Application of the Coastal and Marine Ecological Classification Standard (CMECS) to Create Benthic Geologic Habitat Maps for Portions of Acadia National Park, Maine, USA
Abstract
:1. Introduction
1.1. Geologic Setting of the Study Areas
1.2. Mapping Benthic Geologic Habitats and Biotopes Using CMECS
2. Materials and Methods
2.1. Geophysical Data Collection and Processing
2.1.1. Survey Design
2.1.2. Navigation and Positioning Systems
2.1.3. Side-Scan Sonar Data Processing
- Navigation check on each file (including offset and layback applied), smoothing and editing if necessary;
- Bottom tracking of each individual sonar file;
- Application of automatic and time-varied gain curves to normalize the data across the full sweep range and over the duration of the field program. Slant range correction as applied, and gain was adjusted as needed to account for seafloor slope;
- Draft mosaic generated to check gain settings, bottom tracking, image quality, and resolution;
- Manual editing of applied functions as necessary;
- Export of the sonar mosaic;
- Export of individual sonar files as geo-referenced TIF images;
- Export of geo-referenced TIF images for each survey area for import and presentation in ArcMap GIS software (ESRI).
2.1.4. Bathymetry Data Processing
2.2. Ground-Truth Data Collection and Processing
2.3. Interpretation of CMECS Components
2.3.1. Defining Benthic Geologic Habitats
2.3.2. Defining Biotopes
Biotope Classification Approach
Statistical Approach
3. Results
3.1. Geophysical Data
3.1.1. Survey Design
3.1.2. Side-Scan Sonar Data
3.1.3. Bathymetry Data
3.2. Surface Sediment Grab Samples and Underwater Video Imagery
3.3. Application of the CMECS Classification System
3.3.1. Substrate Component
3.3.2. Geoform Component
3.3.3. Anthropogenic Geoforms
3.4. Benthic Geologic Habitats
3.4.1. Compass Harbor
3.4.2. Frazer Creek
3.4.3. Ship Harbor
3.4.4. Thompson Island
3.5. Benthic Biotope Classification
3.5.1. Compass Harbor, Frazer Creek, Ship Harbor
3.5.2. Thompson Island
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FGDC. Coastal and Marine Ecological Classification Standard (CMECS); FGDC: Washington, DC, USA, 2012.
- Barnhardt, W.A.; Belknap, D.F.; Kelley, A.R.; Kelley, J.T.; Dickson, S.M. Surficial Geology of the Maine Innter Continental Shelf: Mount Desert Island to Jonesport, Maine; Geologic Map No 96-12: Maine Geological Survey, Scale 1:100,000; Maine Geological Survey: Augusta, ME, USA, 1996.
- Hart, T.E.; Neckles, H.A.; Kobb, B.S. Priority Data on Marine and Estuarine Resources within Northeastern National Parks Inventory and Acquisition Needs; Natural Resource Report NPS/NCBN/NRR—2013/612; National Park Service: Fort Collins, CO, USA, 2013. [Google Scholar]
- Timson, B.S. Coastal Marine Geologic Maps: Maine Geological Survey Open File Report 77-1; Maine Geological Survey: Augusta, ME, USA, 1977.
- Ward, A.E. Maine’s Coastal Welands: I. Types, Distributions, Rankings, Functions and Values; Report DEPLW1999-13; Bureau of Land and Water Quality, Deivision of Environmental Assessment, Department of Environmental Protection, State of Maine: Agusta, ME, USA, 1999.
- Halsted, C. Maine Coastal Geologic Environments; Maine Geological Survey: Augusta, ME, USA, 2017.
- Masetti, G.; Mayer, L.A.; Ward, L.G. A Bathymetry- and Reflectivity-Based Approach for Seafloor Segmentation. Geosciences 2018, 8, 14. [Google Scholar] [CrossRef]
- TetraTech. Gulf of Maine–Geoform Data Development: Report Prepared for the Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service Office for Coastal Management; TetraTech: Fairfax, VA, USA, 2021. [Google Scholar]
- Reusch, D.N. Bedrock Geology of the Salsbury Cove Quadrangle, Maine: Maine Geological Survey, Open-File Map 03-91, Color Map, Scale 1:24,000. Maine Geological Survey Maps. 38; Maine Geological Survey: Agusta, ME, USA, 2003.
- Braun, D.D. Bedrock Geology of the Southwestern Portion of the Bar Harbor Quadrangle, Maine: Maine Geological Survey, Open-File Map 19-13, Color Map, Scale 1:24,000. Maine Geological Survey Maps. 2115; Maine Geological Survey: Agusta, ME, USA, 2019.
- Braun, D.D. Bedrock Geology of the Northern Portion of the Bass Harbor Quadrangle, Maine: Maine Geological Survey, Open-File Map 19-10, Color Map, Scale 1:24,000. Maine Geological Survey Maps. 2112; Maine Geological Survey: Agusta, ME, USA, 2019.
- Osberg, P.H.; Hussey, A.M., II; Boone, G.M. Bedrock Geologic Map of Maine: Maine Geological Survey, 1 Plate, Correlation Chart, Tectonic Inset Map, Metamorphic Inset Map, Color Geologic Map, Cross Sections, Scale 1:500,000. Maine Geological Survey Maps. 23; Maine Geological Survey: Agusta, ME, USA, 1985.
- Braun, D.D.; Davis, P.T.; Kelley, J.T.; Lowell, T.V. Mount Desert Island glacial deposits, landforms, and place in the regional deglaciation sequence along with some Pre-Pleistocene bedrock geology. In Proceedings of the Guidebook for the 81st Annual Reunion of the Northeastern Friends of the Pleistocene, Bar Harbor, ME, USA, 1–3 June 2018. [Google Scholar]
- Gilman, R.A.; Chapman, C.A.; Lowell, T.V.; Borns, H.W., Jr. The Geology of Mount Desert Island; A Visitor’s Guide to the Geology of Acadia National Park: Maine Geological Survey, Bulletin 38; Maine Geological Survey: Agusta, ME, USA, 1988.
- Schafer, J.P.; Hartshorn, J. (Eds.) The Quaternary of New England; Princeton University Press: Princeton, NJ, USA, 1965; pp. 113–127. [Google Scholar]
- Koester, A.; Shakun, J.; Bierman, P.; Davis, P.; Corbett, L.; Braun, D.; Zimmerman, S. Rapid thinning of the Laurentide Ice Sheet in coastal Maine, USA, during late Heinrich Stadial 1. Quat. Sci. Rev. 2017, 163, 180–192. [Google Scholar] [CrossRef]
- Braun, D.D.; Lowell, T.V.; Weddle, T.K. Surficial Geology of Mount Desert Island: Maine Geological Survey, Open-File Map 16-1; Maine Geological Survey: Agusta, ME, USA, 2016.
- Thompson, W.B.; Borns, H. Surficial Geologic Map of Maine, 1st ed.; Maine Geological Survey: Agusta, ME, USA, 1985.
- Belknap, D.F.; Anderson, B.A.; Anderson, R.S.; Anderson, W.A.; Borns, H.W., Jr.; Jacobson, G.L.; Kelley, J.T.; Shipp, R.C.; Smith, D.C.; Stuckenrath, R., Jr.; et al. (Eds.) Late Quaternary Sea-Level Changes in Maine; Society for Sedimentary Geology: Claremore, OK, USA, 1987; Volume 41, pp. 71–85. [Google Scholar]
- NOAA-NOS. Datums for 8413320. Available online: https://tidesandcurrents.noaa.gov/datums.html?id=8413320 (accessed on 9 September 2022).
- Hayes, M.O. Barrier island morphology as a function of tidal and wave regime. In Barrier Islands from the Gulf of St. Lawrence to the Gulf of Mexico; Leatherman, S.P., Ed.; Academic Press: New York, NY, USA, 1979; pp. 1–27. [Google Scholar]
- Valentine, P.C.; Todd, B.J.; Kostylev, V.E. Classification of marine sublittoral habitats, with application to the northeastern North America Region. Am. Fish. Soc. Symp. 2005, 41, 183–200. [Google Scholar]
- Oakley, B.A.; Alvarez, J.D.; Boothroyd, J.C. Benthic Geologic Habitats of Shallow Estuarine Environments: Greenwich Bay and Wickford Harbor, Narragansett Bay, Rhode Island, U.S.A. J. Coast. Res. 2012, 28, 760–773. [Google Scholar] [CrossRef]
- Borelli, M.; Fox, S.E.; Shumchenia, E.; Kennedy, C.G.; Oakley, B.A.; Hubeny, J.B.; Love, H.; Smith, T.L.; Legare, B.; Mittermayr, A.; et al. Submerged Marine Habitat Mapping at Cape Cod National Seashore: A Post-Hurricane Sandy Study. Natural Resource Report. NPS/NCBN/NRR—2019/1877; National Park Service: Fort Collins, CO, USA, 2019.
- Grothues, T.M.; Levin, D.; Psuty, N.; Habeck, A.; Petrecca, R.; Dobarro, J.; Taghon, G.; De Luca, M.P. Submerged Marine Habitat Mapping at Sandy Hook Unit, Gateway National Recreation Area: A Post-Hurricane Sandy Study. Natural Resource Report. NPS/NCBN/NRR—2019/1865; National Park Service: Fort Collins, CO, USA, 2019.
- LaFrance Bartley, M.; King, E.L.; Oakley, B.A.; Caccioppoli, B.J. Submerged Marine Habitat Mapping at Fire Island National Seashore: A Post-Hurricane Sandy Study. Natural Resource Report. NPS/NCBN/NRR—2018/1797; National Park Service: Fort Collins, CO, USA, 2019.
- Trembanis, A.; Miller, D.C.; Ebula, E.; Rusch, H.M.; Rothermel, E.R. Submerged Marine Habitat Mapping at Assateague Island National Seashore A Post-Hurricane Sandy Study: Natural Resource Report NPS/NCBN/NRR—2019/1871; National Park Service: Fort Collins, CO, USA, 2019.
- Eastwood, P.D.; Souissi, S.; Rogers, S.I.; Coggan, R.A.; Brown, C.J. Mapping seabed assemblages using comparative top-down and bottom-up classification approaches. Can. J. Fish. Aquat. Sci. 2006, 63, 1536–1548. [Google Scholar] [CrossRef]
- Hewitt, J.; Thrush, S.; Legendre, P.; Funnell, G.; Ellis, J.; Morrison, M. Mapping of marine soft-sediment communities: Integrated sampling for ecological interpretation. Ecol. Appl. 2004, 14, 1203–1216. [Google Scholar] [CrossRef]
- Kostylev, V.E.; Todd, B.J.; Fader, G.B.; Courtney, R.; Cameron, G.D.; Pickrill, R.A. Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Mar. Ecol. Prog. Ser. 2001, 219, 121–137. [Google Scholar] [CrossRef]
- LaFrance, M.; King, J.W.; Oakley, B.A.; Pratt, S. A comparison of top-down and bottom-up approaches to benthic habitat mapping to inform offshore wind energy development. Cont. Shelf Res. 2014, 83, 24–44. [Google Scholar] [CrossRef]
- NOAA. Observed water levels at 8413320, Bar Harbor, ME. NOAA/NOS/CO-OPS, Ed. 2024. Available online: https://tidesandcurrents.noaa.gov/waterlevels.html?id=8413320 (accessed on 15 October 2021).
- Mittermayr, A.; Legare, B.J.; Kennedy, C.G.; Fox, S.E.; Borrelli, M.B. Using CMECS to create benthic habitat maps for Pleasant Bay, Cape Cod, Massachusetts. Northeast. Nat. 2020, 27, 22–47. [Google Scholar] [CrossRef]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- LaFrance Bartley, M.; King, J.W.; Oakley, B.A.; Caccioppoli, B.J. Post-Hurricane Sandy Benthic Habitat Mapping at Fire Island National Seashore, New York, USA, Utilizing the Coastal and Marine Ecological Classification Standard (CMECS). Estuaries Coasts 2022, 45, 1070–1094. [Google Scholar] [CrossRef]
- Clarke, K.; Gorley, R. Getting Started with PRIMER v7: Getting Started with PRIMER v7. PRIMER-e: Plymouth, UK. Plymouth Marine Laboratory. 2015. Available online: https://learninghub.primer-e.com/books/primer-v7-user-manual-tutorial (accessed on 22 September 2024).
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Clarke, K.R.; Tweedley, J.R.; Valesini, F.J. Simple shade plots aid better long-term choices of data pre-treatment in multivariate assemblage studies. J. Mar. Biol. Assoc. UK 2014, 94, 1–16. [Google Scholar] [CrossRef]
- Cacchione, D.A.; Drake, D.E.; Grant, W.D.; Tate, G.B. Rippled scour depressions on the inner continental shelf off central California. J. Sediment. Res. 1984, 54, 1280–1291. [Google Scholar]
- Calvert, J.; McGonigle, C. Chapter 26—Benthic community structure at a remote temperate rocky reef in the Gulf of Maine, Cashes Ledge. In Seafloor Geomorphology as Benthic Habitat, 2nd ed.; Harris, P.T., Baker, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 461–471. [Google Scholar] [CrossRef]
- Ozmon, I.M.; Dobbs, K.; Enterline, C.; Dickson, S.M.; Nixon, M.E. Subtidal benthic habitat mapping with CMECS in mid-coast Maine. In Proceedings of the Coastal and Estuarine Research Federation Biennial Conference, Providence, RI, USA, 5–9 November 2017. [Google Scholar]
- Ward, A.E. Maine’s Coastal Wetlands; Bureau of Land and Water Quality, Division of Environmental Assessment: Augusta, ME, USA, 1999.
- Amstutz, A.; Firth, L.B.; Spicer, J.I.; Hanley, M.E. Facing up to climate change: Community composition varies with aspect and surface temperature in the rocky intertidal. Mar. Environ. Res. 2021, 172, 105482. [Google Scholar] [CrossRef] [PubMed]
- Garza, C. Landscape Ecology in the Rocky Intertidal: Opportunities for Advancing Discovery and Innovation in Intertidal Research. Curr. Landsc. Ecol. Rep. 2019, 4, 83–90. [Google Scholar] [CrossRef]
- Whitney, N.M.; Wanamaker, A.D.; Ummenhofer, C.C.; Johnson, B.J.; Cresswell-Clay, N.; Kreutz, K.J. Rapid 20th century warming reverses 900-year cooling in the Gulf of Maine. Commun. Earth Environ. 2022, 3, 179. [Google Scholar] [CrossRef]
- Bricknell, I.R.; Birkel, S.D.; Brawley, S.H.; Van Kirk, T.; Hamlin, H.J.; Capistrant-Fossa, K.; Huguenard, K.; Van Walsum, G.P.; Liu, Z.L.; Zhu, L.H.; et al. Resilience of cold water aquaculture: A review of likely scenarios as climate changes in the Gulf of Maine. Rev. Aquac. 2021, 13, 460–503. [Google Scholar] [CrossRef]
- Pershing, A.J.; Mills, K.E.; Dayton, A.M.; Franklin, B.S.; Kennedy, B.T. Evidence for adaptation from the 2016 marine heatwave in the Northwest Atlantic Ocean. Oceanography 2018, 31, 152–161. [Google Scholar] [CrossRef]
- Sypitkowski, E.; Ambrose, W.G.; Bohlen, C.; Warren, J. Catch statistics in the bloodworm fishery in Maine. Fish. Res. 2009, 96, 303–307. [Google Scholar] [CrossRef]
- DMR. Maine Department of Marine Resources Hisorical Maine Fisheries Landings Data. Available online: https://www.maine.gov/dmr/fisheries/commercial/landings-program/historical-data (accessed on 14 March 2024).
- Sypitkowski, E.; Bohlen, C.; Ambrose, W.G. Estimating the frequency and extent of bloodworm digging in Maine from aerial photography. Fish. Res. 2010, 101, 87–93. [Google Scholar] [CrossRef]
- Griffien, B.D.; Riley, M.E. Potential impacts of invasive crabs on one life history strategy of native rock crabs in the Gulf of Maine. Biol. Invasions 2015, 17, 2533–2544. [Google Scholar] [CrossRef]
- McClenachan, L.; O’Connor, G.; Reynolds, T. Adaptive capacity of co-management systems in the face of environmental change: The soft-shell clam fishery and invasive green crabs in Maine. Mar. Policy 2015, 52, 26–32. [Google Scholar] [CrossRef]
- Tan, E.B.P.; Beal, B.F. Interactions between the invasive European green crab, Carcinus maenas (L.), and juveniles of the soft-shell clam, Mya arenaria L., in eastern Maine, USA. J. Exp. Mar. Biol. Ecol. 2015, 462, 62–73. [Google Scholar] [CrossRef]
- Neckles, H.A. Loss of Eelgrass in Casco Bay, Maine, Linked to Green Crab Disturbance. Northeast. Nat. 2015, 22, 478–500. [Google Scholar] [CrossRef]
- Aman, J.; Grimes, K.W. Measuring Impacts of Invasive European Green Crabs on Maine Salt Marshes: A Novel Approach: Report to the Maine Outdoor Heritage Fund; Wells National Estuarine Research Reserve: Wells, ME, USA, 2016.
- Raposa, K.B.; Goldstein, J.S.; Grimes, K.W.; Mora, J.; Stacey, P.E. A comparative assessment of salt marsh crabs (Decapoda: Brachyura) across the National Estuarine Research Reserves in New England, USA. J. Crustac. Biol. 2019, 40, 67–75. [Google Scholar] [CrossRef]
- Trembanis, A.C.; Hume, T.M. Sorted bedforms on the inner shelf off northeastern New Zealand: Spatiotemporal relationships and potential paleo-environmental implications. Geo-Mar. Lett. 2011, 31, 203–214. [Google Scholar] [CrossRef]
- Goff, J.A.; Flood, R.D.; Austin, J.A., Jr.; Schwab, W.C.; Christensen, B.; Browne, C.M.; Denny, J.F.; Baldwin, W.E. The impact of Hurricane Sandy on the shoreface and inner shelf of Fire Island, New York: Large bedform migration but limited erosion. Cont. Shelf Res. 2015, 98, 13–25. [Google Scholar] [CrossRef]
- Pendleton, E.A.; Brothers, L.L.; Thieler, E.R.; Sweeney, E.M. Sand ridge morphology and bedform migration patterns derived from bathymetry and backscatter on the inner-continental shelf offshore of Assateague Island, USA. Cont. Shelf Res. 2017, 144, 80–97. [Google Scholar] [CrossRef]
- Thieler, E.R.; Foster, D.S.; Himmelstoss, E.A.; Mallinson, D.J. Geologic framework of the northern North Carolina, USA inner continental shelf and its influence on coastal evolution. Mar. Geol. 2014, 348, 113–130. [Google Scholar] [CrossRef]
- Hein, C.; FitzGerald, D.; Barnhardt, W. Holocene reworking of a sand sheet in the Merrimack Embayment, Western Gulf of Maine. J. Coast. Res. 2007, 50, 863–867. [Google Scholar] [CrossRef]
- Trembanis, A.; Abla, A.; Haulsee, K.; DuVal, C. Benthic Habitat Morphodynamics-Using Remote Sensing to Quantify Storm-Induced Changes in Nearshore Bathymetry and Surface Sediment Texture at Assateague National Seashore. J. Mar. Sci. Eng. 2019, 7, 371. [Google Scholar] [CrossRef]
- Shipp, R.C.; Staples, S.A.; Ward, L.G. Controls and zonation of geomorphology along a glaciated coast, Gouldsboro Bay, Maine. In Glaciated Coasts; Elsevier: Amsterdam, The Netherlands, 1987; pp. 209–231. [Google Scholar]
- Kelley, J.T.; Belknap, D.F.; Kelley, A.R.; Claesson, S.H. A model for drowned terrestrial habitats with associated archeological remains in the northwestern Gulf of Maine, USA. Mar. Geol. 2013, 338, 1–16. [Google Scholar] [CrossRef]
- Duffy, W.; Belknap, D.F.; Kelley, J.T. Morphology and stratigraphy of small barrier-lagoon systems in Maine. Mar. Geol. 1989, 88, 243–262. [Google Scholar] [CrossRef]
- Mack, G.H.; Leeder, M.; Perez-Arlucea, M.; Bailey, B. Sedimentology, paleontology, and sequence stratigraphy of Early Permian estuarine deposits, South-Central New Mexico, USA. Palaios 2003, 18, 403–420. [Google Scholar] [CrossRef]
- Reinson, G.E. Transgressive Barrier Island and Estuarine Systems; Walker, R.G., Ed.; Geological Association of Canada: St. Johns, NL, Canada, 1992; pp. 174–194.
- Abrahim, G.M.; Nichol, S.L.; Parker, R.J.; Gregory, M.R. Facies depositional setting, mineral maturity and sequence stratigraphy of a Holocene drowned valley, Tamaki Estuary, New Zealand. Estuar. Coast. Shelf Sci. 2008, 79, 133–142. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine facies models; conceptual basis and stratigraphic implications. J. Sediment. Res. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Longhitano, S.G.; Mellere, D.; Steel, R.J.; Ainsworth, R.B. Tidal depositional systems in the rock record: A review and new insights. Sediment. Geol. 2012, 279, 2–22. [Google Scholar] [CrossRef]
Location | Area Mapped (km2) | Area Mapped (Acre) |
---|---|---|
Compass Harbor | 0.14 | 35 |
Frazer Creek | 0.26 | 65 |
Ship Harbor | 0.30 | 74 |
Thompson Island | 1.4 | 338 |
Total | 2.1 | 512 |
Sample ID | Label | Latitude | Longitude | Percent Sand | Percent Mud | Percent Clay |
---|---|---|---|---|---|---|
Compass Harbor 1 | CH-1 | 44.37571 | −68.19293 | 100.00% | 0.00% | 0.00% |
Compass Harbor2 | CH-2 | 44.37648 | −68.19397 | 100.00% | 0.00% | 0.00% |
Frazer Creek 1 | FC-1 | 44.37654 | −68.07285 | 68.20% | 28.30% | 0.00% |
Frazer Creek 2 | FC-2 | 44.3784 | −68.0724 | 46.10% | 47.30% | 0.00% |
Frazer Creek 5 | FC-5 | 44.38281 | −68.07441 | 40.50% | 48.90% | 0.00% |
Frazer Creek 6 | FC-6 | 44.37936 | −68.07416 | 43.00% | 46.80% | 0.00% |
Frazer Creek 7 | FC-7 | 44.38057 | −68.07658 | 100.00% | 0.00% | 0.00% |
Frazer Creek 8 | FC-8 | 44.37813 | −68.07502 | 93.90% | 5.00% | 0.00% |
Ship Harbor 1 | SH-1 | 44.22925 | −68.32499 | 52.00% | 44.30% | 3.70% |
Ship Harbor 2 | SH-2 | 44.2304 | −68.32512 | 31.10% | 61.90% | 7.00% |
Ship Harbor 3 | SH-3 | 44.22858 | −68.32205 | 48.20% | 46.90% | 4.90% |
Ship Harbor 6 | SH-6 | 44.22564 | −68.32054 | 100.00% | 0.00% | 0.00% |
Thompson Island 1 | TI-1 | 44.43924 | −68.3577 | 40.20% | 50.60% | 9.20% |
Thompson Island 2 | TI-2 | 44.438 | −68.3577 | 25.40% | 62.40% | 12.20% |
Thompson Island 4 | TI-4 | 44.43592 | −68.3615 | 20.00% | 67.40% | 12.70% |
Thompson Island 5 | TI-5 | 44.43366 | −68.36314 | 26.40% | 64.40% | 9.30% |
Thompson Island 6 | TI-6 | 44.43354 | −68.36472 | 23.40% | 63.70% | 12.90% |
Thompson Island 7 | TI-7 | 44.43198 | −68.36517 | 21.50% | 66.70% | 11.90% |
Thompson Island 8 | TI-8 | 44.43072 | −68.36441 | 80.30% | 15.90% | 3.90% |
Thompson Island 9 | TI-9 | 44.4312 | −68.36179 | 25.90% | 61.10% | 13.00% |
Thompson Island 10 | TI-10 | 44.43036 | −68.35887 | 22.90% | 63.70% | 13.40% |
Thompson Island 11 | TI-11 | 44.42946 | −68.36241 | 22.80% | 64.90% | 12.30% |
Thompson Island 12 | TI-12 | 44.42904 | −68.36456 | 21.30% | 67.50% | 11.10% |
Thompson Island 14 | TI-14 | 44.42718 | −68.35761 | 23.40% | 65.10% | 11.60% |
Thompson Island 15 | TI-15 | 44.42949 | −68.35676 | 26.20% | 63.00% | 10.90% |
Thompson Island 16 | TI-16 | 44.43015 | −68.35676 | 36.60% | 49.80% | 13.60% |
Thompson Island 17 | TI-17 | 44.43142 | −68.35757 | 20.80% | 62.70% | 16.50% |
Thompson Island 19 | TI-19 | 44.43371 | −68.35977 | 23.40% | 61.40% | 15.30% |
Thompson Island 20 | TI-20 | 44.43353 | −68.35451 | 45.80% | 44.60% | 9.60% |
Thompson Island 21 | TI-21 | 44.43362 | −68.3518 | 11.30% | 76.50% | 12.20% |
Thompson Island 22 | TI-22 | 44.43512 | −68.35181 | 15.10% | 73.30% | 11.60% |
Study Area | Total Number of Ground-Truth Samples | Number of Ground-Truth Samples Included in Biotope Analysis |
---|---|---|
Thompson Island | 22 | 21 |
Frazer Creek | 8 | 2 |
Compass Harbor | 6 | 4 |
Ship Harbor | 7 | 3 |
TOTAL | 43 | 30 |
Compass Harbor Substrate (Subgroup) | Area (m2) | Area (Acres) | Percent |
---|---|---|---|
Bedrock | 65,940 | 16.3 | 46.3% |
Boulder | 12,865 | 3.2 | 9.0% |
Bouldery Sand | 513 | 0.1 | 0.4% |
Gravelly Sand | 55,630 | 13.7 | 39.1% |
Sandy Gravel | 4328 | 1.1 | 3.0% |
Medium Sand | 3022 | 0.7 | 2.1% |
Frazer Creek Substrate (Subgroup) | |||
Anthropogenic Rock Rubble | 25 | 0.0 | 0.0% |
Bedrock | 88,137 | 21.8 | 33.7% |
Boulder | 13,977 | 3.5 | 5.3% |
Cobble | 5636 | 1.4 | 2.2% |
Gravelly Mud | 621 | 0.2 | 0.2% |
Gravelly Sand | 41,918 | 10.4 | 16.0% |
Sandy Silt | 90,463 | 22.4 | 34.6% |
Slightly Gravelly Muddy Sand | 1653 | 0.4 | 0.6% |
Slightly Gravelly Sand | 19,165 | 4.7 | 7.3% |
Ship Harbor Substrate (Subgroup) | |||
Bedrock | 136,950 | 33.8 | 45.5% |
Boulder | 58,804 | 14.5 | 19.5% |
Sandy Cobbley Boulder | 13,448 | 3.3 | 4.5% |
Gravelly Sand | 7495 | 1.9 | 2.5% |
Sandy Gravel | 22,810 | 5.6 | 7.6% |
Sandy Silt | 61,319 | 15.2 | 20.4% |
Thompson Island Substrate (Subgroup) | |||
Bedrock | 31,000 | 7.7 | 2.26% |
Boulder | 22,712 | 5.6 | 1.66% |
Fine Sand | 794 | 0.2 | 0.06% |
Gravelly Mud | 2156 | 0.5 | 0.16% |
Gravelly Sand | 197,906 | 48.9 | 14.46% |
Sandy Gravel | 17,045 | 4.2 | 1.25% |
Sandy Silt | 811,238 | 200.5 | 59.27% |
Silty Sand | 1023 | 0.3 | 0.07% |
Slightly Gravelly Sand | 8076 | 2.0 | 0.59% |
Slightly Gravelly Sandy Mud | 276,790 | 68.4 | 20.22% |
Compass Harbor | Area (m2) | Area (Acres) | Percent |
---|---|---|---|
Rock Outcrop | 65,940 | 16.3 | 46.3% |
Boulder Field | 13,378 | 3.3 | 9.4% |
Sediment Sheet | 58,111 | 14.4 | 40.8% |
Beach | 1276 | 0.3 | 0.9% |
Ripples | 3593 | 0.9 | 2.5% |
Frazer Creek | |||
Anthropogenic Rock Rubble | 25 | 0.0 | 0.0% |
Rock Outcrop | 88,137 | 21.8 | 33.7% |
Boulder Field | 13,977 | 3.5 | 5.3% |
Sediment Sheet | 53,089 | 13.1 | 20.3% |
Channel | 78,938 | 19.5 | 30.2% |
Tidal Flat | 13,214 | 3.3 | 5.1% |
Terrace | 14,216 | 3.5 | 5.4% |
Ship Harbor | |||
Rock Outcrop | 136,950 | 33.8 | 45.5% |
Boulder Field | 58,804 | 14.5 | 19.5% |
Sediment Sheet | 12,769 | 3.2 | 4.2% |
Channel | 9569 | 2.4 | 3.2% |
Flat | 61,319 | 15.2 | 20.4% |
Flood-tidal Delta Flat | 3091 | 0.8 | 1.0% |
Ripples | 3786 | 0.9 | 1.3% |
Inlet | 15,868 | 3.9 | 5.3% |
Thompson Island | |||
Rock Outcrop | 31,000 | 7.7 | 2.26% |
Boulder Field | 22,712 | 5.6 | 1.66% |
Tidal Flat | 613,496 | 151.6 | 44.82% |
Flat <1 m MLLW | 313,612 | 77.5 | 22.91% |
Flat >1 m MLLW | 163,733 | 40.5 | 11.96% |
Channel | 214,478 | 53.0 | 15.67% |
Sediment Wave Field | 8913 | 2.2 | 0.65% |
Ripples | 794 | 0.2 | 0.06% |
Map Unit Description | Number of Macrofaunal Samples | SIMPER Average Similarity |
---|---|---|
Tidal Flat | 12 | 34.63% |
Flat < 1 m MLLW | 3 | 33.65% |
Flat > 1 m MLLW | 2 | 60.63% |
Channel | 3 | 2.13% |
Tidal Sediment Wave Field | 1 | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oakley, B.; Caccioppoli, B.; LaFrance Bartley, M.; Johnson, C.; Moen, A.; Soulagnet, C.; Rondeau, G.; Rego, C.; King, J. Application of the Coastal and Marine Ecological Classification Standard (CMECS) to Create Benthic Geologic Habitat Maps for Portions of Acadia National Park, Maine, USA. Geosciences 2024, 14, 256. https://doi.org/10.3390/geosciences14100256
Oakley B, Caccioppoli B, LaFrance Bartley M, Johnson C, Moen A, Soulagnet C, Rondeau G, Rego C, King J. Application of the Coastal and Marine Ecological Classification Standard (CMECS) to Create Benthic Geologic Habitat Maps for Portions of Acadia National Park, Maine, USA. Geosciences. 2024; 14(10):256. https://doi.org/10.3390/geosciences14100256
Chicago/Turabian StyleOakley, Bryan, Brian Caccioppoli, Monique LaFrance Bartley, Catherine Johnson, Alexandra Moen, Cameron Soulagnet, Genevieve Rondeau, Connor Rego, and John King. 2024. "Application of the Coastal and Marine Ecological Classification Standard (CMECS) to Create Benthic Geologic Habitat Maps for Portions of Acadia National Park, Maine, USA" Geosciences 14, no. 10: 256. https://doi.org/10.3390/geosciences14100256
APA StyleOakley, B., Caccioppoli, B., LaFrance Bartley, M., Johnson, C., Moen, A., Soulagnet, C., Rondeau, G., Rego, C., & King, J. (2024). Application of the Coastal and Marine Ecological Classification Standard (CMECS) to Create Benthic Geologic Habitat Maps for Portions of Acadia National Park, Maine, USA. Geosciences, 14(10), 256. https://doi.org/10.3390/geosciences14100256