Ductile Versus Brittle Tectonics in the Anatolian–Aegean–Balkan System
Abstract
:1. Introduction
2. Geodynamics and Neogene Tectonic Evolution
3. Main Seismic Zones
4. What Can We Learn from the Post-1939 Seismic Sequence Along the NAF?
5. Possible Connections Between the Seismic Activations of the Main Faults Bordering the Arabian and Eastern Anatolian Structures
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Royden, L.H. Evolution of retreating subduction boundaries formed during continental collision. Tectonics 1993, 12, 629–638. [Google Scholar] [CrossRef]
- Carminati, E.; Doglioni, C. Mediterranean tectonics. Encycl. Geol. 2005, 2, 135–146. [Google Scholar]
- Burchfiel, B.; Nakov, R.; Dumurdzanov, N.; Papanikolaou, D.; Tzankov, T.; Serafimovski, T.; King, R.; Kotzev, V.; Todosov, A.; Nurce, B. Evolution and dynamics of the Cenozoic tectonics of the South Balkan extensional system. Geosphere 2008, 4, 919–938. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Auer, L.; Billi, A.; Boschi, L.; Brun, J.P.; Capitanio, F.A.; Funiciello, F.; Horvàth, F.; Jolivet, L.; et al. Mantle dynamics in the Mediterranean. Rev. Geophys. 2014, 52, 283–332. [Google Scholar] [CrossRef]
- Menant, A.; Sternai, P.; Jolivet, L.; Guillou-Frottier, L.; Gerya, T. 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case. Earth Planet. Sci. Lett. 2016, 442, 93–107. [Google Scholar] [CrossRef]
- Menant, A.; Jolivet, L.; Vrielynck, B. Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous. Tectonophysics 2016, 675, 103–140. [Google Scholar] [CrossRef]
- Brun, J.P.; Faccenna, C.; Gueydan, F.; Sokoutis, D.; Philippon, M.; Kydonakis, K.; Gorini, C. The two-stage Aegean extension, from localized to distributed, a result of slab rollback acceleration. Can. J. Earth Sci. 2016, 53, 1142–1157. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 2006, 111, B05411. [Google Scholar] [CrossRef]
- Nocquet, J.-M. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics 2012, 579, 220–242. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Cenni, N.; Albarello, D.; Babbucci, D. Short and long-term deformation patterns in the Aegean-Anatolian systems: Insights from space geodetic data (GPS). Geophys. Res. Lett. 2001, 28, 2325–2328. [Google Scholar] [CrossRef]
- Cenni, N.; D’onza, F.; Viti, M.; Mantovani, E.; Albarello, D.; Babbucci, D. Post seismic relaxation processes in the Aegean-Anatolian system: Insights from space geodetic data (GPS) and geological/geophysical evidence. Boll. Geofis. Teor. Appl. 2002, 43, 23–36. [Google Scholar]
- Tapponnier, P. Evolution tectonique du systèmealpinenMéditerranée: Poinçonnement et écrasementrigide-plastique. Bull. Soc. Géol. Fr. 1977, 19, 437–460. [Google Scholar] [CrossRef]
- Sengör, A.M.Ç.; Görür, N.; Saroglu, F. Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike Slip Deformation, Basin Formation, and Sedimentation; Biddle, K.T., Christie-Blick, N., Eds.; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1985; Volume 37, pp. 227–264. [Google Scholar]
- Taymaz, T.; Jackson, J.; McKenzie, D. Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 1991, 106, 433–490. [Google Scholar] [CrossRef]
- Armijo, R.; Meyer, B.; Hubert, A.; Barka, A. Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics. Geology 1999, 27, 267–270. [Google Scholar] [CrossRef]
- Armijo, R.; Flerit, F.; King, G.; Meyer, B. Linear elastic fracture mechanics explains the past and present evolution of the Aegean. Earth Planet. Sci. Lett. 2003, 217, 85–95. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Albarello, D. Geodynamic correlation between the indentation of Arabia and the Neogene tectonics of the central-eastern Mediterranean region. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Geological Society of America Special Papers; Dilek, Y., Pavlides, S., Eds.; Geological Society of America: Boulder, CO, USA, 2006; Volume 409, pp. 15–41. [Google Scholar]
- Mantovani, E.; Babbucci, D.; Tamburelli, C.; Viti, M. Late Cenozoic evolution and present tectonic setting of the Aegean–Hellenic Arc. Geosciences 2022, 12, 104. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Hoxha, I.; Piccardi, L. Geodynamics of the South Balkan and Northern Aegean Regions Driven by the Westward Escape of Anatolia. Int. J. Geosci. 2023, 14, 480–504. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C. Neogenic Evolution of the Mediterranean Region: Geodynamics, Tectonics and Seismicity; Springer Nature: Cham, Switzerland, 2024; p. 174. ISBN 3031621492. [Google Scholar]
- Viti, M.; Mantovani, E.; Babbucci, D.; Tamburelli, C.; Caggiati, M.; Riva, A. Basic role of extrusion processes in the Late Cenozoice of the western and central Mediterranean belts. Geosciences 2021, 11, 499. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Cenni, N. Geodynamics of the central-western Mediterranean region: Plausible and non-plausible driving forces. Mar. Pet. Geol. 2020, 113, 104121. [Google Scholar] [CrossRef]
- Viti, M.; Mantovani, E.; Babbucci, D.; Tamburelli, C. Plate kinematics and geodynamics in the Central Mediterranean. J. Geodyn. 2011, 51, 190–204. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Dixon, J.E.; Brown, S.; Collins, A.; Morris, A.; Pickett, E.A.; Sharp, I.; Ustaömer, T. Alternative tectonic models for the Late Palaeozoic-Early Tertiary development of Tethys in the Eastern Mediterranean region. In Paleomagnetism and Tectonics of the Mediterranean Region; Morris, A., Tarlino, D.H., Eds.; Geological Society of London, Special Publication: London, UK, 1996; Volume 105, pp. 239–263. [Google Scholar]
- Dercourt, J.; Zonenshain, L.P.; Ricou, L.E.; Kazmin, V.G.; Le Pichon, X.; Knipper, A.L.; Grandjacquet, C.; Sbortshikov, I.M.; Geyssant, J.; Lepvrirer, C.; et al. Geological Evolution of the Tethys Belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics 1986, 123, 241–315. [Google Scholar] [CrossRef]
- Ring, U.; Layer, P.W. High-pressure metamorphism in the Aegean, eastern Mediterranean: Underplating and exhumation from the Late Cretaceous until the Miocene to Recent above the retreating Hellenic subduction zone. Tectonics 2003, 22, 1–23. [Google Scholar] [CrossRef]
- Golonka, J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 2004, 381, 235–273. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Tethyan ophiolites and Tethyan seaways. J. Geol. Soc. Lond. 2019, 176, 899–912. [Google Scholar] [CrossRef]
- Dilek, Y.; Thy, P.; Hacker, B.; Grundvig, S. Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neotethyan ocean. Geol. Soc. Am. Bull. 1999, 111, 1192–1216. [Google Scholar] [CrossRef]
- Robertson, A.H.F. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 2002, 65, 1–67. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Maffione, M.; Plunder, A.; Kaymakcı, N.; Ganerød, M.; Hendriks, B.W.H.; Corfu, F.; Gürer, D.; de Gelder, G.I.N.O.; Peters, K.; et al. Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics 2016, 35, 983–1014. [Google Scholar] [CrossRef]
- McPhee, P.J.; Altıner, D.; van Hinsbergen, D.J.J. First balanced cross section across the Taurides fold-thrust belt: Geological constraints on the subduction history of the Antalya slab in southern Anatolia. Tectonics 2018, 37, 3738–3759. [Google Scholar] [CrossRef] [PubMed]
- Ricou, L.E.; Burg, J.P.; Godfriaux, I.; Ivanov, Z. Rhodope and Vardar: The metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodin. Acta 1998, 11, 285–309. [Google Scholar] [CrossRef]
- Okay, A.I.; Tüysüz, O. Tethyan sutures of northern Turkey. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen; Durand, B., Jolivet, L., Horvath, F., Seranne, M., Eds.; Geological Society of London, Special Publications: London, UK, 1999; Volume 156, pp. 475–515. [Google Scholar]
- Gessner, K.; Ring, U.; Passchier, C.W.; Güngör, T. How to resist subduction: Evidence for large-scale out-of-sequence thrusting during Eocene collision in western Turkey. J. Geol. Soc. Lond. 2001, 158, 769–784. [Google Scholar] [CrossRef]
- Whitney, D.L.; Teyssier, C.; Dilek, Y.; Fayon, A.K. Metamorphism of the Central Anatolian Crystalline Complex, Turkey: Influence of orogen normal collision vs. wrench-dominated tectonics on P-T-t paths. J. Metamorph. Geol. 2001, 19, 411–432. [Google Scholar] [CrossRef]
- Dilek, Y.; Sandvol, E. Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region. In Ancient Orogens and Modern Analogues; Murphy, J.B., Keppie, J.D., Hynes, A.J., Eds.; Geological Society of London, Special Publications: London, UK, 2009; Volume 327, pp. 127–160. [Google Scholar] [CrossRef]
- Jolivet, L.; Augier, R.; Faccenna, C.; Negro, F.; Rimmele, G.; Agard, P.; Robin, C.; Rossetti, F.; Crespo-Blanc, A. Subduction, convergence and the mode of backarc extension in the Mediterranean region. Bull. Société Géologique Fr. 2008, 179, 525–550. [Google Scholar] [CrossRef]
- Laurent, V.; Jolivet, L.; Roche, V.; Augier, R.; Scaillet, S.; Cardello, G.L. Strain localization in a fossilized subduction channel: Insights from the Cycladic Blueschist Unit (Syros, Greece). Tectonophysics 2016, 672, 150–169. [Google Scholar] [CrossRef]
- Roche, V.; Bouchot, V.; Beccaletto, L.; Jolivet, L.; Guillou-Frottier, L.; Tuduri, J.; Bozkurt, E.; Oguz, K.; Tokay, B. Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey). Int. J. Earth Sci. 2019, 108, 301–328. [Google Scholar] [CrossRef]
- Royden, L.H.; Burchfiel, B.C. Are systematic variations in thrust belt style related to plate boundary processes? (the western Alps versus the Carpathians). Tectonics 1989, 8, 51–61. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fügenschuh, B.; Kounov, A.; Matenco, L.; Nievergelt, P.; Oberhansli, R.; Pleuger, J.; Schefer, S.; Schuster, R.; Tomljenovic, B.; et al. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Res. 2020, 78, 308–374. [Google Scholar] [CrossRef]
- Vecsey, L.; Plomerová, J.; Babuška, V.; PASSEQ Working Group. Mantle lithosphere transition from the East European Craton to the Variscan Bohemian Massif imaged by shear-wave splitting. Solid Earth 2014, 5, 779–792. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Albarello, D. Nubia-Eurasia kinematics: An alternative interpretation from Mediterranean and North Atlantic evidence. Ann. Geophys. 2007, 50, 311–336. [Google Scholar] [CrossRef]
- Andrieux, J.; Över, S.; Poisson, A.; Bellier, O. The North Anatolian Fault Zone: Distributed Neogene deformation in its northward convex part. Tectonophysics 1995, 243, 135–154. [Google Scholar] [CrossRef]
- Sakinç, M.; Yaltirak, C.; Oktay, F.Y. Palaeogeographical evolution of the Thrace Neogene Basin and the Tethys-Paratethys relations at northwestern Turkey (Thrace). Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 153, 17–40. [Google Scholar] [CrossRef]
- Zagorchev, I. Geodetic measurements, neotectonics and recent tectonics in SW Bulgaria. Geod. Bulg. Geophys. J. 2006, 17, 3–14. [Google Scholar]
- Csontos, L.; Vörös, A. Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 210, 1–56. [Google Scholar] [CrossRef]
- Linzer, H.G.; Frisch, W.; Zweigel, P.; Girbacea, R.; Hann, H.P.; Moser, F. Kinematic evolution of the Romanian Carpathians. Tectonophysics 1998, 297, 133–156. [Google Scholar] [CrossRef]
- Oszczypko, N. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geol. Quart. 2006, 50, 169–194. [Google Scholar]
- Horváth, F.; Musitza, B.; Balázsb, A.; Véghd, A.; Uhrine, A.; Nádorc, A.; Koroknaia, B.; Papd, N.; Tótha, T.; Wóruma, G. Evolution of the Pannonian Basin and its geothermal resources. Geothermics 2015, 53, 328–352. [Google Scholar] [CrossRef]
- Gallais, F.; Gutscher, M.A.; Graindorge, D.; Chamot-Rooke, N.; Klaeschen, D.A. Miocene tectonic inversion in the Ionian Sea (Central Mediterranean): Evidence from multichannel seismic data. J. Geophys. Res. 2011, 116, B12108. [Google Scholar] [CrossRef]
- Doutsos, T.; Kontopoulos, N.; Frydas, D. Neotectonic evolution of northwestern-continental Greece. Geol. Rundsch. 1987, 76, 433–450. [Google Scholar] [CrossRef]
- Mercier, J.; Sorel, D.; Simeakis, K. Changes in the state of stress in the overriding plate of a subduction zone: The Aegean Arc from the Pliocene to the Present. Ann. Tectonicae 1987, 1, 20–39. [Google Scholar]
- Viti, M.; Albarello, D.; Mantovani, E. Rheological profiles in the Central-Eastern Mediterranean. Annnals Geophys. 1997, 40, 849–864. [Google Scholar]
- Moulas, E.; Schenker, F.L.; Burg, J.P.; Kostopoulos, D. Metamorphic conditions and structural evolution of the Kesebir-Kardamos dome: Rhodope metamorphic complex (Greece-Bulgaria). Int. J. Earth Sci. 2017, 106, 2667–2685. [Google Scholar] [CrossRef]
- Mercier, J.L.; Simeakis, K.; Sorel, D.; Vergely, P. Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Res. 1989, 2, 49–71. [Google Scholar] [CrossRef]
- Mascle, J.; Martin, L. Shallow structure and recent evolution of the Aegean Sea: A synthesis based on continuous reflection profiles. Mar. Geol. 1990, 94, 271–299. [Google Scholar] [CrossRef]
- Meulenkamp, J.E.; Van Der Zwan, G.J.; Van Wamel, W.A. On late Miocene to recent vertical motions in the Cretan segment of the Hellenic arc. Tectonophysics 1994, 234, 53–72. [Google Scholar] [CrossRef]
- Kokkalas, S.; Xypolias, P.; Koukouvelas, I.; Doutsos, T. Postcollisional contractional and extensional deformation in the Aegean Region. In Post Collisional Tectonics and Magmatism in the Mediterranean Region and Asia; Dilek, Y., Pavlides, S., Eds.; Geological Society of America: Boulder, NV, USA, 2006; Volume 409, pp. 97–123. [Google Scholar] [CrossRef]
- Jolivet, L.; Labrousse, L.; Agard, P.; Lacombe, O.; Bailly, V.; Lecomte, E.; Mouthereau, F.; Mehl, C. Rifting and shallow-dipping detachments, clues from the Corinth Rift and the Aegean. Tectonophysics 2010, 483, 287–304. [Google Scholar] [CrossRef]
- Armijo, R.; Meyer, B.; King, G.C.P.; Rigo, A.; Papanastassiou, D. Quaternary evolution of the Corinth rift and its implications for the late Cenozoic evolution of the Aegean. Geophys. J. Int. 1996, 126, 11–53. [Google Scholar] [CrossRef]
- Pérouse, E.; Sébrier, M.; Braucher, R.; Chamot-Rooke, N.; Bourlès, D.; Briole, P.; Sorel, D.; Dimitrov, D.; Arsenikos, S. Transition from collision to subduction in Western Greece: The Katouna-Stamna active fault system and regional kinematics. Int. J. Earth Sci. 2016, 106, 967–989. [Google Scholar] [CrossRef]
- Kempler, D.; Ben Avraham, Z. The tectonic evolution of the Cyprean Arc. Ann. Tectonicae 1987, 1, 58–71. [Google Scholar]
- Kempler, D.; Garfunkel, Z. Structures and kinematics in the northeastern Mediterranean: A study of an irregular plate boundary. Tectonophysics 1994, 234, 19–32. [Google Scholar] [CrossRef]
- Robertson, A.H.F. Mesozoic-Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey. In Tectonics and Magmatism in Turkey and the Surrounding Area; Bozkurt, E., Winchester, J.A., Piper, J.D.A., Eds.; Geological Society of London, Special Publications: London, UK, 2000; Volume 173, pp. 97–138. [Google Scholar]
- Günes, P.; Aksu, A.; Hall, J. Structural framework and deformation history of the western Cyprus Arc. Tectonophysics 2018, 744, 438–457. [Google Scholar] [CrossRef]
- Aksu, A.E.; Calon, T.J.; Hall, J.; Mansbridge, S.; Yaşar, D. The Cilicia–Adana basin complex, Eastern Mediterranean: Neogene evolution of an active fore-arc basin in an obliquely convergent margin. Mar. Geol. 2005, 221, 121–159. [Google Scholar] [CrossRef]
- Işler, F.I.; Aksu, A.E.; Hall, J.; Calon, T.J.; Yaşar, D. Neogene development of the Antalya Basin, Eastern Mediterranean: An active fore-arc basin adjacent to an arc junction. Mar. Geol. 2005, 221, 237–265. [Google Scholar] [CrossRef]
- Avigad, D.; Ziv, A.; Garfunkel, Z. Ductile and brittle shortening, extension-parallel folds and maintenance of crustal thickness in the central Aegean (Cyclades, Greece). Tectonics 2001, 20, 277–287. [Google Scholar] [CrossRef]
- Virgo, S.; von Hagke, C.; Urai, J.L. Multiphase boudinage: A case study of amphibolites in marble in the Naxos migmatite core. Solid Earth 2018, 9, 91–113. [Google Scholar] [CrossRef]
- Searle, M.P.; Lamont, T.N. Compressional origin of the Aegean Orogeny, Greece. Geosci. Front. 2022, 13, 101049. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Genç, S.C.; Gürer, F.; Bozcu, M.; Yılmaz, K.; Karacik, Z.; Altunkaynak, S.; Elmas, A. When did the western Anatolian grabens begin to develop? In Tectonics and Magmatism in Turkey and the Surrounding Area; Bozkurt, E., Winchester, J.A., Piper, J.D.A., Eds.; Geological Society of London, Special Publications: London, UK, 2000; Volume 173, p. 353. [Google Scholar]
- Kokkalas, S.; Aydin, A. Is there a link between faulting and magmatism in the south-central Aegean Sea? Geol. Mag. 2013, 150, 193–224. [Google Scholar] [CrossRef]
- Le Pichon, X.; Sengör, A.M.C.; Kende, J.; I’mren, C.; Henry, P.; Grall, C.; Karabulut, H. Propagation of a strike-slip plate boundary within an extensional environment: The westward propagation of the North Anatolian Fault. Can. J. Earth Sci. 2016, 53, 1416–1439. [Google Scholar] [CrossRef]
- Lazos, I.; Sboras, S.; Pikridas, C.; Pavlides, S.; Chatzipetros, A. Geodetic analysis of the tectonic crustal deformation pattern in the North Aegean Sea, Greece. Mediterr. Geosci. Rev. 2021, 3, 79–94. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Dimitriadis, S.T.; Panagiotopoulos, D.G.; Papazachos, C.B.; Papadimitriou, E.E. Deep structure and active tectonics of the southern Aegean volcanic arc. The South Aegean Active Volcanic Arc: Present Knowledge and Future Perspectives. Dev. Volcanol. 2005, 7, 47–64. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W. The South Aegean active volcanic arc: Relationships between magmatism and tectonics. Dev. Volcanol. 2005, 7, 113–133. [Google Scholar] [CrossRef]
- Schaarschmidt, A.; Haase, K.M.; Voudouris, P.C.; Melfos, V.; Klemd, R. Migration of arc magmatism above mantle wedge diapirs with variable sediment contribution in the Aegean. Geochem. Geophys. Geosystems 2021, 22, e2020GC009565. [Google Scholar] [CrossRef]
- Fytikas, M.; Innocenti, F.; Manetti, P.; Mazzuoli, R.; Peccerillo, A.; Villari, L. Tertiary to Quaternary evolution of volcanism in the Aegean region. In The Geological Evolution of the Eastern Mediterranean; Dixon, J.E., Robertson, A.H.F., Eds.; Geological Society of London: London, UK, 1984; Volume 17, pp. 687–699. [Google Scholar]
- Kassaras, I.; Kapetanidis, V.; Ganas, A.; Tzanis, A.; Kosma, C.; Karakonstantis, A.; Valkaniotis, S.; Chailas, S.; Kouskouna, V.; Papadimitriou, P. The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation. Geosciences 2020, 10, 447. [Google Scholar] [CrossRef]
- Milia, A.; Torrente, M.M. Late-Quaternary volcanism and transtensional tectonics in the Bay of Naples, Campanian continental margin, Italy. Mineral. Petrol. 2003, 79, 49–65. [Google Scholar] [CrossRef]
- Acocella, V.; Funiciello, R. Transverse Systems along the Extensional Tyrrhenian Margin of Central Italy and Their Influence on Volcanism. Tectonics 2006, 25, TC2003. [Google Scholar] [CrossRef]
- Riller, U.; Petrinovic, I.; Ramelow, J.; Strecker, M.; Oncken, O. Late Cenozoic Tectonism, Collapse Caldera and Plateau Formation in the Central Andes. Earth Planet. Sci. Lett. 2001, 188, 299–311. [Google Scholar] [CrossRef]
- Khodayar, M.; Einarsson, P. Strike-slip faulting, normal faulting, and lateral dike injections along a single fault: Field example of the Gljúfurá fault near a Tertiary oblique rift-transform zone, Borgarfjörður, west Iceland. J. Geophys. Res. Solid Earth 2002, 107, ETG-5. [Google Scholar] [CrossRef]
- Mann, P. Global catalogue, classification and tectonic origins of restraining-and releasing bends on active and ancient strike-slip fault systems. Geol. Soc. Lond. Spec. Publ. 2007, 290, 13–142. [Google Scholar] [CrossRef]
- Tibaldi, A.; Pasquare, F.; Tormey, D. Volcanism in Reverse and Strike-Slip Fault Settings. In New Frontiers in Integrated Solid Earth Sciences, International Year of Planet Earth; Cloetingh, S., Negendank, J., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 318–348. [Google Scholar] [CrossRef]
- Feuillet, N.; Beauducel, F.; Tapponnier, P. Tectonic context of moderate to large historical earthquakes in the Lesser Antilles and mechanical coupling with volcanoes. J. Geophys. Res. 2011, 116, B10308. [Google Scholar] [CrossRef]
- Spacapan, J.B.; Galland, O.; Planke, S.; Leanza, H.A. Control of strike-slip fault on dyke emplacement and morphology. J. Geol. Soc. 2016, 173, 573–576. [Google Scholar] [CrossRef]
- Elkhedr, I.; Abd El-Motaal, E.; Lashin, A.; Alfaifi, H.J.; Qaysi, S.; Kahal, A. Faulting intersections and magma-feeding zones in Tihamat-asir, Southeast red sea rift: Aeromagnetic and structural perspective. J. Afr. Earth Sci. 2021, 173, 104044. [Google Scholar] [CrossRef]
- Duermeijer, C.; Nyst, M.; Meijer, P.; Langereis, C.; Spakman, W. Neogene evolution of the Aegean arc: Paleomagnetic and geodetic evidence for a rapid and young rotation phase. Earth Planet. Sci. Lett. 2000, 176, 509–525. [Google Scholar] [CrossRef]
- Aliaj, S. Seismotectonics of Vlora–Elbasani-Dibra Transversal Fault Zone (Albania): A Review. Earth Sci. 2021, 10, 346–357. [Google Scholar] [CrossRef]
- Handy, M.R.; Giese, J.; Schmid, S.M.; Pleuger, J.; Spakman, W.; Onuzi, K.; Ustaszewski, K. Coupled Crust- Mantle Response to Slab Tearing, Bending and Rollback along the Dinaride-Hellenide Orogen. Tectonics 2019, 38, 2803–2828. [Google Scholar] [CrossRef]
- Mercier, J.L. Extensional-compressional tectonics associated with the Aegean Arc: Comparison with the Andean Cordillera of south Peru-north Bolivia. Philos. Trans. R. Soc. Lond. 1981, 300, 337–355. [Google Scholar]
- Caputo, R.; Pavlides, S. Late Cainozoic geodynamic evolution of Thessaly and surroundings (central-northern Greece). Tectonophysics 1993, 223, 339–362. [Google Scholar] [CrossRef]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global Positioning System constraints on the plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Kotzev, V.; Nakov, R.; Burchfiel, B.C.; King, R.; Reilinger, R. GPS study of active tectonics in Bulgaria: Results from 1996 to 1998. J. Geodyn. 2001, 31, 189–200. [Google Scholar] [CrossRef]
- Kotzev, V.; Nakov, R.; Georgiev, T.Z.; Burchfiel, B.C.; King, R.W. Crustal motion and strain accumulation in western Bulgaria. Tectonophysics 2006, 413, 127–145. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.; Schmid, S.M. Map view restoration of Aegean-West Anatolian accretion and extension since the Eocene. Tectonics 2012, 31, 5. [Google Scholar] [CrossRef]
- Yaltırak, C.; Alpar, B.; Yuce, H. Tectonic Elements Controlling the Evolution of the Gulf of Saros (northeastern Aegean Sea, Turkey). Tectonophysics 1998, 300, 227–248. [Google Scholar] [CrossRef]
- Piccardi, L.; Dobrev, N.; Moratti, G.; Corti, G.; Tondi, E.; Vannucci, G.; Matova, M.; Spina, V. Overview and New Data on the Active Tectonics of Bulgaria: Towards a Comprehensive Seismotectonic Map. Acta Volcanol. 2013, 25, 67–82. [Google Scholar]
- Dobrev, N. 3D Monitoring of Active Fault Structures In The Krupnik-Kresna Seismic Zone, SW Bulgaria. Acta Geodyn. Geomater. 2011, 8, 377–388. [Google Scholar]
- Barka, A.A. Slip distribution along the North Atlantic fault associated with the large earthquakes of the period 1939 to 1967. Bull. Seismol. Soc. Am 1996, 86, 1238–1254. [Google Scholar] [CrossRef]
- Karnik, V. Seismicity of the European Area; Part I and Part II; Springer: Dordrecht, The Netherlands, 1971. [Google Scholar]
- Kondorskaya, N.V.; Shebalin, N.V. New catalog of strong earthquakes in the U.S.S.R. from ancient times through 1977. In World Data Center for Solid Earth Sciences; Solid Earth Physics: Moscow, Russia, 1982; p. 173. [Google Scholar]
- Ambraseys, N.N.; Finkel, C.F. Seismicity of Turkey and neighbouring regions, 1899–1915. Ann. Geophys. 1987, 5B, 501–726. [Google Scholar]
- Comninakis, P.E.; Papazachos, B.C. A Catalogue of Earthquakes in Greece and the Surrounding Area for the Period 1901–1985; Geophysical Laboratory Publications, University of Thessaloniki: Thessaloniki, Greece, 1986. [Google Scholar]
- Shebalin, N.V.; Leydecker, G.; Mokrushina, N.G.; Tatevossian, R.E.; Erteleva, O.O.; Vassiliev, V.Y. Earthquake Catalogue for Central and Southeastern Europe, 342 BC–1990 AD; Final Report to Contract No ETNU-CT930087; European Commission: Brussels, Belgium, 1998. [Google Scholar]
- Sbeinati, M.R.; Ryad Darawcheh, R.; Mouty, M. The historical earthquakes of Syria: An analysis of large and moderate earthquakes from 1365 B.C. to 1900 A.D. Ann. Geophys. 2005, 3, 347–435. [Google Scholar] [CrossRef]
- Godey, S.; Bossu, R.; Guilbert, J.; Mazet-Roux, G. The Euro-Mediterranean Bulletin: A comprehensive seismological bulletin at regional scale. Seismol. Res. Lett. 2006, 77, 460–474. [Google Scholar] [CrossRef]
- ISIDe Working Group (INGV). Italian Seismological Instrumental and Parametric Database. 2010. Available online: http://iside.rm.ingv.it (accessed on 1 June 2024).
- Grünthal, G.; Wahlström, R. The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J. Seismol. 2012, 16, 535–570. [Google Scholar] [CrossRef]
- Ekström, G.; Nettles, M.; Dziewonski, A. The global CMT project 2004–2010: Centroid-moment tensors for 13.017 earthquakes. Phys. Earth Planet. Inter. 2012, 201, 1–9. [Google Scholar] [CrossRef]
- Makropoulos, K.; Kaviris, G.; Kouskouna, V. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst. Sci. 2012, 12, 1425–1430. [Google Scholar] [CrossRef]
- Sesetyan, K.; Demircioglu, M.; Rovida, A.; Albini, P.; Stucchi, M.; Zare, M.; Viganò, D.; Locati, M. SHARE-CET, the SHARE Earthquake Catalogue for Central and Eastern Turkey Complementing the SHARE European Catalogue (SHEEC). 2013. Available online: https://www.emidius.eu/SHEEC/ (accessed on 1 June 2024).
- Stucchi, M.; Rovida, A.; Capera, A.A.G.; Alexandre, P.; Camelbeeck, T.; Demircioglu, M.B.; Gasperini, P.; Kouskouna, V.; Musson, R.M.W.; Radulian, M.; et al. The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. J. Seismol. 2013, 17, 523–544. [Google Scholar] [CrossRef]
- Rothé, J.P. The Seismicity of the Earth (1953–1965); Series of Earth Sciences; UNESCO: Brussels, Belgium, 1969; 336p. [Google Scholar]
- Ben-Menahem, A. Earthquake catalogue for the Middle East (92 B.C.–1980 A.D). Boll. Geofis. Teor. Appl. 1979, 84, 245–310. [Google Scholar]
- Ambraseys, N.N.; Melville, C.P. A History of Persian Earthquakes; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Ambraseys, N.N. Material for the investigation of the seismicity of Tripolitania (Libya). Boll. Geof. Teor. Appl. 1984, 103, 143–155. [Google Scholar]
- Al Hakeem, K. Studying of historical earthquakes activity in Syria. In Workshop on Historical Seismicity of Central-Eastern Mediterranean Region; Margottini, C., Serva, L., Eds.; ENEA-IAEA: Rome, Italy, 1988. [Google Scholar]
- Khair, K.; Karakaisis, G.F.; Papadimitriou, E.E. Seismic zonation oft he Dead Sea trasform fault area. Ann. Geofis. 2000, 43, 61–79. [Google Scholar]
- Abde-Ramal, K.; Al-Amri, A.M.S.; Abdel-Moneit, E. Seismicity of Sinai peninsula, Egypt. Arab J. Geosci. 2009, 2, 103–118. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Italian Parametric Earthquake Catalogue (CPTI15), Version 3.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Jouanne, F.; Mugnier, J.L.; Koci, R.; Bushati, S.; Matev, K.; Kuka, N.; Shinko, I.; Kociu, S.; Duni, L. GPS Constraints on Current Tectonics of Albania. Tectonophysics 2012, 554–557, 50–62. [Google Scholar] [CrossRef]
- Aliaj, S. Seismotectonics of the Albanides Collision Zone: Geometry of the Underthrusting Adria Microplate beneath the Albanides. J. Nat. Sci. Technol. 2020, 51, 1–40. [Google Scholar]
- Ganas, A.; Elias, P.; Briole, P.; Cannavo, F.; Valkaniotis, S.; Tsironi, V.; Partheniou, E.I. Ground Deformatio and Seismic Fault Model of the M6.4 Durres (Albania) Nov. 26, 2019 Earthquake, Based on GNSS/INSAR Observations. Geosciences 2020, 10, 210. [Google Scholar] [CrossRef]
- Vittori, E.; Blumetti, A.M.; Comerci, V.; Di Manna, P.; Piccardi, L.; Gega, D.; Hoxha, I. Geological Effects and Tectonic Environment of the November 26, 2019, Mw 6.4 Durres Earthquake (Albania). Geophys. J. Int. 2021, 225, 1174–1191. [Google Scholar] [CrossRef]
- Del Ben, A.; Mocnik, A.; Volpi, V.; Karvelis, P. Old Domains in the South Adria Plate and Their Relationship with the West Hellenic Front. J. Geodyn. 2015, 89, 15–28. [Google Scholar] [CrossRef]
- Hansen, S.E.; Evangelidis, C.P.; Papadopoulos, G.A. Imaging Slab Detachment within the Western Hellenic Subduction Zone. Geochem. Geophys. Geosyst. 2019, 20, 895–912. [Google Scholar] [CrossRef]
- Valkaniotis, S.; Briole, P.; Ganas, A.; Elias, P.; Kapetanidis, V.; Tsironi, V.; Fokaefs, A.; Partheniou, H.; Paschos, P. The Mw = 5.6 Kanallaki Earthquake of 21 March 2020 in West Epirus, Greece: Reverse Fault Model from InSAR Data and Seismotectonic Implications for Apulia-Eurasia Collision. Geosciences 2020, 10, 454. [Google Scholar] [CrossRef]
- Sachpazi, M.; Hirn, A.; Clément, C.; Haslinger, F.; Laigle, M.; Kissling, E.; Charvis, P.; Hello, Y.; Lépine, J.-C.; Sapin, M.; et al. Western Hellenic Subduction and Cephalonia Transform: Local Earthquakes and Plate Transport and Strain. Tectonophysics 2000, 319, 301–319. [Google Scholar] [CrossRef]
- Sokos, E.; Kiratzi, A.; Gallovič, F.; Zahradník, J.; Serpetsidaki, A.; Plicka, V.; Janský, J.; Kostelecký, J.; Tselentis, G.A. Rupture Process of the 2014 Cephalonia, Greece, Earthquake Doublet (Mw6) as Inferred from Regional and Local Seismic Data. Tectonophysics 2015, 656, 131–141. [Google Scholar] [CrossRef]
- Mavroulis, S.; Lekkas, E. Revisiting the Most Destructive Earthquake Sequence in the Recent History of Greece: Environmental Effects Induced by the 9, 11 and 12 August 1953 Ionian Sea Earthquakes. Appl. Sci. 2021, 11, 8429. [Google Scholar] [CrossRef]
- Özbakır, A.D.; Govers, R.; Fichtner, A. The Kefalonia Transform Fault: A STEP Fault in the Making. Tectonophysics 2020, 787, 228471. [Google Scholar] [CrossRef]
- Kokkalas, S.; Pavlides, S.; Koukouvelas, I.; Ganas, A.; Stamatopoulos, L. Paleoseismicity of the Kaparelli Fault (eastern Corinth Gulf): Evidence for Earthquake Recurrence and Fault Behaviour. Boll. Della Soc. Geol. Ital. 2007, 126, 387–395. [Google Scholar]
- Caputo, R.; Chatzipetros, A.; Pavlides, S.; Sboras, S. The Greek Database of Seismogenic Sources (GreDaSS): State-of-the-Art for Northern Greece. Ann. Geophys. 2012, 55, 859–894. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Agalos, A.; Karavias, A.; Triantafyllou, I.; Parcharidis, I.; Lekkas, E. Seismic and Geodetic Imaging (DInSAR) Investigation of the March 2021 Strong Earthquake Sequence in Thessaly, Central Greece. Geosciences 2021, 11, 311. [Google Scholar] [CrossRef]
- Koukouvelas, I.K.; Aydin, A. Fault Structure and Related Basins of the North Aegean Sea and Its Surroundings. Tectonics 2002, 21, 1–17. [Google Scholar] [CrossRef]
- Sboras, S.; Chatzipetros, A.; Pavlides, S. North Aegean Active Fault Pattern and the 24 May 2014, Mw 6.9 Earthquake. In Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region; Çemen, I., Yılmaz, Y., Eds.; Geophysical Monograph; Wiley: Hoboken, NJ, USA, 2017; Volume 225, pp. 239–272. [Google Scholar] [CrossRef]
- Rangin, C.; Le Pichon, X.; Demirbag, E.; Imren, C. Strain Localization in the Sea of Marmara: Propagation of the North Anatolian Fault in a Now Inactive Pull-Apart. Tectonics 2004, 23, TC2014. [Google Scholar] [CrossRef]
- Kiratzi, A. Source Constraints Using Ground Motion Simulations. Bull. Geol. Soc. Greece 2013, 47, 1128–1137. [Google Scholar] [CrossRef]
- Karakaş, Ç.; Armijo, R.; Lacassin, R.; Suc, J.P.; Melinte-Dobrinescu, M.C. Crustal Strain in the Marmara Pull-Apart Region Associated with the Propagation Process of the North Anatolian Fault. Tectonics 2018, 37, 1507–1523. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Şaroğlu, F.; Olgun, Ş.; Elmacı, H.; Çan, T. Active fault database of Turkey. Bull. Earthq. Eng. 2018, 16, 3229–3275. [Google Scholar] [CrossRef]
- Sun, Y.-S.; Melgar, D.; Ruiz-Angulo, A.; Ganas, A.; Taymaz, T.; Crowell, B.; Xu, X.; Tsironi, V.; Karasante, I.; Yolsal-Çevikbilen, S.; et al. The 2020 Mw 7.0 Samos (Eastern Aegean Sea) Earthquake: Joint source inversion of multitype data, and tsunami modelling. Geophys. J. Int. 2024, 237, 1285–1300. [Google Scholar] [CrossRef]
- Meyer, B.; Armijo, R.; Dimitrov, D. Active faulting in SW Bulgaria: Possible surface rupture of the 1904 Struma earthquakes. Geophys. J. Int. 2002, 148, 246–255. [Google Scholar] [CrossRef]
- Tranos, M.D. Strymon and Strymonikos Gulf Basins (Northern Greece): Implications on Their Formation and Evolution from Faulting. J. Geodyn. 2011, 51, 285–305. [Google Scholar] [CrossRef]
- Vanneste, K.; Radulov, A.; De Martini, P.; Nikolov, G.; Petermans, T.; Verbeeck, K.; Camelbeeck, T.; Pantosti, D.; Dimitrov, D.; Shanov, S. Paleoseismologic Investigation of the Fault Rupture of the 14 April 1928 Chirpan Earthquake (M 6.8), Southern Bulgaria. J. Geophys. Res. 2006, 111, B01303. [Google Scholar] [CrossRef]
- Barka, A.A.; Reilinger, R. Active tectonics of the eastern Mediterranean region: Deduced from GPS, neotectonic and seismicity data. Ann. Geofis. 1997, 40, 587–610. [Google Scholar] [CrossRef]
- Nissen, E.; Cambaz, M.D.; Gaudreau, É.; Howell, A.; Karasözen, E.; Savidge, E. A reappraisal of active tectonics along the Fethiye–Burdur trend, Southwestern Turkey. Geophys. J. Int. 2022, 230, 1030–1051. [Google Scholar] [CrossRef]
- Shaw, B.; Jackson, J. Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophys. J. Int. 2010, 181, 966–984. [Google Scholar] [CrossRef]
- Konstantinou, K.I.; Mouslopoulou, V.; Liang, W.-T.; Heidbach, O.; Oncken, O.; Suppe, J. Present-day crustal stress field in Greece inferred from regional-scale damped inversion of earthquake focal mechanisms. J. Geophys. Res. Solid Earth 2017, 122, 506–523. [Google Scholar] [CrossRef]
- Hubert-Ferrari, A.; Armijo, R.; King, G.; Meyer, B.; Barka, A. Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. J. Geophys. Res. 2002, 107, 1–33. [Google Scholar] [CrossRef]
- Barka, A.A.; Kadinsky-Cade, K. Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonophysics 1988, 7, 663–684. [Google Scholar] [CrossRef]
- Okay, A.I.; Tüysüz, O.; Kaya, Ş. From transpression to transtension: Changes in morphology and structure around a bend on the North Anatolian Fault in the Marmara region. Tectonophysics 2004, 391, 259–282. [Google Scholar] [CrossRef]
- Sözbilir, H.; Sümer, Ö.; Özkaymak, Ç.; Uzel, B.; Güler, T.; Eski, S. Kinematic analysis and paleoseismology of the Edremit Fault Zone: Evidence for past earthquakes in the southern branch of the North Anatolian Fault Zone, Biga Peninsula, NW Turkey. Geodin. Acta 2016, 28, 273–294. [Google Scholar] [CrossRef]
- Eytemiz, C.; Özel, F.E. Investigation of active tectonics of Edremit Gulf, western Anatolia (Turkey), using highresolution multi-channel marine seismic data. Mar. Sci. Technol. Bull. 2020, 9, 51–57. [Google Scholar] [CrossRef]
- Bohnhoff, M.; Martínez-Garzón, P.; Bulut, F.; Stierle, E.; Ben-Zion, Y. Maximum Earthquake Magnitudes along Different Sections of the North Anatolian Fault Zone. Tectonophysics 2016, 674, 147–165. [Google Scholar] [CrossRef]
- Yılmaz, H.; Over, S.; Ozden, S. Kinematics of the East Anatolian Fault Zone between Turkoglu (Kahramanmaras) and Celikhan (Adıyaman), eastern Turkey. Earth Planets Space 2006, 58, 1463–1473. [Google Scholar] [CrossRef]
- Güvercin, S.E.; Karabulut, H.; Konca, A.Ö.; Doğan, U.; Ergintav, S. Active seismotectonics of the East Anatolian fault. Geophys. J. Int. 2022, 230, 50–69. [Google Scholar] [CrossRef]
- Liu, C.; Lay, T.; Wang, R.; Taymaz, T.; Xie, Z.; Xiong, X.; Irmak, T.S.; Kahraman, M.; Erman, C. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye. Nat. Commun. 2023, 14, 5564. [Google Scholar] [CrossRef]
- Anderson, D.L. Accelerated plate tectonics. Science 1975, 167, 1077–1079. [Google Scholar] [CrossRef]
- Rydelek, P.A.; Sacks, I.S. Asthenospheric viscosity and stress diffusion: A mechanism to explain correlated earthquakes and surface deformation in NE Japan. Geophys. J. Int 1990, 100, 39–58. [Google Scholar] [CrossRef]
- Hubert-Ferrari, A.; King, G.; Manighetti, I.; Armijo, R.; Meyer, B.; Tapponnier, P. Long-term elasticity in the continental lithosphere; modelling the Aden Ridge propagation and the Anatolian extrusion process. Geophys. J. Int. 2003, 153, 111–132. [Google Scholar] [CrossRef]
- Stern, R.J.; Johnson, P. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth-Sci. Rev. 2010, 101, 29–67. [Google Scholar] [CrossRef]
- Karabulut, H.; Güvercin, S.E.; Hollingsworth, J.; Konca, A.Ö. Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: Implications for the seismic potential in the Eastern Mediterranean region. J. Geol. Soc. 2023, 180, jgs2023-021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Baglione, M.; D’Intinosante, V. Ductile Versus Brittle Tectonics in the Anatolian–Aegean–Balkan System. Geosciences 2024, 14, 277. https://doi.org/10.3390/geosciences14100277
Mantovani E, Viti M, Babbucci D, Tamburelli C, Baglione M, D’Intinosante V. Ductile Versus Brittle Tectonics in the Anatolian–Aegean–Balkan System. Geosciences. 2024; 14(10):277. https://doi.org/10.3390/geosciences14100277
Chicago/Turabian StyleMantovani, Enzo, Marcello Viti, Daniele Babbucci, Caterina Tamburelli, Massimo Baglione, and Vittorio D’Intinosante. 2024. "Ductile Versus Brittle Tectonics in the Anatolian–Aegean–Balkan System" Geosciences 14, no. 10: 277. https://doi.org/10.3390/geosciences14100277
APA StyleMantovani, E., Viti, M., Babbucci, D., Tamburelli, C., Baglione, M., & D’Intinosante, V. (2024). Ductile Versus Brittle Tectonics in the Anatolian–Aegean–Balkan System. Geosciences, 14(10), 277. https://doi.org/10.3390/geosciences14100277