The Fate of Phosphorus in Experimental Burials: Chemical and Ultramicroscopic Characterization and Environmental Control of Its Persistency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Area
2.3. Soil Description
- O
- Organic material lying under herbaceous vegetation.
- A1
- Dark brown (7.5 YR 3/2); loamy and sandy-loam, weak fine granular structure; very porous; clear wavy boundary.
- A2
- Dark brown (7.5 YR 4/2); loamy and sandy-loam, weak fine granular structure; very porous; clear wavy boundary.
- C1
- Dark brown (7.5 YR 4/2); sandy loamy, frequent centimetric clasts (2–5 cm), weak structure; very porous, frequent roots; clear linear boundary.
- C2
- Brown (7.5 YR 5/2); sand, frequent centimetric clasts (5–10 cm), loose; clear linear boundary.
- C3
- Brown (7.5 YR 5/2); sand, overlapping levels of decimeter and centimeter clasts, loose; clear linear boundary.
- C4
- Brown (7.5 YR 5/2); sand, dominant decimeter and centimeter clasts, fining upward, loose; lower boundary not exposed.
2.4. Analytical Procedures
- −
- −
- A “plug” specimen (Figure 1b), subsampled in a plastic box, then impregnated with epoxy resin and finally dry polished by hand in order to obtain a flat surface, flawlessly suitable for EDS analyses—in this case the specimen preparation is longer (i.e., weeks), but the EDS microanalyses are extremely precise.
2.5. Data Analysis
3. Results
3.1. Bioavailable Phosphorus Content
3.2. Phosphate Mean Concentration
4. Discussion
4.1. Phosphorus Persistency through Phosphates
4.2. Environmental Control on the Persistence of Phosphorus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Somma, R.; Cascio, M.; Silvestro, M.; Torre, E. A GIS-based quantitative approach for the search of clandestine graves. Italy J. Forensic Sci. 2018, 63, 882–898. [Google Scholar] [CrossRef] [PubMed]
- Somma, R.; Costa, N. Unraveling Crimes with Geology: As Geological and Geographical Evidence Related to Clandestine Graves May Assist the Judicial System. Geosciences 2022, 12, 339. [Google Scholar] [CrossRef]
- France, D.L.; Griffin, T.J.; Swanburg, J.G.; Lindemann, J.W.; Davenport, C.G.; Trammel, V. Multidisciplinary approach to the detection of clandestine graves. J. Forensic Sci. 1992, 37, 1445–1458. [Google Scholar] [CrossRef]
- Goldberg, P.; Macphail, R.I. Practical and Theoretical Geoarchaeology; Blackwell Publishing: Malden, MA, USA, 2006. [Google Scholar]
- Schultz, J.J.; Collins, M.E.; Falsetti, A.B. Sequential monitoring of burials containing small pig cadavers using ground penetrating radar. J. Forensic Sci. 2008, 53, 279–287. [Google Scholar] [CrossRef]
- Tagliabue, G.; Crespi, S.; Trombino, L. Il Suolo Come Contenitore di Evidenze: Le Geoscienze Applicate allo Studio delle Sepolture della Cripta della Ca’ Granda. In Sepolcreto della Ca’ Granda, un Tesoro Storico e Scientifico di Milano.; Mattia, M., Ed.; Ledizioni: Milano, Italy, 2021; pp. 167–174. [Google Scholar]
- Carter, D.O.; Tibbett, M.; Yellowlees, D. Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Sci. Int. 2010, 200, 60–66. [Google Scholar] [CrossRef]
- Turner, P.; Wiltshire, B.D. Experimental validation of forensic evidence: A study of the decomposition of buried pigs in a heavy clay soil. Forensic Sci. Int. 1999, 101, 112–113. [Google Scholar] [CrossRef]
- Carter, D.O.; Tibbett, M.; Yellowlees, D. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 2007, 94, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Ross, S.L.; Cunningham, A.H. Time-since-death and bone weathering in a tropical environment. Forensic Sci. Int. 2011, 204, 126–133. [Google Scholar] [CrossRef]
- Zangarini, S.; Trombino, L.; Cattaneo, C. Micromorphological and ultramicroscopic aspects of buried remains: Time-dependent markers of decomposition and permanence in soil in experimental burial. Forensic Sci. Int. 2016, 263, 74–82. [Google Scholar] [CrossRef]
- Szelecz, I.; Koenig, I.; Seppey, C.V.; Le Bayon, R.C.; Mitchell, E.A. Soil chemistry changes beneath decomposing cadavers over a one-year period. Forensic Sci. Int. 2018, 286, 155–165. [Google Scholar] [CrossRef]
- Benninger, L.A.; Carter, D.O.; Forbes, S.L. The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci. Int. 2008, 180, 70–75. [Google Scholar] [CrossRef]
- Tibbet, M.; Carter, D.O. Soil Analysis in Forensic Taphonomy. Chemical and Biological Effects of Buried Human Remains; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Stokes, K.L.; Forbes, S.L.; Benninger, L.A.; Carter, D.O.; Tibbett, M. Decomposition Studies Using Animal Models in Contrasting Environments: Evidence from Temporal Changes in Soil Chemistry and Microbial Activity. In Criminal and Environmental Soil Forensics; Springer: Dordrecht, The Netherlands, 2009; pp. 357–377. [Google Scholar]
- Caccianiga, M.; Bottacin, S.; Cattaneo, C. Vegetation dynamics as a tool for detecting clandestine graves. J. Forensic Sci. 2012, 57, 983–988. [Google Scholar] [CrossRef]
- Coyle, H.M.; Lee, C.L.; Lin, W.Y.; Lee, H.C.; Palmbach, T.M. Forensic botany: Using plant evidence to aid in forensic death investigation. Croat. Med. J. 2005, 46, 606–612. [Google Scholar]
- Poppa, P.; Trombino, L.; Cattaneo, C. L’individuazione e la Caratterizzazione dei siti di Occultamento di Resti Umani in Ambito Forense: Applicazioni Geopedologiche e Geoarcheologiche. Ph.D. Thesis, Università Degli Studi di Milano, Milano, Italy, 2011. [Google Scholar]
- Juerges, A.; Pringle, J.K.; Jervis, J.R.; Masters, P. Comparisons of magnetic and electrical resistivity surveys over simulated clandestine graves in contrasting burial environments. Near Surf. Geophys. 2010, 8, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Ern, S.; Trombino, L.; Cattaneo, C. Scienze Naturali in Ambito Forense: L’apporto di Studi Geopedologici e Botanici. Ph.D. Thesis, Università Degli Studi di Milano, Milano, Italy, 2012. [Google Scholar]
- Vass, A.A.; Bass, W.B.; Wolf, J.B.; Foss, J.E.; Ammons, J.T. Time since death determinations of human cadavers using soil solution. J. Forensic Sci. 1992, 37, 1236–1253. [Google Scholar] [CrossRef]
- Hrapovic, L.; Rowe, R.K. Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil. J. Contam. Hydrol. 2002, 58, 221–242. [Google Scholar] [CrossRef]
- Taborelli, A.; Grandi, M.A.; Cattaneo, C. Alterazioni Microscopiche Della Decomposizione: Implicazioni per la Medicina Legale. Ph.D. Thesis, Università Degli Studi di Milano, Milano, Italy, 2010. [Google Scholar]
- Fiedler, S.; Graw, M. Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften 2003, 90, 291–300. [Google Scholar] [CrossRef]
- Haskell, N.; Hall, R.; Cervenka, V.; Clark, M. On the Body: Insects’ Life Stage Presence and their Postmortem Artifacts. In Forensic Taphonomy: The Post Mortem Fate of Human Remains; Haglund, W., Sorg, M.H., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 415–448. [Google Scholar]
- Van Belle, L.E.; Carter, D.O.; Forb, S.L. Measurement of ninhydrin reactive nitrogen influx into gravesoil during aboveground and belowground carcass (Sus domesticus) decomposition. Forensic Sci. Int. 2009, 193, 37–41. [Google Scholar] [CrossRef]
- Megyesi, M.S.; Nawrocki, S.P.; Haskell, N.H. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J. Forensic Sci. 2005, 50, 618–626. [Google Scholar] [CrossRef]
- Jaggers, K.A.; Rogers, T.L. The Effects of Soil Environment on Postmortem Interval: A Macroscopic Analysis. Forensic Sci. Int. 2009, 54, 1217–1222. [Google Scholar] [CrossRef]
- Ern, S.; Trombino, L.; Cattaneo, C. Micromorphological Aspects of Forensic Geoarchaeology: Ultramicroscopic Characterization of Phosphatic Impregnations on Soil Particles in Experimental Burials—Preliminary Results. In Proceedings of the 14th International Working Meeting on Soil Micromorphology, Lleida, Spain, 8–14 July 2012. [Google Scholar]
- Ente Regionale di Sviluppo Agricolo della Lombardia (ERSAL). I Suoli del Parco Ticino Settore Meridionale; Progetto Carta Pedologica, ERSAL: Milano, Italy, 1996. [Google Scholar]
- Soil Survey Staff, Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys; USDA (United States Department of Agriculture): Washington, DC, USA, 1999. [Google Scholar]
- Sims, J.T. Soil test phosphorus: Methods of phosphorus analysis for soils, sediments, residuals, and waters. South. Coop. Ser. Bull 2000, 396, 17–19. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular 939; U.S. Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Armigliato, A.; Valdrè, U. Microscopia Elettronica a Scansione e Microanalisi; Alfatest: Bologna, Italy, 1981. [Google Scholar]
- Dent, B.B.; Forbes, S.L.; Stuart, B.H. Review of human decomposition processes in soil. Environ. Geol. 2004, 45, 576–585. [Google Scholar] [CrossRef]
- Perrault, K.A.; Forbes, S.L. Elemental analysis of soil and vegetation surrounding decomposing human analogues. Can. Soc. Forensic Sci. J. 2016, 49, 138–151. [Google Scholar] [CrossRef]
- Fiedler, S.; Schneckenberger, K.; Graw, M. Characterization of Soils Containing Adipocere. Arch. Environ. Contam. Toxicol. 2004, 47, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Eidt, R.C. Detection and examination of anthrosols by phosphate analysis. Science 1977, 4311, 1327–1333. [Google Scholar] [CrossRef]
- Waldron, T. The Potential of Analysis of Chemical Constituents of Bone. In Death, Decay and Reconstruction: Approaches to Archaeology and Forensic Science; Boddington, I., Garland, A.N., Janaway, R., Eds.; Manchester University Press: Manchester, UK, 1987; pp. 149–159. [Google Scholar]
- Kerek, M.; Drijber, R.A.; Powers, W.L.; Shearman, R.C.; Gaussoin, R.E.; Streich, A.M. Accumulation of microbial biomass within particulate organic matter of aging golf greens. Agro. J. 2002, 94, 455–461. [Google Scholar] [CrossRef]
- Bullock, P.; Fedoroff, N.; Jongerius, A.; Stoops, G.; Tursina, T.; Babel, U. Handbook for Soil Thin Section Description; Waine Research Publications: Wolverhampton, UK, 1985. [Google Scholar]
- Monson, R.K. Ecology and the Environment; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Grieve, I.C. Some contrasts in soil development between grassland and deciduous woodland sites. J. Soil Sci. 1980, 31, 137–145. [Google Scholar] [CrossRef]
- Russell, E.W. Soil structure. Its maintenance and improvement. J. Soil Sci. 1971, 22, 137–151. [Google Scholar] [CrossRef]
- Greenland, D.J. Changes in the Nitrogen status and physical condition of soils under pastures, with special reference to the maintenance of the fertility of Australian soils used for growing wheat. Soils Fertil. 1971, 34, 237–251. [Google Scholar]
- Wilson, A.S.; Janaway, R.C.; Holland, A.D.; Dodson, H.I.; Baran, E.; Pollard, A.M.; Tobin, D.J. Modelling the buried human body environment in upland climes using three contrasting field sites. Forensic Sci. Int. 2007, 169, 6–18. [Google Scholar]
- Duchaufour, P. Pédologie: Sol, Végétation, Environnement. Abregés, 4th ed.; Masson: Paris, France, 1995. [Google Scholar]
Site | Pig ID | Weight (kg) |
---|---|---|
A | 1 | 72.4 |
A | 2 | 77.9 |
A | 3 | 88.3 |
A | 4 * | 24.7 |
A | 5 * | 23.6 |
A | 6 | 83.7 |
B | 1 | 71.5 |
B | 2 | 88.0 |
B | 3 | 89.2 |
B | 4 | 84.5 |
B | 5 | 75.0 |
Site | Burial | PBI (Days) | Pav (mg/kg) |
---|---|---|---|
A | 1 | 47 | 102 |
A | 2 | 207 | 39 |
A | 3 | 396 | 115 |
A | 4 | 711 | 111 |
A | 5 | 923 | 126 |
B | 1 | 42 | 71 |
B | 2 | 235 | 59 |
B | 3 | 383 | 86 |
B | 4 | 726 | 98 |
B | 5 | 924 | 85 |
Site | Burial | PBI (Days) | Mean P2O5 (%) |
---|---|---|---|
A | 1 | 47 | 2.9 |
A | 2 | 207 | 1.6 |
A | 3 | 396 | 3.0 |
A | 4 | 711 | 7.5 |
A | 5 | 923 | 1.1 |
B | 1 | 42 | 6.5 |
B | 2 | 235 | 1.0 |
B | 3 | 383 | 3.6 |
B | 4 | 726 | 4.3 |
B | 5 | 924 | 3.1 |
Site | Burial | PBI (Days) | Mean P2O5 (%) |
---|---|---|---|
A | 1 | 47 | 3.7 |
A | 2 | 207 | 1.0 |
A | 3 | 396 | 9.2 |
A | 4 | 711 | 9.3 |
A | 5 | 923 | 7.8 |
B | 1 | 42 | 2.0 |
B | 2 | 235 | 1.2 |
B | 3 | 383 | 4.2 |
B | 4 | 726 | 4.0 |
B | 5 | 924 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliabue, G.; Masseroli, A.; Ern, S.I.E.; Comolli, R.; Tambone, F.; Cattaneo, C.; Trombino, L. The Fate of Phosphorus in Experimental Burials: Chemical and Ultramicroscopic Characterization and Environmental Control of Its Persistency. Geosciences 2023, 13, 24. https://doi.org/10.3390/geosciences13020024
Tagliabue G, Masseroli A, Ern SIE, Comolli R, Tambone F, Cattaneo C, Trombino L. The Fate of Phosphorus in Experimental Burials: Chemical and Ultramicroscopic Characterization and Environmental Control of Its Persistency. Geosciences. 2023; 13(2):24. https://doi.org/10.3390/geosciences13020024
Chicago/Turabian StyleTagliabue, Giulia, Anna Masseroli, Stephania Irmgard Elena Ern, Roberto Comolli, Fulvia Tambone, Cristina Cattaneo, and Luca Trombino. 2023. "The Fate of Phosphorus in Experimental Burials: Chemical and Ultramicroscopic Characterization and Environmental Control of Its Persistency" Geosciences 13, no. 2: 24. https://doi.org/10.3390/geosciences13020024
APA StyleTagliabue, G., Masseroli, A., Ern, S. I. E., Comolli, R., Tambone, F., Cattaneo, C., & Trombino, L. (2023). The Fate of Phosphorus in Experimental Burials: Chemical and Ultramicroscopic Characterization and Environmental Control of Its Persistency. Geosciences, 13(2), 24. https://doi.org/10.3390/geosciences13020024