/10.3390/geosciences14020041
Chicago/Turabian StyleErshova, Victoria, Andrei Prokopiev, and Daniel Stockli. 2024. "Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry" Geosciences 14, no. 2: 41. https://doi.org/10.3390/geosciences14020041
APA StyleErshova, V., Prokopiev, A., & Stockli, D. (2024). Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry. Geosciences, 14(2), 41. https://doi.org/10.3390/geosciences14020041