Concentration of Trace Elements in Cryoconites of Mountain and Polar Regions of the World
Abstract
:1. Introduction
2. Materials and Methods
2.1. The study Area
2.2. Methods
3. Results
3.1. Features of Trace Elements Accumulation in Cryoconite on the Mushketov Glacier, Severnaya Zemlya
3.2. Features of Accumulation of Trace Elements in Cryoconite in the Polar Urals
Glacier | Cu | Zn | Ni | Pb | Cd |
---|---|---|---|---|---|
µg/g | |||||
Ray-Iz | 11.3 | 40.8 | 1312.6 | 1.83 | <0.005 |
6.42 | 29.5 | 2110.2 | <0.10 | <0.005 | |
6.59 | 31.4 | 1947.6 | 0.73 | <0.005 | |
IGAN | 41.2 | 101.4 | 28.70 | 40.5 | 0.212 |
39.7 | 109.1 | 20.90 | 43.55 | 0.134 | |
40.9 | 108.2 | 18.79 | 39.00 | 0.098 | |
58.5 | 107.0 | 42.4 | 122.9 | 0.346 | |
43.9 | 100.1 | 53.8 | 144.8 | 0.258 | |
35.2 | 77.9 | 25.1 | 136.4 | 0.074 | |
Obrucheva | 50.8 | 133.4 | 57.7 | 170.7 | 0.370 |
41.8 | 103.7 | 34.2 | 60.4 | 0.200 | |
19.3 | 56.6 | 24.7 | 25.3 | 0.085 | |
MPC | 33.0 | 55.0 | 20.0 | 32.0 | 0.500 |
Kharp settlement * | 142 | 90 | 52 | 13 | - |
Soil of Polar Ural (Chernaya mountain) * | 70 | 66 | 1491 | 6 | - |
Min | 6.42 | 29.5 | 18.79 | 0.1 | <0.005 |
Max | 58.5 | 133.4 | 2110.2 | 170.1 | 0.37 |
Mean | 32.9 | 83.2 | 473.1 | 65.5 | 0.149 |
Standart deviation | 17.6 | 35.1 | 814.4 | 61.5 | 0.13 |
Coefficient of variation | 53.4 | 42.1 | 172.1 | 93.9 | 85.8 |
3.3. Features of Accumulation of Trace Elements in Cryoconite on the Glaciers of the Caucasus
Glacier | Cu | Zn | Ni | Pb | Cd |
---|---|---|---|---|---|
µg/g | |||||
Bolshoy Azau | 2.2 | 3.1 | 1.5 | 0.2 | 0.044 |
1.8 | 5.4 | 1.3 | 1.1 | 0.112 | |
6.2 | 22.1 | 9.6 | 9.2 | 0.094 | |
Bezengi | 8.1 | 44.6 | 12.1 | 8.3 | <0.005 |
6.7 | 30.4 | 6.5 | 3.7 | <0.005 | |
17.4 | 85.7 | 19.0 | 30.0 | 0.05 | |
Bezengi, moraine | 12.6 | 49.2 | 13.7 | 9.6 | <0.005 |
12.5 | 58.7 | 14.2 | 15.7 | <0.005 | |
12.9 | 54.9 | 15.2 | 11.0 | <0.005 | |
Bezengi, periglacial soil | 11.0 | 59.0 | 11.7 | 8.7 | <0.005 |
15.6 | 72.6 | 14.2 | 12.7 | <0.005 | |
12.3 | 57.8 | 12.3 | 7.6 | 0.05 | |
Bezengi, background soil | 4.9 | 34.3 | 6.1 | 10.9 | 0.05 |
2.4 | 33.4 | 3.6 | 7.9 | <0.005 | |
3.4 | 40.2 | 4.9 | 8.5 | 0.02 | |
MPC | 33.0 | 55.0 | 20.0 | 32.0 | 0.500 |
Min | 1.8 | 3.1 | 1.3 | 0.2 | <0.005 |
Max | 17.4 | 85.7 | 19 | 30 | 0.112 |
Mean | 8.6 | 43.4 | 9.7 | 9.7 | 0.03 |
Standart deviation | 5.15 | 22.95 | 5.41 | 6.93 | 0.03 |
Coefficient of variation | 59.4 | 52.8 | 55.7 | 71.6 | 114.6 |
3.4. Features of Accumulation of Trace Elements in Cryoconite on the Aldegonda Glacier, West Spitsbergen
Glacier | Cu | Zn | Ni | Pb | Cd |
---|---|---|---|---|---|
µg/g | |||||
Aldegonda | 10.5 | 47.3 | 16.9 | 4.8 | 0.167 |
17.0 | 62.3 | 26.9 | 9.2 | 0.039 | |
21.0 | 63.2 | 32.9 | 9.9 | 0.042 | |
9.6 | 48.1 | 17.4 | 5.1 | 0.199 | |
Aldegonda, lake sediments | 5.9 | 31.3 | 9.2 | 3.8 | 0.153 |
5.7 | 22.8 | 8.1 | 2.4 | 0.214 | |
7.9 | 33.5 | 11.4 | 2.8 | 0.225 | |
6.9 | 54.4 | 20.2 | 6.5 | 0.130 | |
6.9 | 52.5 | 18.0 | 5.9 | 0.173 | |
Aldegonda, moraine | 8.88 | 53.2 | 19.1 | 8.9 | 0.183 |
5.7 | 22.6 | 8.5 | 2.1 | 0.174 | |
8.4 | 43.8 | 15.2 | 4.9 | 0.147 | |
MPC | 33.0 | 55.0 | 20.0 | 32.0 | 0.500 |
Min | 5.7 | 22.6 | 8.1 | 2.1 | 0.039 |
Max | 21 | 63.2 | 32.9 | 9.9 | 0.225 |
Mean | 9.5 | 44.5 | 16.9 | 5.5 | 0.153 |
Standart deviation | 4.75 | 14.05 | 7.46 | 2.66 | 0.05 |
Coefficient of variation | 49.9 | 31.5 | 43.9 | 48.2 | 38.6 |
3.5. Features of Trace Elements Accumulation in Cryoconite on the glaciers of West Antarctica
Glacier | Cu | Zn | Ni | Pb | Cd |
---|---|---|---|---|---|
µg/g | |||||
Bellingshausen Ice Dome | 6.8 | 16.1 | 6.1 | 3.1 | 0.257 |
7.5 | 32.9 | 6.2 | 3.4 | 0.342 | |
8.5 | 26.4 | 6.1 | 1.2 | 0.127 | |
Bellingshausen Ice Dome, moraine | 6.8 | 23.8 | 7.6 | 3.4 | 0.323 |
7.0 | 34.5 | 7.8 | 3.6 | 0.215 | |
7.9 | 34.7 | 8.1 | 3.1 | 0.122 | |
Bellingshausen Ice Dome, glacial soil | 10.8 | 10.3 | 5.4 | 4.1 | 0.323 |
12.2 | 11.2 | 5.2 | 4.6 | 0.217 | |
8.9 | 11.1 | 5.2 | 4.1 | 0.312 | |
Bellingshausen Ice Dome, soil | 22.3 | 29.0 | 8.9 | 6.3 | 0.518 |
24.6 | 32.9 | 7.9 | 6.8 | 0.610 | |
19.8 | 26.4 | 9.1 | 6.4 | 0.459 | |
Pimpirev | 9.2 | 14.5 | 9.8 | 3.1 | 0.030 |
10.2 | 17.9 | 7.6 | 2.8 | 0.040 | |
10.6 | 14.5 | 9.8 | 2.9 | 0.007 | |
Pimpirev, glacial soil | 12.3 | 13.4 | 12.0 | 2.3 | 0.003 |
11.2 | 16.8 | 13.2 | 2.3 | 0.004 | |
15.7 | 15.5 | 11.0 | 2.4 | 0.005 | |
Pimpirev, soil near station | 29.3 | 87.7 | 31.2 | 8.7 | 0.009 |
32.1 | 78.0 | 21.1 | 8.9 | 0.012 | |
28.1 | 67.9 | 25.6 | 5.9 | 0.008 | |
MPC | 33.0 | 55.0 | 20.0 | 32.0 | 0.500 |
Rocks in King George isl. * | 111 | 66 | 12.5 | 7.7 | - |
Min | 6.8 | 10.3 | 5.2 | 1.2 | 0.003 |
Max | 32.1 | 87.7 | 31.2 | 8.9 | 0.61 |
Mean | 14.4 | 29.3 | 10.7 | 4.2 | 0.187 |
Standart deviation | 8.17 | 22.1 | 6.9 | 2.1 | 0.2 |
Coefficient of variation | 56.8 | 75.3 | 64.6 | 49.7 | 101.5 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AMAP. AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers. Arctic Monitoring and Assessment Programme (AMAP); AMAP: Oslo, Norway, 2015; p. 116. [Google Scholar]
- Baccolo, G.; Nastasi, M.; Massabò, D.; Clason, C.; Di Mauro, B.; Di Stefano, E.; Łokas, E.; Prati, P.; Previtali, E.; Takeuchi, N.; et al. Artificial and natural radionuclides in cryoconite as tracers of supraglacial dynamics: Insights from the Morteratsch glacier (Swiss Alps). CATENA 2020, 191, 104577. [Google Scholar] [CrossRef]
- Casey, K.A.; Kaspari, S.D.; Skiles, S.M.; Kreutz, K.; Handley, M.J. The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica. J. Geophys. Res. Atmos. 2017, 122, 6592–6610. [Google Scholar] [CrossRef]
- Zazovskaya, E.P.; Mergelov, N.S.; Shishkov, V.A.; Dolgikh, A.V.; Dobryansky, A.S.; Lebedeva, M.P.; Turchinskaya, S.M.; Goryachkin, S.V. Cryoconites as Factors of Soil Development in Conditions of Rapid Retreat of the Aldegonda Glacier, Western Svalbard. Eurasian Soil Sci. 2022, 55, 299–312. [Google Scholar] [CrossRef]
- Beard, D.B.; Clason, C.C.; Rangecroft, S.; Poniecka, E.; Ward, K.J.; Blake, W.H. Anthropogenic contaminants in glacial environments I: Inputs and accumulation. Prog. Phys. Geogr. Earth Environ. 2022, 46, 630–648. [Google Scholar] [CrossRef]
- Koziol, K.; Uszczyk, A.; Pawlak, F.; Frankowski, M.; Polkowska, Ż. Seasonal and Spatial Differences in Metal and Metalloid Concentrations in the Snow Cover of Hansbreen, Svalbard. Front. Earth Sci. 2021, 8, 538762. [Google Scholar] [CrossRef]
- Naeth, M.A.; Wilkinson, S.R. Lichens as biomonitors of air quality around a diamond mine, northwest territories, Canada. J. Environ. Qual. 2008, 37, 1675–1684. [Google Scholar] [CrossRef] [Green Version]
- Amaro, E.; Padeiro, A.; Mão de Ferro, A.; Mota, A.M.; Leppe, M.; Verkulich, S.; Hughes, K.A.; Peter, H.U.; Canário, J. Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic. Mar. Pollut. Bull. 2015, 97, 523–527. [Google Scholar] [CrossRef]
- Herbert, R.; Moline, J.; Skloot, G.; Metzger, K.; Baron, S.; Luft, B.; Markowitz, S.; Udasin, I.; Harrison, D.; Stein, D.; et al. The World Trade Center Disaster and the Health of Workers: Five-Year Assessment of a Unique Medical Screening Program. Environ. Health Perspect. 2006, 114, 1853–1858. [Google Scholar] [CrossRef] [Green Version]
- Grannas, A.M.; Bogdal, C.; Hageman, K.J.; Halsall, C.; Harner, T.; Hung, H.; Kallenborn, R.; Klán, P.; Klánová, J.; Macdonald, R.W.; et al. The role of the global cryosphere in the fate of organic contaminants. Atmos. Chem. Phys. 2013, 13, 3271–3305. [Google Scholar] [CrossRef] [Green Version]
- Steinlin, C.; Bogdal, C.; Pavlova, P.A.; Schwikowski, M.; Lüthi, M.P.; Scheringer, M.; Schmid, P.; Hungerbühler, K. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 2. Model Results of Chemical Fate Processes. Environ. Sci. Technol. 2015, 49, 14092–14100. [Google Scholar] [CrossRef]
- Miner, K.R.; Campbell, S.; Gerbi, C.; Liljedahl, A.; Anderson, T.; Perkins, L.B.; Bernsen, S.; Gatesman, T.; Kreutz, K.J. Organochlorine Pollutants within a Polythermal Glacier in the Interior Eastern Alaska Range. Water 2018, 10, 1157. [Google Scholar] [CrossRef]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [Green Version]
- Rehman, Z.U.; Khan, S.; Shah, M.T.; Brusseau, M.L.; Khan, S.A.; Mainhagu, J. Transfer of Heavy Metals from Soils to Vegetables and Associated Human Health Risks at Selected Sites in Pakistan. Pedosphere 2018, 28, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Nizamutdinov, T.; Mavlyudov, B.; Wang, W.; Abakumov, E. The body of the Bellingshausen Ice Dome as a biogeochemical space. Solid Earth Sci. 2022, 7, 215–236. [Google Scholar] [CrossRef]
- CCAMLR. Commission for the Conservation of Antarctic Marine Living Resources. Available online: https://www.ccamlr.org/ (accessed on 1 April 2023).
- Lu, Z.; Cai, M.; Wang, J.; Yang, H.; He, J. Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: The extent of anthropogenic pollution. Environ. Monit. Assess. 2012, 184, 7013–7021. [Google Scholar] [CrossRef]
- Mendonça, T.; Melo, V.F.; Schaefer, C.E.G.R.; Simas, F.N.B.; Michel, R.F.M. Clay Mineralogy of Gelic Soils from the Fildes Peninsula, Maritime Antarctica. Soil Sci. Soc. Am. J. 2013, 77, 1842–1851. [Google Scholar] [CrossRef]
- Abakumov, E.; Lupachev, A.; Andreev, M. Trace element content in soils of the King George and Elephant islands, maritime Antarctica. Chem. Ecol. 2017, 33, 856–868. [Google Scholar] [CrossRef]
- Chu, Z.; Yang, Z.; Wang, Y.; Sun, L.; Yang, W.; Yang, L.; Gao, Y. Assessment of heavy metal contamination from penguins and anthropogenic activities on Fildes Peninsula and Ardley Island, Antarctic. Sci. Total Environ. 2018, 646, 951–957. [Google Scholar] [CrossRef]
- Ahn, I.-Y.; Lee, S.H.; Kim, K.T.; Shim, J.H.; Kim, D.-Y. Baseline heavy metal concentrations in the Antarctic clam, Laternula elliptica in Maxwell Bay, King George Island, Antarctica. Mar. Pollut. Bull. 1996, 32, 592–598. [Google Scholar] [CrossRef]
- Samyshev, E.Z.; Minkina, N.I. Coastal Ecosystem Contamination by Heavy Metals as an Indicator of Climate Change in Antarctica. J. Comput. Theor. Nanosci. 2019, 16, 228–236. [Google Scholar] [CrossRef]
- Sanchez, N.; Reiss, C.S.; Holm-Hansen, O.; Hewes, C.D.; Bizsel, K.C.; Ardelan, M.V. Weddell-Scotia Confluence Effect on the Iron Distribution in Waters Surrounding the South Shetland (Antarctic Peninsula) and South Orkney (Scotia Sea) Islands during the Austral Summer in 2007 and 2008. Front. Mar. Sci. 2019, 6, 771. [Google Scholar] [CrossRef] [Green Version]
- Honda, K.; Yamamoto, Y.; Tatsukawa, R. Distribution of Heavy Metals in Antarctic Marine Ecosystem. Proc. NIPR Symp. Polar Biol. 1987, 1, 184–197. [Google Scholar]
- Fuentes, V.; Alurralde, G.; Meyer, B.; Aguirre, G.E.; Canepa, A.; Wölfl, A.-C.; Hass, H.C.; Williams, G.N.; Schloss, I.R. Glacial melting: An overlooked threat to Antarctic krill. Sci. Rep. 2016, 6, 27234. [Google Scholar] [CrossRef] [Green Version]
- Zaborska, A.; Carroll, J. Handbook of Parameter Values for the Prediction of Radionuclide Transfer to Wildlife; International Atomic Energy Agency: Vienna, Austria, 2014. [Google Scholar]
- Macdonald, R.W.; Harner, T.; Fyfe, J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci. Total Environ. 2005, 342, 5–86. [Google Scholar] [CrossRef] [PubMed]
- Nagatsuka, N.; Takeuchi, N.; Nakano, T.; Shin, K.; Kokado, E. Geographical variations in Sr and Nd isotopic ratios of cryoconite on Asian glaciers. Environ. Res. Lett. 2014, 9, 045007. [Google Scholar] [CrossRef] [Green Version]
- Łokas, E.; Zaborska, A.; Kolicka, M.; Różycki, M.; Zawierucha, K. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 2016, 160, 162–172. [Google Scholar] [CrossRef]
- Łokas, E.; Zaborska, A.; Sobota, I.; Gaca, P.; Milton, J.A.; Kocurek, P.; Cwanek, A. Airborne radionuclides and heavy metals in high Arctic terrestrial environment as the indicators of sources and transfers of contamination. Cryosphere 2019, 13, 2075–2086. [Google Scholar] [CrossRef] [Green Version]
- Van Oostdam, J.; Donaldson, S.G.; Feeley, M.; Arnold, D.; Ayotte, P.; Bondy, G.; Chan, L.; Dewaily, E.; Furgal, C.M.; Kuhnlein, H.; et al. Human health implications of environmental contaminants in Arctic Canada: A review. Sci. Total Environ. 1999, 351–352, 165–246. [Google Scholar] [CrossRef]
- Macdonald, R.W.; Barrie, L.A.; Bidleman, T.F.; Diamond, M.L.; Gregor, D.J.; Semkin, R.G.; Strachan, W.M.J.; Li, Y.F.; Wania, F.; Alaee, M.; et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 2000, 254, 93–234. [Google Scholar] [CrossRef]
- McConnell, J.R.; Edwards, R. Coal burning leaves toxic heavy metal legacy in the Arctic. Proc. Natl. Acad. Sci. USA 2008, 105, 12140–12144. [Google Scholar] [CrossRef] [Green Version]
- Cong, Z.; Kang, S.; Zhang, Y.; Gao, S.; Wang, Z.; Liu, B.; Wan, X. New insights into trace element wet deposition in the Himalayas: Amounts, seasonal patterns, and implications. Environ. Sci. Pollut. Res. 2015, 22, 2735–2744. [Google Scholar] [CrossRef]
- Jiao, X.; Dong, Z.; Kang, S.; Li, Y.; Jiang, C.; Rostami, M. New insights into heavy metal elements deposition in the snowpacks of mountain glaciers in the eastern Tibetan Plateau. Ecotoxicol. Environ. Saf. 2021, 207, 111228. [Google Scholar] [CrossRef] [PubMed]
- Barbante, C.; Schwikowski, M.; Döring, T.; Gäggeler, H.W.; Schotterer, U.; Tobler, L.; Van de Velde, K.; Ferrari, C.; Cozzi, G.; Turetta, A.; et al. Historical Record of European Emissions of Heavy Metals to the Atmosphere Since the 1650s from Alpine Snow/Ice Cores Drilled near Monte Rosa. Environ. Sci. Technol. 2004, 38, 4085–4090. [Google Scholar] [CrossRef]
- Baccolo, G.; Di Mauro, B.; Massabò, D.; Clemenza, M.; Nastasi, M.; Delmonte, B.; Prata, M.; Prati, P.; Previtali, E.; Maggi, V. Cryoconite as a temporary sink for anthropogenic species stored in glaciers. Sci. Rep. 2017, 7, 9623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.R.; Zhang, X.; Zhao, Y.P.; Wang, Y.Q.; Zhong, Y.X. Spatial Distribution Characteristics and Source Apportionment of Soil Heavy Metals in Chinese Wolfberry Land Based on GIS and the Receptor Model. Huan Jing Ke Xue 2019, 40, 2885–2894. [Google Scholar] [PubMed]
- Zalikhanov, M.C.; Kerimov, A.M.; Stepanov, G.V.; Chernyak, M.M. Pollution of glaciers in the Central Caucasus. MGI 1992, 75, 15–22. [Google Scholar]
- Kutuzov, S.S.; Mikhalenko, V.N.; Shahgedanova, M.V.; Ginot, P.; Kozachek, A.V.; Kuderina, T.M.; Lavrentiev, I.I.; Popov, G.V. Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus. Ice Snow 2014, 54, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Kerimov, A.M.; Rototaeva, O.V.; Khmelevskoy, I.F. Distribution of heavy metals in the surface layers of the snow and firn strata on the southern slope of Mount Elbrus. Ice Snow 2011, 2, 24–34. [Google Scholar]
- Gedgafova, F.V.; Uligova, T.S. Heavy metals in natural and anthropogenic ecosystems of the Central Caucasus. Ecology 2007, 4, 317–320. [Google Scholar]
- Gedgafova, F.V.; Uligova, T.S. Heavy metals in the components of the natural environment under conditions of technogenic pollution in the middle mountains of the Central Caucasus. Environ. Bull. North Cauc. 2008, 4, 12–18. [Google Scholar]
- Bolshiyanov, D.Y.; Sokolov, V.T.; Yozhikov, I.S.; Bulatov, R.K.; Rachkova, A.N.; Fedorov, G.B.; Paramzin, A.S. Feeding conditions and variability of glaciers of Severnaya Zemlya archipelago based on 2014–2015 observations Ice Snow. 2016, 56, 358–368.
- Ivanov, M.N. Late Holocene Glaciation Evolution in the Polar Urals; Moscow State University: Moscow, Russia, 2013. [Google Scholar]
- Nosenko, G.A.; Muraviev, A.Y.; Ivanov, M.N.; Sinitsky, A.I.; Kobelev, V.O.; Nikitin, S.A. Response of the Polar Urals glaciers to the modern climate changes. Ice Snow 2020, 60, 42–57. [Google Scholar]
- Kamnev, Y.K.; Ivanov, M.N. Georadiolocation research on the Obruchev Glacier. Sci. Bull. Yamalo-Nenets Auton. Dist. 2020, 109, 52–57. [Google Scholar]
- Abakumov, E.; Nizamutdinov, T.; Yaneva, R.; Zhiyanski, M. Polycyclic Aromatic Hydrocarbons and Potentially Toxic Elements in Soils of the Vicinity of the Bulgarian Antarctic Station “St. Kliment Ohridski” (Antarctic Peninsula). Front. Environ. Sci. 2021, 9, 656271. [Google Scholar] [CrossRef]
- Mavlyudov, B.R.; Kudikov, A.V. Changes in the Aldegonda Glacier since the beginning of the twentieth century. Bull. Kola Sci. Cent. Russ. Acad. Sci. 2018, 3, 152–162. [Google Scholar]
- Mavlyudov, B.R. Internal drainage system of Aldegondabreen, Spitsbergen, according to speleological studies. Arct. Antarct. Res. 2022, 68, 278–307. [Google Scholar] [CrossRef]
- Mavlyudov, B.R. Bellingshausen Dome; Publishing house “Codex”: Moscow, Russia, 2016. [Google Scholar]
- Mavlyudov, B.R. Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica. Ice Snow 2022, 62, 325–342. [Google Scholar]
- Jiankan, H.; Zichu, X.; Fengnian, D.; Wanchang, Z. Volcanic eruptions recorded in an ice core from Collins Ice Cap, King George Island, Antarctica. Ann. Glaciol. 2017, 29, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Vasilchuk, Y.K.; Chizhova, Y.N.; Budantseva, N.A.; Mukhina, Y.S. The rapid decline of the Big Azau Glacier in the Elbrus region against the background of stable climatic conditions and the risks arising from it. Georisk 2010, 2, 16–29. [Google Scholar]
- Bushueva, I. Fluctuations of Caucasian glaciers in 20th century. In Proceedings of the 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), Annecy, France, 22–24 July 2015; pp. 1–4. [Google Scholar]
- Kuznetsov, S.K.; Shaibekov, R.I.; Gaikovich, M.M.; Kovalevich, R.S.; Vokuyev, M.V.; Shevchuk, S.S. Mineralogical features of chromium ores from the Lagortinskaya-Kershorskaya area in the Polar Urals. Proc. Komi Sci. Cent. Ural. Branch Russ. Acad. Sci. 2013, 2, 73–82. [Google Scholar]
- Alekseev, I.I.; Dinkelaker, N.V.; Oripova, A.A.; Semyina, G.A.; Morozov, A.A.; Abakumov, E.V. Assessment of ecotoxicological state of soils of the Polar Ural and Southern Yamal. Hyg. Sanit. 2017, 96, 941–945. [Google Scholar] [CrossRef]
- Nizamutdinov, T.; Mavlyudov, B.; Polyakov, V.; Abakumov, E. Sediments from cryoconite holes and dirt cones on the surface of Svalbard glaciers: Main chemical and physicochemical properties. Acta Geochim. 2023, 42, 346–359. [Google Scholar] [CrossRef]
- Owens, P.N.; Blake, W.H.; Millward, G.E. Extreme levels of fallout radionuclides and other contaminants in glacial sediment (cryoconite) and implications for downstream aquatic ecosystems. Sci. Rep. 2019, 9, 12531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilflinger, T.; Lettner, H.; Hubmer, A.; Bossew, P.; Sattler, B.; Slupetzky, H. Cryoconites from Alpine glaciers: Radionuclide accumulation and age estimation with Pu and Cs isotopes and 210Pb. J. Environ. Radioact. 2018, 186, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Zhang, Q.; Qian, Y.; Ji, Z.; Li, C.; Cong, Z.; Zhang, Y.; Guo, J.; Du, W.; Huang, J.; et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: Current progress and future prospects. Natl. Sci. Rev. 2019, 6, 796–809. [Google Scholar] [CrossRef] [PubMed]
- Shivaji, S.; Pratibha, M.S.; Sailaja, B.; Hara Kishore, K.; Singh, A.K.; Begum, Z.; Anarasi, U.; Prabagaran, S.R.; Reddy, G.S.N.; Srinivas, T.N.R. Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 2011, 15, 1–22. [Google Scholar] [CrossRef]
- Singh, S.M.; Avinash, K.; Sharma, P.; Mulik, R.U.; Upadhyay, A.K.; Ravindra, R. Elemental variations in glacier cryoconites of Indian Himalaya and Spitsbergen, Arctic. Geosci. Front. 2017, 8, 1339–1347. [Google Scholar] [CrossRef]
- Rizzi, C.; Finizio, A.; Maggi, V.; Villa, S. Spatial-temporal analysis and risk characterisation of pesticides in Alpine glacial streams. Environ. Pollut. 2019, 248, 659–666. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; An, S.; Li, H.; Deng, X.; Wang, P.; Fan, M. Land-use patterns determine the distribution of soil microplastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau. J. Hazard. Mater. 2022, 426, 127806. [Google Scholar] [CrossRef]
Glacier | Coordinates | Description | Glacier | Coordinates | Description |
---|---|---|---|---|---|
Mushketov | N79°05′46″ E101°51′25″ | Cryoconite | Aldegonda | N77°58′36″ E14°5′53″ | Cryoconite |
N79°05′52″ E101°51′27″ | N77°58′54″ E14°5′13″ | ||||
N79°07′06″ E102°09′13″ | N77°58′50″ E14°4′36″ | ||||
N79°05′43″ E101°43′22″ | N77°58′38″ E14°3′40″ | ||||
N79°06′19″ E101°51′22″ | Aldegonda, lake sediments | N77°59′20″ E14°10′10″ | Lake sediments | ||
Ray-Iz | N66°54′5″ E65°26′13″ | Cryoconite | N77°59′14″ E14°10′52″ | ||
IGAN | N67°34′32″ E66°02′00″ | Cryoconite | N77°58′44″ E14°6′19″ | ||
N77°59′14″ E14°8′49″ | |||||
N77°59′11″ E14°9′6″ | |||||
Aldegonda, moraine | N77°58′46″ E14°6′5″ | Moraine deposits | |||
N77°59′19″ E14°11′32″ | |||||
N77°59′13″ E14°9′40″ | |||||
Obrucheva | N65°38′70″ E65°47′10″ | Cryoconite | Bellingshausen Ice Dome | S62°10′42″ W58°54′15″ | Cryoconite |
S62°10′43″ W58°54′28″ | |||||
S62°09′18″ W58°54′05″ | |||||
Bolshoy Azau | N43°17′18″ E42°26′11″ | Cryoconite | Bellingshausen Ice Dome, moraine | S62°10′54″ W58°51′52″ | Moraine deposits |
Bezengi | N43°6′33″ E43°8′12″ | Cryoconite | Bellingshausen Ice Dome, glacial soil | S62°10′59″ W58°52′21″ | Soil near glacier |
N43°6′17″ E43°8′46″ | Bellingshausen Ice Dome, soil | S62°10′58″ W58°51′44″ | Leptosol | ||
N43°6′17″ E43°7′43″ | S62°10′57″ W58°51′52″ | ||||
Bezengi, moraine | N43°6′28″ E43°7′45″ | Moraine deposits | S62°10′56″ W58°51′58″ | ||
N43°6′23″ E43°7′54″ | Pimpirev | S62°41′08″ W60°24′20″ | Cryoconite | ||
N43°6′19″ E43°7′51″ | Pimpirev, glacial soil | S62°41′23″ W60°25′04″ | Leptosol | ||
Bezengi, periglacial soil | N43°8′37″ E43°10′43″ | Leptic Umbrisol | Pimpirev, soil near station | S62°38′32″ W60°21′59″ | Leptosol |
Bezengi, background soil | N43°10′17″ E43°13′53″ | Molic Umbrisol |
Glacier | Cu | Zn | Ni | Pb | Cd |
---|---|---|---|---|---|
µg/g | |||||
Mushketov | 23.3 | 15.1 | 38.3 | 15.1 | 0.627 |
18.5 | 14.5 | 36.8 | 14.5 | 0.663 | |
21.2 | 16.1 | 38.6 | 16.1 | 0.436 | |
22.2 | 16.1 | 45.1 | 16.1 | 0.445 | |
25.0 | 17.7 | 39.0 | 17.7 | 0.640 | |
MPC | 33.0 | 55.0 | 20.0 | 32.0 | 0.500 |
Min | 18.5 | 14.5 | 36.8 | 14.5 | 0.436 |
Max | 25 | 17.7 | 45.1 | 17.7 | 0.663 |
Mean | 22.1 | 15.9 | 39.6 | 15.9 | 0.562 |
Standart deviation | 2.42 | 1.21 | 3.21 | 1.21 | 0.111 |
Coefficient of variation | 11.02 | 7.65 | 8.11 | 7.65 | 19.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abakumov, E.; Tembotov, R.; Polyakov, V.; Ivanov, M.; Mavlyudov, B.; Kushnov, I.; Nizamutdinov, T.; Yaneva, R.; Zhiyanski, M. Concentration of Trace Elements in Cryoconites of Mountain and Polar Regions of the World. Geosciences 2023, 13, 188. https://doi.org/10.3390/geosciences13060188
Abakumov E, Tembotov R, Polyakov V, Ivanov M, Mavlyudov B, Kushnov I, Nizamutdinov T, Yaneva R, Zhiyanski M. Concentration of Trace Elements in Cryoconites of Mountain and Polar Regions of the World. Geosciences. 2023; 13(6):188. https://doi.org/10.3390/geosciences13060188
Chicago/Turabian StyleAbakumov, Evgeny, Rustam Tembotov, Vyacheslav Polyakov, Mikhail Ivanov, Bulat Mavlyudov, Ivan Kushnov, Timur Nizamutdinov, Rositsa Yaneva, and Miglena Zhiyanski. 2023. "Concentration of Trace Elements in Cryoconites of Mountain and Polar Regions of the World" Geosciences 13, no. 6: 188. https://doi.org/10.3390/geosciences13060188
APA StyleAbakumov, E., Tembotov, R., Polyakov, V., Ivanov, M., Mavlyudov, B., Kushnov, I., Nizamutdinov, T., Yaneva, R., & Zhiyanski, M. (2023). Concentration of Trace Elements in Cryoconites of Mountain and Polar Regions of the World. Geosciences, 13(6), 188. https://doi.org/10.3390/geosciences13060188