Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ductile and brittle rheology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9880 KiB  
Article
Effect of Fiber Types and Dosages on the Properties of Modified Aluminum Dross–Coal Gangue-Based Foam Filling Materials
by Keyuan Yin, Kai Wang, Xiaoqiang Zhang, Yulong Jiang and Shiyu Zhang
Minerals 2025, 15(2), 106; https://doi.org/10.3390/min15020106 - 22 Jan 2025
Cited by 1 | Viewed by 928
Abstract
Fiber reinforcement offers a promising solution to improve the mechanical performance and durability of cement-based foam backfill (CFB), addressing critical issues such as brittleness and poor crack resistance under high-stress conditions. This study investigates the effects of polypropylene and polyacrylonitrile fibers, at varying [...] Read more.
Fiber reinforcement offers a promising solution to improve the mechanical performance and durability of cement-based foam backfill (CFB), addressing critical issues such as brittleness and poor crack resistance under high-stress conditions. This study investigates the effects of polypropylene and polyacrylonitrile fibers, at varying contents and lengths, on the mechanical and flow properties of CFB. A series of experiments, including slump tests, rheology analysis, uniaxial compressive strength (UCS) tests, pore structure analysis, and scanning electron microscopy (SEM), were conducted to comprehensively evaluate fiber reinforcement mechanisms. The results show that increasing fiber content and length reduced fluidity due to fiber entanglement, while significantly enhancing mechanical properties through anchoring effects and network formation. After 28 days of curing, UCS increased by 208.2% with 2 wt% polypropylene fibers and 215.3% with 1 wt% polyacrylonitrile fibers (both at 6 mm length). Fiber-reinforced CFB demonstrated improved structural integrity and crack resistance, with failure modes transitioning from brittle to ductile. These findings highlight the potential of fiber-reinforced CFB to deliver durable, crack-resistant, and efficient mine backfill solutions, contributing to enhanced safety and sustainability in underground mining operations. Full article
(This article belongs to the Special Issue Metallurgy Waste Used for Backfilling Materials)
Show Figures

Figure 1

21 pages, 11833 KiB  
Article
Ductile Versus Brittle Tectonics in the Anatolian–Aegean–Balkan System
by Enzo Mantovani, Marcello Viti, Daniele Babbucci, Caterina Tamburelli, Massimo Baglione and Vittorio D’Intinosante
Geosciences 2024, 14(10), 277; https://doi.org/10.3390/geosciences14100277 - 19 Oct 2024
Cited by 4 | Viewed by 1448
Abstract
It is hypothesized that the present tectonic setting of the Anatolian, Aegean and Balkan regions has been deeply influenced by the different deformation styles of the inner and outer belts which constituted the Oligocene Tethyan system. Stressed by the Arabian indenter, this buoyant [...] Read more.
It is hypothesized that the present tectonic setting of the Anatolian, Aegean and Balkan regions has been deeply influenced by the different deformation styles of the inner and outer belts which constituted the Oligocene Tethyan system. Stressed by the Arabian indenter, this buoyant structure has undergone a westward escape and strong bending. The available evidence suggests that in the Plio–Pleistocene time frame, the inner metamorphic core mainly deformed without undergoing major fragmentations, whereas the orogenic belts which flanked that core (Pontides, Balkanides, Dinarides and Hellenides) behaved as mainly brittle structures, undergoing marked fractures and fragmentations. This view can plausibly explain the formation of the Eastern (Crete–Rhodes) and Western (Peloponnesus) Hellenic Arcs, the peculiar time-space features of the Cretan basins, the development of the Cyprus Arc, the North Aegean strike-slip fault system, the southward escapes of the Antalya and Peloponnesus wedges and the complex tectonic setting in the Balkan zone. These tectonic processes have mostly developed since the late Late Miocene, in response to the collision of the Tethyan belt with the Adriatic continental domain, which accelerated the southward bending of the Anatolian and Aegean sectors, at the expense of the Levantine and Ionian oceanic domains. The proposed interpretation may help us to understand the connection between the ongoing tectonic processes and the spatio-temporal distribution of major earthquakes, increasing the chances of estimating the long-term seismic hazard in the study area. In particular, it is suggested that seismic activity in the Serbo–Macedonian zone may be favored by the post-seismic relaxation that develops after seismic crises in the Epirus thrust front and inhibited/delayed by the activations of the North Anatolian fault system. Full article
Show Figures

Figure 1

21 pages, 4445 KiB  
Article
Microscale Modeling of Frozen Particle Fluid Systems with a Bonded-Particle Model Method
by Tsz Tung Chan, Stefan Heinrich, Jürgen Grabe and Maksym Dosta
Materials 2022, 15(23), 8505; https://doi.org/10.3390/ma15238505 - 29 Nov 2022
Cited by 6 | Viewed by 2412
Abstract
An inventive microscale simulation approach is applied to investigate the mechanics of frozen particle fluid systems (PFS). The simulation is based on the discrete element method (DEM) and bonded-particle model (BPM) approach. Discrete particles connected by solid bonds represent frozen agglomerates. Uniaxial compression [...] Read more.
An inventive microscale simulation approach is applied to investigate the mechanics of frozen particle fluid systems (PFS). The simulation is based on the discrete element method (DEM) and bonded-particle model (BPM) approach. Discrete particles connected by solid bonds represent frozen agglomerates. Uniaxial compression experiments were performed to gather data for material modeling and further simulation model validation. Different typical mechanical behavior (brittle, ductile, dilatant) were reviewed regarding strain rates, saturation levels, and particle mechanical or surface properties. Among all these factors, strain rate significantly affects the mechanical behavior and properties of the agglomerates. A new solid bond model considering strain-dependent and time-dependent behavior is developed for describing the rheology of the frozen particle fluid systems. Without alternating Young’s modulus and Poisson’s ratio of the bond material, the developed solid model provides a suitable agreement with the experimental results regarding different strain rates. Full article
(This article belongs to the Special Issue Computational Mechanics of Structures and Materials)
Show Figures

Figure 1

30 pages, 35980 KiB  
Article
Ductile vs. Brittle Strain Localization Induced by the Olivine–Ringwoodite Transformation
by Julien Gasc, Blandine Gardonio, Damien Deldicque, Clémence Daigre, Arefeh Moarefvand, Léo Petit, Pamela Burnley and Alexandre Schubnel
Minerals 2022, 12(6), 719; https://doi.org/10.3390/min12060719 - 4 Jun 2022
Cited by 6 | Viewed by 3269
Abstract
As it descends into the Earth’s mantle, the olivine that constitutes the lithosphere of subducting slabs transforms to its high-pressure polymorphs, wadsleyite and ringwoodite, in the so-called transition zone. These transformations have important rheological consequences, since they may induce weakening, strain localization, and, [...] Read more.
As it descends into the Earth’s mantle, the olivine that constitutes the lithosphere of subducting slabs transforms to its high-pressure polymorphs, wadsleyite and ringwoodite, in the so-called transition zone. These transformations have important rheological consequences, since they may induce weakening, strain localization, and, in some cases, earthquakes. In this study, germanium olivine (Ge-olivine) was used as an analogue material to investigate the rheology of samples undergoing the olivine–ringwoodite transformation. Ge-olivine adopts a ringwoodite structure at pressures ~14 GPa lower than its silicate counterpart does, making the transformation accessible with a Griggs rig. Deformation experiments were carried out in a new-generation Griggs apparatus, where micro-seismicity was recorded in the form of acoustic emissions. A careful analysis of the obtained acoustic signal, combined with an extensive microstructure analysis of the recovered samples, provided major insights into the interplay between transformation and deformation mechanisms. The results show that significant reaction rates cause a weakening via the implementation of ductile shear zones that can be preceded by small brittle precursors. When kinetics are more sluggish, mechanical instabilities lead to transformational faulting, which stems from the unstable propagation of shear bands localizing both strain and transformation. The growth of these shear bands is self-sustained thanks to the negative volume change and the exothermic nature of the reaction, and leads to dynamic rupture, as attested by the acoustic emissions recorded. These micro-earthquakes share striking similarities with deep focus earthquakes, which may explain several seismological observations such as magnitude frequency relations and the occurrence of deep repeating earthquakes and foreshocks. Full article
Show Figures

Figure 1

Back to TopTop