A Low-Cost, Repeatable Method for 3D Particle Analysis with SfM Photogrammetry
Abstract
:1. Introduction
- Present a cheap, fast, and reproducible methodology for obtaining high-quality 3D particle data using SfM-photogrammetry;
- Characterise sedimentary particle shape and size using the obtained 3D photogrammetry data;
- Determine the minimum resolution required for 3D shape and size characterisation.
2. Materials and Methods
2.1. Samples Used
2.2. Structure from Motion Photogrammetry
2.3. Shape and Size Parameters
2.4. Minimum Resolution
3. Results
4. Discussion
4.1. Cheap, Fast, and User-Friendly Methodology
4.2. Particle Shape and Size Analysis
4.3. Three-dimensional Model Resolution
4.4. Comparison with other Methods
4.5. Applications beyond Hand-Held Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blott, S.J.; Pye, K. Particle Shape: A Review and New Methods of Characterization and Classification. Sedimentology 2008, 55, 31–63. [Google Scholar] [CrossRef]
- Chávez, G.M.; Castillo-Rivera, F.; Montenegro-Ríos, J.A.; Borselli, L.; Rodríguez-Sedano, L.A.; Sarocchi, D. Fourier Shape Analysis, FSA: Freeware for Quantitative Study of Particle Morphology. J. Volcanol. Geotherm. Res. 2020, 404, 107008. [Google Scholar] [CrossRef]
- Dürig, T.; Ross, P.-S.; Dellino, P.; White, J.D.L.; Mele, D.; Comida, P.P. A Review of Statistical Tools for Morphometric Analysis of Juvenile Pyroclasts. Bull. Volcanol. 2021, 83, 79. [Google Scholar] [CrossRef]
- Güler, C.; Beyhan, B.; Tağa, H. PolyMorph-2D: An Open-Source GIS Plug-in for Morphometric Analysis of Vector-Based 2D Polygon Features. Geomorphology 2021, 386, 107755. [Google Scholar] [CrossRef]
- Mulchrone, K.F.; McCarthy, D.J.; Meere, P.A. Mathematica Code for Image Analysis, Semi-Automatic Parameter Extraction and Strain Analysis. Comput. Geosci. 2013, 61, 64–70. [Google Scholar] [CrossRef]
- Higgins, M.D. Quantitative Textural Measurements in Igneous and Metamorphic Petrology; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-0-521-84782-7. [Google Scholar]
- Campaña, I.; Benito-Calvo, A.; Pérez-González, A.; Bermúdez de Castro, J.M.; Carbonell, E. Assessing Automated Image Analysis of Sand Grain Shape to Identify Sedimentary Facies, Gran Dolina Archaeological Site (Burgos, Spain). Sediment. Geol. 2016, 346, 72–83. [Google Scholar] [CrossRef]
- Eamer, J.B.R.; Shugar, D.H.; Walker, I.J.; Lian, O.B.; Neudorf, C.M. Distinguishing Depositional Setting For Sandy Deposits In Coastal Landscapes Using Grain Shape. J. Sediment. Res. 2017, 87, 1–11. [Google Scholar] [CrossRef]
- Pantopoulos, G.; Manica, R.; McArthur, A.D.; Kuchle, J. Particle Shape Trends across Experimental Cohesive and Non-Cohesive Sediment Gravity Flow Deposits: Implications for Particle Fractionation and Discrimination of Depositional Settings. Sedimentology 2022, 69, 1495–1518. [Google Scholar] [CrossRef]
- Suzuki, K.; Fujiwara, H.; Ohta, T. The Evaluation of Macroscopic and Microscopic Textures of Sand Grains Using Elliptic Fourier and Principal Component Analysis: Implications for the Discrimination of Sedimentary Environments. Sedimentology 2015, 62, 1184–1197. [Google Scholar] [CrossRef]
- Tunwal, M.; Mulchrone, K.F.; Meere, P.A. Quantitative Characterisation of Grain Shape: Implications for Textural Maturity Analysis and Discrimination between Depositional Environments. Sedimentology 2018, 65, 1761–1776. [Google Scholar] [CrossRef]
- Deal, E.; Venditti, J.G.; Benavides, S.J.; Bradley, R.; Zhang, Q.; Kamrin, K.; Perron, J.T. Grain Shape Effects in Bed Load Sediment Transport. Nature 2023, 613, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Novák-Szabó, T.; Sipos, A.Á.; Shaw, S.; Bertoni, D.; Pozzebon, A.; Grottoli, E.; Sarti, G.; Ciavola, P.; Domokos, G.; Jerolmack, D.J. Universal Characteristics of Particle Shape Evolution by Bed-Load Chipping. Sci. Adv. 2018, 4, eaao4946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabó, T.; Domokos, G.; Grotzinger, J.P.; Jerolmack, D.J. Reconstructing the Transport History of Pebbles on Mars. Nat. Commun. 2015, 6, 8366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, A.; Minitti, M.E.; Cardarelli, E.L.; Johnson, J.R.; Kah, L.C.; Pilleri, P.; Rice, M.S.; Sephton, M.; Horgan, B.H.N.; Wiens, R.C.; et al. Regolith of the Crater Floor Units, Jezero Crater, Mars: Textures, Composition, and Implications for Provenance. J. Geophys. Res. Planets 2023, 128, e2022JE007437. [Google Scholar] [CrossRef]
- Payton, R.L.; Chiarella, D.; Kingdon, A. The Influence of Grain Shape and Size on the Relationship between Porosity and Permeability in Sandstone: A Digital Approach. Sci. Rep. 2022, 12, 7531. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, L.; Luo, X.; Liu, K.; Jia, T.; Lu, Y. Influence of the Grain Shape and Packing Texture on the Primary Porosity of Sandstone: Insights from a Numerical Simulation. Sedimentology 2023. Online Version. [Google Scholar] [CrossRef]
- Markwitz, V.; Kirkland, C.L. Source to Sink Zircon Grain Shape: Constraints on Selective Preservation and Significance for Western Australian Proterozoic Basin Provenance. Geosci. Front. 2018, 9, 415–430. [Google Scholar] [CrossRef]
- Barrett, P.J. The Shape of Rock Particles, a Critical Review. Sedimentology 1980, 27, 291–303. [Google Scholar] [CrossRef]
- Jia, X.; Garboczi, E.J. Advances in Shape Measurement in the Digital World. Particuology 2016, 26, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Wadell, H. Volume, Shape, and Roundness of Rock Particles. J. Geol. 1932, 40, 443–451. [Google Scholar] [CrossRef]
- Wentworth, C.K. A Laboratory and Field Study of Cobble Abrasion. J. Geol. 1919, 27, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Krumbein, W.C. Measurement and Geological Significance of Shape and Roundness of Sedimentary Particles. J. Sediment. Petrol. 1941, 11, 64–72. [Google Scholar] [CrossRef]
- Powers, M.C. A New Roundness Scale for Sedimentary Particles. J. Sediment. Petrol. 1953, 23, 117–119. [Google Scholar] [CrossRef]
- Blatt, H. Sedimentary Petrology, 2nd ed.; W. H. Freeman and Company: New York, NY, USA, 1992. [Google Scholar]
- Blatt, H.; Middleton, G.V.; Murray, R.C. Origin of Sedimentary Rocks; Prentice-Hall Inc.: Hoboken, NJ, USA, 1972. [Google Scholar]
- Heilbronner, R.; Barrett, S. Image Analysis in Earth Sciences: Microstructures and Textures of Earth Materials; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 3-642-10343-X. [Google Scholar]
- Roduit, N. JMicroVision: A Multipurpose Image Analysis Software Tool. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 2007. [Google Scholar]
- Roussillon, T.; Piégay, H.; Sivignon, I.; Tougne, L.; Lavigne, F. Automatic Computation of Pebble Roundness Using Digital Imagery and Discrete Geometry. Comput. Geosci. 2009, 35, 1992–2000. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Tunwal, M.; Mulchrone, K.F.; Meere, P.A. Image Based Particle Shape Analysis Toolbox (IPSAT). Comput. Geosci. 2020, 135, 104391. [Google Scholar] [CrossRef]
- Alshibli, K.A.; Druckrey, A.M.; Al-Raoush, R.I.; Weiskittel, T.; Lavrik, N.V. Quantifying Morphology of Sands Using 3D Imaging. J. Mater. Civ. Eng. 2015, 27, 04014275. [Google Scholar] [CrossRef]
- Komba, J.J.; Anochie-Boateng, J.K.; van der Merwe Steyn, W. Analytical and Laser Scanning Techniques to Determine Shape Properties of Aggregates. Transp. Res. Rec. 2013, 2335, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Lu, W.; Chen, M.; Wang, G.; Xia, W.; Yan, P. Quantitative Analysis of Shapes and Specific Surface Area of Blasted Fragments Using Image Analysis and Three-Dimensional Laser Scanning. Int. J. Rock Mech. Min. Sci. 2021, 141, 104710. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, Q.; Zheng, H.; Wei, D.; Li, Z.; Gao, L. Three-Dimensional Particle Shape Characterizations from Half Particle Geometries. Powder Technol. 2020, 367, 122–132. [Google Scholar] [CrossRef]
- Chmielowska, D.; Woronko, B.; Dorocki, S. Applicability of Automatic Image Analysis in Quartz-Grain Shape Discrimination for Sedimentary Setting Reconstruction. Catena 2021, 207, 105602. [Google Scholar] [CrossRef]
- Martewicz, J.; Kalińska, E.; Weckwerth, P. What Hides in the Beach Sand? A Multiproxy Approach and New Textural Code to Recognition of Beach Evolution on the Southern and Eastern Baltic Sea Coast. Sediment. Geol. 2022, 435, 106154. [Google Scholar] [CrossRef]
- van Buuren, U.; Prins, M.A.; Wang, X.; Stange, M.; Yang, X.; van Balen, R.T. Fluvial or Aeolian? Unravelling the Origin of the Silty Clayey Sediment Cover of Terraces in the Hanzhong Basin (Qinling Mountains, Central China). Geomorphology 2020, 367, 107294. [Google Scholar] [CrossRef]
- Varga, G.; Kovács, J.; Szalai, Z.; Cserháti, C.; Újvári, G. Granulometric Characterization of Paleosols in Loess Series by Automated Static Image Analysis. Sediment. Geol. 2018, 370, 1–14. [Google Scholar] [CrossRef]
- Sochan, A.; Zieliński, P.; Bieganowski, A. Selection of Shape Parameters That Differentiate Sand Grains, Based on the Automatic Analysis of Two-Dimensional Images. Sediment. Geol. 2015, 327, 14–20. [Google Scholar] [CrossRef]
- Szmańda, J.B.; Witkowski, K. Morphometric Parameters of Krumbein Grain Shape Charts—A Critical Approach in Light of the Automatic Grain Shape Image Analysis. Minerals 2021, 11, 937. [Google Scholar] [CrossRef]
- Tunwal, M.; Mulchrone, K.F.; Meere, P.A. A New Approach to Particle Shape Quantification Using the Curvature Plot. Powder Technol. 2020, 374, 377–388. [Google Scholar] [CrossRef]
- Snavely, N.; Simon, I.; Goesele, M.; Szeliski, R.; Seitz, S.M. Scene Reconstruction and Visualization From Community Photo Collections. Proc. IEEE 2010, 98, 1370–1390. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Smith, M.W.; Quincey, D.J. Structure from Motion in the Geosciences; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1-118-89583-5. [Google Scholar]
- Lim, A.; Wheeler, A.J.; Price, D.M.; O’Reilly, L.; Harris, K.; Conti, L. Influence of Benthic Currents on Cold-Water Coral Habitats: A Combined Benthic Monitoring and 3D Photogrammetric Investigation. Sci. Rep. 2020, 10, 19433. [Google Scholar] [CrossRef]
- Pizarro, O.; Friedman, A.; Bryson, M.; Williams, S.B.; Madin, J. A Simple, Fast, and Repeatable Survey Method for Underwater Visual 3D Benthic Mapping and Monitoring. Ecol. Evol. 2017, 7, 1770–1782. [Google Scholar] [CrossRef] [PubMed]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Hixon, S.W.; Lipo, C.P.; Hunt, T.L.; Lee, C. Using Structure from Motion Mapping to Record and Analyze Details of the Colossal Hats (Pukao) of Monumental Statues on Rapa Nui (Easter Island). Adv. Archaeol. Pract. 2018, 6, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Cirillo, D.; Cerritelli, F.; Agostini, S.; Bello, S.; Lavecchia, G.; Brozzetti, F. Integrating Post-Processing Kinematic (PPK)–Structure-from-Motion (SfM) with Unmanned Aerial Vehicle (UAV) Photogrammetry and Digital Field Mapping for Structural Geological Analysis. ISPRS Int. J. Geo-Inf. 2022, 11, 437. [Google Scholar] [CrossRef]
- Bello, S.; Scott, C.P.; Ferrarini, F.; Brozzetti, F.; Scott, T.; Cirillo, D.; de Nardis, R.; Arrowsmith, J.R.; Lavecchia, G. High-Resolution Surface Faulting from the 1983 Idaho Lost River Fault Mw 6.9 Earthquake and Previous Events. Sci. Data 2021, 8, 68. [Google Scholar] [CrossRef]
- Xie, W.-Q.; Zhang, X.-P.; Yang, X.-M.; Liu, Q.-S.; Tang, S.-H.; Tu, X.-B. 3D Size and Shape Characterization of Natural Sand Particles Using 2D Image Analysis. Eng. Geol. 2020, 279, 105915. [Google Scholar] [CrossRef]
- Harris, A.L.; Haselock, P.J.; Kennedy, M.J.; Mendum, J.R.; Long, C.B.; Winchester, J.A.; Tanner, P.W.G. The Dalradian Supergroup in Scotland, Shetland and Ireland. In A Revised Correlation of Pre-Cambrian Rocks in the British Isles; Gibbons, W., Harris, A.L., Eds.; Geological Society of London: London, UK, 1994; Volume 22, ISBN 978-1-897799-11-6. [Google Scholar]
- de Oliveira, L.M.C.; Lim, A.; Conti, L.A.; Wheeler, A.J. 3D Classification of Cold-Water Coral Reefs: A Comparison of Classification Techniques for 3D Reconstructions of Cold-Water Coral Reefs and Seabed. Front. Mar. Sci. 2021, 8, 640713. [Google Scholar] [CrossRef]
- Price, D.M.; Robert, K.; Callaway, A.; Lo lacono, C.; Hall, R.A.; Huvenne, V.A.I. Using 3D Photogrammetry from ROV Video to Quantify Cold-Water Coral Reef Structural Complexity and Investigate Its Influence on Biodiversity and Community Assemblage. Coral Reefs 2019, 38, 1007–1021. [Google Scholar] [CrossRef] [Green Version]
- Wentworth, C.K. The Shapes of Beach Pebbles; US Government Printing Office: Washington, DC, USA, 1922.
- Pye, W.D.; Pye, M.H. Sphericity Determinations of Pebbles and Sand Grains. J. Sediment. Res. 1943, 13, 28–34. [Google Scholar] [CrossRef]
- Corey, A.T. Influence of Shape on the Fall Velocity of Sand Grains; Colorado A & M College: Fort Collins, CO, USA, 1949. [Google Scholar]
- Folk, R.L. Student Operator Error in Determination of Roundness, Sphericity, and Grain Size. J. Sediment. Res. 1955, 25, 297–301. [Google Scholar] [CrossRef]
- Sneed, E.D.; Folk, R.L. Pebbles in the Lower Colorado River, Texas a Study in Particle Morphogenesis. J. Geol. 1958, 66, 114–150. [Google Scholar] [CrossRef]
- Aschenbrenner, B.C. A New Method of Expressing Particle Sphericity. J. Sediment. Res. 1956, 26, 15–31. [Google Scholar]
- Janke, N.C. Effect of Shape upon the Settling Vellocity of Regular Convex Geometric Particles. J. Sediment. Res. 1966, 36, 370–376. [Google Scholar] [CrossRef]
- Dobkins, J.E.; Folk, R.L. Shape Development on Tahiti-Nui. J. Sediment. Res. 1970, 40, 1167–1203. [Google Scholar]
- Mora, C.F.; Kwan, A.K.H. Sphericity, Shape Factor, and Convexity Measurement of Coarse Aggregate for Concrete Using Digital Image Processing. Cem. Concr. Res. 2000, 30, 351–358. [Google Scholar] [CrossRef]
- Riley, N.A. Projection Sphericity. J. Sediment. Res. 1941, 11, 94–97. [Google Scholar]
- Wadell, H. Sphericity and Roundness of Rock Particles. J. Geol. 1933, 41, 310–331. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Freeman, R.B. Imaging Indices for Quantification of Shape, Angularity, and Surface Texture of Aggregates. Transp. Res. Rec. 2000, 1721, 57–65. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, T. Efficient Feature Extraction for 2D/3D Objects in Mesh Representation. In Proceedings of the 2001 International Conference on Image Processing (Cat. No.01CH37205), Thessaloniki, Greece, 7–10 October 2001; Volume 3, pp. 935–938. [Google Scholar]
- Kröner, S.; Doménech Carbó, M.T. Determination of Minimum Pixel Resolution for Shape Analysis: Proposal of a New Data Validation Method for Computerized Images. Powder Technol. 2013, 245, 297–313. [Google Scholar] [CrossRef]
- Sun, Q.; Zheng, J.; Coop, M.R.; Altuhafi, F.N. Minimum Image Quality for Reliable Optical Characterizations of Soil Particle Shapes. Comput. Geotech. 2019, 114, 103110. [Google Scholar] [CrossRef]
- Zingg, T. Beitrag zur Schotteranalyse. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 1935. [Google Scholar]
- Đuriš, M.; Arsenijević, Z.; Jaćimovski, D.; Kaluđerović Radoičić, T. Optimal Pixel Resolution for Sand Particles Size and Shape Analysis. Powder Technol. 2016, 302, 177–186. [Google Scholar] [CrossRef]
- Bazaikin, Y.; Gurevich, B.; Iglauer, S.; Khachkova, T.; Kolyukhin, D.; Lebedev, M.; Lisitsa, V.; Reshetova, G. Effect of CT Image Size and Resolution on the Accuracy of Rock Property Estimates. J. Geophys. Res. Solid Earth 2017, 122, 3635–3647. [Google Scholar] [CrossRef]
- Guan, K.M.; Nazarova, M.; Guo, B.; Tchelepi, H.; Kovscek, A.R.; Creux, P. Effects of Image Resolution on Sandstone Porosity and Permeability as Obtained from X-ray Microscopy. Transp. Porous Med. 2019, 127, 233–245. [Google Scholar] [CrossRef]
- Bullard, J.W.; Garboczi, E.J. Defining Shape Measures for 3D Star-Shaped Particles: Sphericity, Roundness, and Dimensions. Powder Technol. 2013, 249, 241–252. [Google Scholar] [CrossRef]
- Taylor, M.A.; Garboczi, E.J.; Erdogan, S.T.; Fowler, D.W. Some Properties of Irregular 3-D Particles. Powder Technol. 2006, 162, 1–15. [Google Scholar] [CrossRef]
- Dadd, K.; Foley, K. A Shape and Compositional Analysis of Ice-Rafted Debris in Cores from IODP Expedition 323 in the Bering Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2016, 125, 191–201. [Google Scholar] [CrossRef]
- Carvalho, L.E.; Fauth, G.; Baecker Fauth, S.; Krahl, G.; Moreira, A.C.; Fernandes, C.P.; von Wangenheim, A. Automated Microfossil Identification and Segmentation Using a Deep Learning Approach. Mar. Micropaleontol. 2020, 158, 101890. [Google Scholar] [CrossRef]
- Mitra, R.; Marchitto, T.M.; Ge, Q.; Zhong, B.; Kanakiya, B.; Cook, M.S.; Fehrenbacher, J.S.; Ortiz, J.D.; Tripati, A.; Lobaton, E. Automated Species-Level Identification of Planktic Foraminifera Using Convolutional Neural Networks, with Comparison to Human Performance. Mar. Micropaleontol. 2019, 147, 16–24. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Viles, H.A.; Bourke, M.C. Quantitative Morphologic Analysis of Boulder Shape and Surface Texture to Infer Environmental History: A Case Study of Rock Breakdown at the Ephrata Fan, Channeled Scabland, Washington. J. Geophys. Res. Earth Surf. 2008, 113, F02012. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Scott, C.; Keating, D.; Clarke, A.; Das, J.; Arrowsmith, R. Quantifying and Analysing Rock Trait Distributions of Rocky Fault Scarps Using Deep Learning. Earth Surf. Process. Landf. 2023, 48, 1234–1250. [Google Scholar] [CrossRef]
- Horowitz, S.S.; Schultz, P.H. Printing Space: Using 3D Printing of Digital Terrain Models in Geosciences Education and Research. J. Geosci. Educ. 2014, 62, 138–145. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Z.; Pereira, J.-M.; Gan, Y. Permeability of Uniformly Graded 3D Printed Granular Media. Geophys. Res. Lett. 2021, 48, e2020GL090728. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, C.; Zhou, H.; Hou, J.; Su, G.; Gao, Y.; Liu, N.; Singh, H.K. Mechanical Behavior of Structurally Reconstructed Irregular Columnar Jointed Rock Mass Using 3D Printing. Eng. Geol. 2020, 268, 105509. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, C.; Zou, J.; Wang, B.; Song, F.; Yang, W. DEM Exploration of the Effect of Particle Shape on Particle Breakage in Granular Assemblies. Comput. Geotech. 2020, 122, 103542. [Google Scholar] [CrossRef]
Parameter | Formula | Range | Remarks/Reference | |
---|---|---|---|---|
Size | ||||
1 | Long Axis | 0 to ∞ | The three axes of the particle are measured as the length of the three sides of the best-fit-oriented cuboid over the particle [1] | |
Intermediate Axis | 0 to | |||
Short Axis | 0 to | |||
Shape | ||||
2 | Flatness (F) | 0 to 1 | [1] | |
3 | Elongation (E) | 0 to 1 | [1] | |
4 | Wentworth Flatness Index (WFI) | 1 to ∞ | [56] | |
5 | Krumbein Intercept Sphericity (KIS) | 0 to 1 | [23,57] | |
6 | Corey Shape Factor (CSF) | 0 to 1 | [58] | |
7 | Maximum Projection Sphericity (MPS) | 0 to 1 | [59,60] | |
8 | Aschenbrenner Working Sphericity (AWS) | 0 to 1 | is and is [61] | |
9 | Aschenbrenner Shape Factor (ASF) | 0 to ∞ | [61] | |
10 | Janke Form Factor (JFF) | 0 to 1 | [62] | |
11 | Oblate–Prolate Index (OPI) | −∞ to +∞ | [63] | |
12 | Solidity (SOL) | 0 to 1 | is the particle volume, and is the volume of the convex hull [64] | |
13 | Circularity (CIR) | 0 to 1 | The ratio of particle volume to the volume of the sphere with an equivalent surface area to the particle [61] | |
14 | Volume Sphericity (VSP) | 0 to 1 | is the particle volume and is the volume of the smallest circumscribing sphere to the particle [65] | |
15 | Diameter Sphericity (DSP) | 0 to 1 | is the diameter of the sphere with equivalent volume to the particle, and is the diameter of the smallest circumscribing sphere [66] | |
16 | Surface Area Sphericity (SAS) | 0 to 1 | is the surface area of the sphere with equivalent volume to the particle, and is the surface area of the particle [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunwal, M.; Lim, A. A Low-Cost, Repeatable Method for 3D Particle Analysis with SfM Photogrammetry. Geosciences 2023, 13, 190. https://doi.org/10.3390/geosciences13070190
Tunwal M, Lim A. A Low-Cost, Repeatable Method for 3D Particle Analysis with SfM Photogrammetry. Geosciences. 2023; 13(7):190. https://doi.org/10.3390/geosciences13070190
Chicago/Turabian StyleTunwal, Mohit, and Aaron Lim. 2023. "A Low-Cost, Repeatable Method for 3D Particle Analysis with SfM Photogrammetry" Geosciences 13, no. 7: 190. https://doi.org/10.3390/geosciences13070190
APA StyleTunwal, M., & Lim, A. (2023). A Low-Cost, Repeatable Method for 3D Particle Analysis with SfM Photogrammetry. Geosciences, 13(7), 190. https://doi.org/10.3390/geosciences13070190