Ghost Mines for Geoheritage Enhancement in the Umbria Region (Central Italy)
Abstract
:1. Introduction
Lignite Deposits in the Italian Mining Heritage
2. Lignite Deposits in Umbria Region (Central Italy)
3. Data and Methods
3.1. Documentary Search
3.2. Field Work
3.3. Digitalization
4. Results
4.1. The Caiperino and Terranera Mines
4.2. The Carsuga Mine
5. Discussion
5.1. The Value of Ghost Places in Geoheritage Promotion
5.2. Solution for the Geomining Heritage Promotion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordon, J.E.; Crofts, R.; Díaz-Martínez, E. Geoheritage conservation and environmental policies: Retrospect and prospect. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 213–235. [Google Scholar]
- Gray, M. Geodiversity: The backbone of geoheritage and geoconservation. In Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–25. [Google Scholar]
- Reynard, E.; Brilha, J. Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for assessing geodiversity. In Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Coratza, P.; Reynard, E.; Zwoliński, Z. Geodiversity and geoheritage: Crossing disciplines and approaches. Geoheritage 2018, 10, 525–526. [Google Scholar] [CrossRef] [Green Version]
- Coratza, P.; Hobléa, F. The specificities of geomorphological heritage. In Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018; pp. 87–106. [Google Scholar]
- Melelli, L.; Vergari, F.; Liucci, L.; Del Monte, M. Geomorphodiversity index: Quantifying the diversity of landforms and physical landscape. Sci. Total. Environ. 2017, 584, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and geosites: A bibliometric analysis and literature review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Viewpoint geosites—Values, conservation and management issues. Proc. Geol. Assoc. 2017, 128, 511–522. [Google Scholar] [CrossRef]
- Prosser, C.D.; Díaz-Martínez, E.; Larwood, J.G. The conservation of geosites: Principles and practice. In Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–212. [Google Scholar]
- Pelfini, M.; Bollati, I. Landforms and geomorphosites ongoing changes: Concepts and implications for geoheritage promotion. Quaest. Geogr. 2014, 33, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Migoń, P.; Różycka, M. When individual geosites matter less—Challenges to communicate landscape evolution of a complex morphostructure (Orlické–Bystrzyckie Mountains Block, Czechia/Poland, Central Europe). Geosciences 2021, 11, 100. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Garcia, M.d.G.M.; Reynard, E. Comparing quantitative methods on the evaluation of scientific value in geosites: Analysis from the Itatiaia National Park, Brazil. Geomorphology 2022, 396, 107988. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Loor-Oporto, O.; Andrade-Ríos, H.; Herrera-Franco, G.; Morante-Carballo, F.; Jaya-Montalvo, M.; Berrezueta, E. Quantitative and Qualitative Assessment of the “El Sexmo” Tourist Gold Mine (Zaruma, Ecuador) as A Geosite and Mining Site. Resources, 9 (3), 28. Chingombe W., 2019. Preliminary geomorphosites assessment along the panorama route of Mpumalanga province, South Africa. Geoj. Tour. Geosites 2020, 27, 1261–1270. [Google Scholar]
- Guijón, R.; Henríquez, F.; Naranjo, J.A. Geological, geographical and legal considerations for the conservation of unique iron oxide and sulphur flows at El Laco and Lastarria volcanic complexes, Central Andes, Northern Chile. Geoheritage 2011, 3, 299–315. [Google Scholar] [CrossRef]
- Ruban, D.A.; Tiess, G.; Sallam, E.S.; Ponedelnik, A.A.; Yashalova, N.N. Combined mineral and geoheritage resources related to kaolin, phosphate, and cement production in Egypt: Conceptualization, assessment, and policy implications. Sustain. Environ. Res. 2018, 28, 454–461. [Google Scholar] [CrossRef]
- Marescotti, P.; Brancucci, G.; Sasso, G.; Solimano, M.; Marin, V.; Muzio, C.; Salmona, P. Geoheritage values and environmental issues of derelict mines: Examples from the sulfide mines of Gromolo and Petronio valleys (Eastern Liguria, Italy). Minerals 2018, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Preite, M. Il patrimonio minerario e i suoi valori: Perchè e per chi i siti minerari diventano patrimonio? AIPAI 2017, XI(17), 14–21. [Google Scholar]
- Prosser, C.D. Communities, quarries and geoheritage—Making the connections. Geoheritage 2019, 11, 1277–1289. [Google Scholar] [CrossRef]
- Mata-Perelló, J.; Carrión, P.; Molina, J.; Villas-Boas, R. Geomining heritage as a tool to promote the social development of rural communities. In Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018; pp. 167–177. [Google Scholar]
- Alexandrowicz, Z.; Urban, J.; Miśkiewicz, K. Geological values of selected Polish properties of the UNESCO World Heritage List. Geoheritage 2009, 1, 43–52. [Google Scholar] [CrossRef]
- Carrión, P.; Herrera, G. Proyecto RUMYS: Rutas Minerales y Sostenibilidad. In Rutas Minerales en el Proyecto RUMYS. Un Factor Integral para el Desarrollo Sostenible de la Sociedad; Escuela Superior Politecnica del Litoral: Guayaquil, Ecuador, 2009; pp. 7–17. [Google Scholar]
- GEMINA. Ligniti e Torbe dell’Italia Continentale: Indagini Geominerarie Effettuate nel Periodo 1958–1961 dalla Geomineraria Nazionale (GEMINA) di Roma; Ilte: Torino, Italy, 1962. [Google Scholar]
- Argenti, P.; Baldanza, A.; Chiaverini, R.; Gasperini, A.; Gentili, S. Miniere di lignite in Umbria. In Quaderni del Laboratorio di Scienze della Terra, Pietre e Terre nel Lavoro Dell’uomo; Mattioli, B., Ed.; Comune di Spoleto: Spoleto, Italy, 2006; pp. 2–3. [Google Scholar]
- Trumbull, J.; Barnes, F.F. Coal Fields of the United States; Technical Report; US Geological Survey: Reston, VA, USA, 1960. [Google Scholar]
- Bucci, F.; Santangelo, M.; Fongo, L.; Alvioli, M.; Cardinali, M.; Melelli, L.; Marchesini, I. A new digital lithological map of Italy at the 1: 100 000 scale for geomechanical modelling. Earth Syst. Sci. Data 2022, 14, 4129–4151. [Google Scholar] [CrossRef]
- Della Seta, M.; Melelli, L.; Pambianchi, G. Relief, intermontane basins and civilization in the umbria-marche apennines: Origin and life by geological consent. In Landscapes and Landforms of Italy; Springer: Cham, Swizerland, 2017; pp. 317–326. [Google Scholar]
- Barchi, M.R.; Beltrando, M. The Neogene-Quaternary evolution of the Northern Apennines: Crustal structure, style of deformation and seismicity. J. Virtual Explor. 2010, 36, 11. [Google Scholar] [CrossRef]
- Barchi, M.R.; Ciaccio, M.G. Seismic images of an extensional basin, generated at the hangingwall of a low-angle normal fault: The case of the Sansepolcro basin (Central Italy). Tectonophysics 2009, 479, 285–293. [Google Scholar] [CrossRef]
- Famiani, D.; Brunori, C.A.; Pizzimenti, L.; Cara, F.; Caciagli, M.; Melelli, L.; Mirabella, F.; Barchi, M.R. Geophysical reconstruction of buried geological features and site effects estimation of the Middle Valle Umbra basin (central Italy). Eng. Geol. 2020, 269, 105543. [Google Scholar] [CrossRef]
- Melelli, L.; Pucci, S.; Saccucci, L.; Mirabella, F.; Pazzaglia, F.; Barchi, M. Morphotectonics of the Upper Tiber Valley (Northern Apennines, Italy) through quantitative analysis of drainage and landforms. Rend. Lincei 2014, 25, 129–138. [Google Scholar] [CrossRef]
- Pucci, S.; Mirabella, F.; Pazzaglia, F.; Barchi, M.; Melelli, L.; Tuccimei, P.; Soligo, M.; Saccucci, L. Interaction between regional and local tectonic forcing along a complex Quaternary extensional basin: Upper Tiber Valley, Northern Apennines, Italy. Quat. Sci. Rev. 2014, 102, 111–132. [Google Scholar] [CrossRef]
- Barchi, M.; Brozzetti, F.; Lavecchia, G. Analisi strutturale e geometrica dei bacini della media Valle del Tevere e della Valle Umbra. Boll. Della Soc. Geol. Ital. 1991, 110, 65–76. [Google Scholar]
- Basilici, G. Sedimentary facies in an extensional and deep-lacustrine depositional system: The Pliocene Tiberino Basin, Central Italy. Sediment. Geol. 1997, 109, 73–94. [Google Scholar] [CrossRef]
- Bucci, F.; Mirabella, F.; Santangelo, M.; Cardinali, M.; Guzzetti, F. Photo-geology of the Montefalco Quaternary Basin, Umbria, Central Italy. J. Maps 2016, 12, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Lotti, B. Descrizione Geologica dell’Umbria; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1926. [Google Scholar]
- ISPRA. Città Di Castello, Sheet 289. In Carta Geologica d’Italia, 1:50,000; ISPRA: Rome, Italy, 2021. [Google Scholar]
- Baldanza, A.; Spirito, A. Dalla classificazione alla musealizzazione: Allestimento di un’esposizione di reperti vegetali fossili presso il “Centro Studi sul Quaternario”(CeSQ) di Sansepolcro. In Museologia Scientifica Nuova Serie; Associazione Nazionale Musei Scientifici: Florence, Italy, 2010; Volume 41, pp. 130–136. [Google Scholar]
- Camporeale, G. Gli Etruschi: Storia e Civiltà; UTET: Torino, Italy; p. 648. Available online: https://www.utetlibri.it/libri/gli-etruschi-storia-e-civilta/ (accessed on 2 July 2023).
- Cattuto, C.; Cencetti, C.; Fisauli, M.; Gregori, L. I bacini pleistocenici di Anghiari e Sansepolcro nell’alta valle del Tevere. Il Quat. 1995, 8, 119–128. [Google Scholar]
- Bonali, F.L.; Russo, E.; Vitello, F.; Antoniou, V.; Marchese, F.; Fallati, L.; Bracchi, V.; Corti, N.; Savini, A.; Whitworth, M.; et al. How academics and the public experienced immersive virtual reality for geo-education. Geosciences 2021, 12, 9. [Google Scholar] [CrossRef]
- Janeras, M.; Roca, J.; Gili, J.A.; Pedraza, O.; Magnusson, G.; Núñez-Andrés, M.A.; Franklin, K. Using Mixed Reality for the Visualization and Dissemination of Complex 3D Models in Geosciences—Application to the Montserrat Massif (Spain). Geosciences 2022, 12, 370. [Google Scholar] [CrossRef]
- Melelli, L. “Perugia upside-down”: A multimedia exhibition in Umbria (Central Italy) for improving geoheritage and geotourism in urban areas. Resources 2019, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- Luft, J.; Schiewe, J. Automatic content-based georeferencing of historical topographic maps. Trans. GIS 2021, 25, 2888–2906. [Google Scholar] [CrossRef]
- Brandolini, P.; Cappadonia, C.; Luberti, G.M.; Donadio, C.; Stamatopoulos, L.; Di Maggio, C.; Faccini, F.; Stanislao, C.; Vergari, F.; Paliaga, G.; et al. Geomorphology of the Anthropocene in Mediterranean urban areas. Prog. Phys. Geogr. Earth Environ. 2020, 44, 461–494. [Google Scholar] [CrossRef]
- Vergari, F.; Pica, A.; Brandolini, P.; Melelli, L.; Del Monte, M. Geomorphological classification of the landscape in urban areas. Hints from some study cases in Italy. Rend. Online Della Soc. Geol. Ital. 2022, 57, 33–39. [Google Scholar] [CrossRef]
- Cayla, N.; Martin, S. Digital geovisualisation technologies applied to geoheritage management. In Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018; pp. 289–303. [Google Scholar]
- Jiang, W.; Zhang, Y. Application of 3D visualization in landscape design teaching. Int. J. Emerg. Technol. Learn. 2019, 14, 53. [Google Scholar] [CrossRef] [Green Version]
- Melelli, L.; Silvani, F.; Ercoli, M.; Pauselli, C.; Tosi, G.; Radicioni, F. Urban geology for the enhancement of the hypogean geosites: The Perugia underground (Central Italy). Geoheritage 2021, 13, 18. [Google Scholar] [CrossRef]
Extracted Minerals | Number of Sites |
---|---|
Common lignite | 20 |
Marl for cement | 17 |
Xyloid lignite | 10 |
Clay | 2 |
Leucite | 1 |
Iron | 1 |
Peat | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melelli, L.; Palombo, M.; Nazzareni, S. Ghost Mines for Geoheritage Enhancement in the Umbria Region (Central Italy). Geosciences 2023, 13, 208. https://doi.org/10.3390/geosciences13070208
Melelli L, Palombo M, Nazzareni S. Ghost Mines for Geoheritage Enhancement in the Umbria Region (Central Italy). Geosciences. 2023; 13(7):208. https://doi.org/10.3390/geosciences13070208
Chicago/Turabian StyleMelelli, Laura, Massimo Palombo, and Sabrina Nazzareni. 2023. "Ghost Mines for Geoheritage Enhancement in the Umbria Region (Central Italy)" Geosciences 13, no. 7: 208. https://doi.org/10.3390/geosciences13070208
APA StyleMelelli, L., Palombo, M., & Nazzareni, S. (2023). Ghost Mines for Geoheritage Enhancement in the Umbria Region (Central Italy). Geosciences, 13(7), 208. https://doi.org/10.3390/geosciences13070208