Geophysical and Geomatic Methods for the Knowledge, Conservation, and Management of Jordanian Cultural Heritage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geophysical Prospections
2.2. Geomatic Surveys
3. Results
3.1. Basta
3.1.1. Archaeological Background
3.1.2. Results and Discussion
3.2. Petra
3.2.1. Archaeological Background
3.2.2. Results and Discussion: The Treasure Tomb
3.2.3. Results and Discussion: The Palace Tomb
3.3. Um-Hamat
3.3.1. Archaeological Background
3.3.2. Results and Discussion
3.4. Umm ar-Rasas
3.4.1. Archaeological Background
3.4.2. Results and Discussion: Churches VI and VIII Century AD
3.4.3. Results and Discussion: The Stylite Tower
3.5. Wu’Ayra Castle
3.5.1. Archaeological Background
3.5.2. Results and Discussion
3.6. Shawbak Castle
3.6.1. Archaeological Background
3.6.2. Results and Discussion
3.7. Madaba
3.7.1. Archaeological Background
3.7.2. Results
- Deep highly resistive anomalies which can be ascribed to probable voids: Anomaly A1 (in ERT 7, 8, and 9, shown in Figure 45a,b); Anomaly A2 (in ERT 4, 5, and 6, shown in Figure 45a); Anomaly A3 (in ERT 7 and 8, shown in Figure 45a); Anomaly A4 (in ERT 2, shown in Figure 45b); Anomaly A5 (in ERT 13, shown in Figure 45g). All of these anomalies are very close to well-known cisterns and voids.
- Shallow highly resistive anomalies which can be ascribed to probable archaeological elements buried into the subsoil: Anomaly B1 (in ERT 1 shown in Figure 43a); Anomaly B2 (in ERT 2, shown in Figure 45b); Anomaly B3 (in ERT 9, shown in Figure 45a); Anomaly B4 (in ERT 3, shown in Figure 45c); Anomalies B5, B6, B7, and B8 (in ERT 12, shown in Figure 45d); Anomaly B9 (in ERT 10, shown in Figure 45e); Anomaly B10 (in ERT 11, shown in Figure 45f). All of these highly resistive features appear immersed in a conductive cover composed of fine sediments.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casule, F.; Khouri, R.G. Arte e Storia Della Giordania; Bonechi: Florence, Italy, 1996. [Google Scholar]
- Byrd, B.F. Early Village Life at Beidha, Jordan: Neolithic Spatial Organization and Vernacular Architecture; the Excavations of Mrs. Diana Kirkbride-Helbæk; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Alt, K.W.; Benz, M.; Müller, W.; Berner, M.E.; Schultz, M.; Schmidt-Schultz, T.H.; Knipper, C.; Gebel, H.G.K.; Nissen, H.J.; Vach, W. Earliest Evidence for Social Endogamy in the 9,000-Year-Old-Population of Basta, Jordan. PLoS ONE 2013, 8, e65649. [Google Scholar] [CrossRef] [PubMed]
- Rollefson, G.O. The Neolithic Village of ‘Ain Ghazal. AOF 1983, 29, 243–244. [Google Scholar]
- Grissom, C.A. Neolithic Statues from ‘Ain Ghazal: Construction and Form. AJA 2000, 104, 25–46. [Google Scholar] [CrossRef]
- Mittmann, S. Ḫirbet ez-Zeraqōn Eine Stadt der frühen Bronzezeit in Nordjordanien. AID 1994, 2, 10–15. [Google Scholar]
- Müller-Neuhof, B.; Abu-Azizeh, W.; Abu-Azizeh, L.; Meister, J. East of Jawa: Chalcolithic/early Bronze Age settlement activity in al-Ḥarra (north-east Jordan). ADAJ 2013, 57, 125–139. [Google Scholar]
- Rast, W.; Schaub, R.T. Bâb edh-Dhrâ’: Excavations at the Town Site (1975–1981); Eisenbrauns: Rochester, MI, USA, 2003. [Google Scholar]
- Pritchard, J.B. Tell es-Sa’idiyeh: Excavations on the Tell, 1964–1966; The University Museum, University of Pennsylvania: Philadelphia, PA, USA, 1985. [Google Scholar]
- Schumacher, G. Pella, 1st ed.; Cambridge Press: Cambridge, UK, 2010. [Google Scholar]
- Wimmer, D.H. The Excavations at Tell Safut. SHAJ 1987, 3, 279–283. [Google Scholar]
- Morton, W. The 1954, 55, and 65 Excavations at Dhiban in Jordan. In Studies in the Mesha Inscription and Moab, Archaeology and Biblical Studies; Dearman, A., Ed.; Atlanta Scholar Press: Atlanta, GA, USA, 1989; pp. 239–246. [Google Scholar]
- Yassine, K. The Open Court Sanctuary of the Iron Age I Tell el-Mazār Mound A. ZDPV 1984, 100, 108–118. [Google Scholar]
- Kafafi, Z.A.K.; Kooij, G. Tell Dēr ʿAllā during the Transition from Late Bronze Age to Iron Age. ZDPV 2013, 129, 121–131. [Google Scholar]
- Smith, R. Pella in Jordan 1. AJA 1984, 88, 426–427. [Google Scholar]
- Mare, H. Abila of the Decapolis in the Roman period: A time of revitalization and expansion. Stud. Hist. Archaeol. Jordan 2001, 7, 499–507. [Google Scholar]
- Ababneh, A. Heritage management and interpretation: Challenges to heritage site-based values, reflections from the heritage site of Umm Qais, Jordan. Archaeologies 2016, 12, 38–72. [Google Scholar] [CrossRef]
- Lichtenberger, A. The Decapolis. In A Companion to the Hellenistic and Roman Near East; Wiley Press: Hoboken, NJ, USA, 2021; pp. 213–222. [Google Scholar]
- Lichtenberger, A.; Raja, R. New archaeological research in the Northwest quarter of Jerash and its implications for the urban development of Roman Gerasa. AJA 2015, 119, 483–500. [Google Scholar] [CrossRef]
- Piccirillo, M. Chiese e Mosaici di Madaba; Franciscan Printing Press: Jerusalem, Israel, 1989. [Google Scholar]
- Piccirillo, M.; Alliata, E. Umm al-Rasas, Mayfa’ ah I. Gli Scavi del Complesso di Santo Stefano; Franciscan Printing Press: Jerusalem, Israel, 1994. [Google Scholar]
- Abu-Ghazalah, S.; Al-Hissan, A.K. Discovery of the Oldest Church of the World. Archit. Sci. Rev. 2002, 45, 295–297. [Google Scholar] [CrossRef]
- Arinat, M.; Shiyyb, A.M.; Abd-Allah, R. Byzantine glass Mosaics excavated from the “Cross Church”, Jerash, Jordan: An Archaeometrical Investigation. MAA 2014, 14, 43–53. [Google Scholar]
- Vannini, G. A medieval archaeology experience in Jordan. The medieval Petra Mission of University of Florence. ADAJ 2011, 55, 295–312. [Google Scholar]
- Vannini, G. Archeologia dell’insediamento Crociato-Ayyubide in Transgiordania. Il Progetto Shawbak; All’Insegna del Giglio: Sesto Fiorentino, Italy, 2007. [Google Scholar]
- De Smedt, P.; Saey, T.; Lehouck, A.; Stichelbaut, B.; Meerschman, E.; Islam, M.M.; Van Meirvenne, M. Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90 ha dataset. Geoderma 2013, 199, 30–36. [Google Scholar] [CrossRef]
- Frfhlich Gugler, I.M.; Gex, P. Electromagnetic survey of a Celtic tumulus. J. Appl. Geophy. 1996, 35, 15–25. [Google Scholar] [CrossRef]
- Mathè, V.; Leveque, F.; Mathè, P.E.; Chevallier, C.; Pons, Y. Soil anomaly mapping using a caesium magnetometer: Limits in the low magnetic amplitude case. J. Appl. Geophy 2006, 58, 202–217. [Google Scholar] [CrossRef]
- Herwanger, J.; Maurer, H.; Green, A.G.; Leckebush, J. 3D inversions of magnetic gradiometer data in archaeological prospecting: Possibilities and limitations. Geophysics 2020, 65, 849–860. [Google Scholar] [CrossRef]
- Argote, D.L.; Tejero, A.; Chavez, R.E.; Lopez, P.A.; Bravo, R. 3D modelling of magnetic data from an archaeological site in north-western Tlaxcala state, Mexico. J. Archaeol. Sci. 2009, 36, 1661–1671. [Google Scholar] [CrossRef]
- Papadopoulos, N.G.; Yi, M.J.; Kim, J.H.; Tsourlos, P.; Tsokas, G.N. Geophysical investigation of tumuli by means of surface 3D electrical resistivity tomography. J. Appl. Geophys. 2010, 70, 192–205. [Google Scholar] [CrossRef]
- Yi, M.J.; Kim, J.H.; Song, Y.; Cho, S.J.; Chung, S.H.; Sush, J.H. Three-dimensional imaging of subsurface structures using resistivity data. Geophys. Prospect. 2001, 49, 483–497. [Google Scholar] [CrossRef]
- Elwaseif, M.; Slater, L. Quantifying tomb geometries in resistivity images using watershed algorithms. J. Archaeol. Sci. 2010, 37, 1424–1436. [Google Scholar] [CrossRef]
- Al-Saadi, O.S.; Schmidt, V.; Becken, M.; Fritsch, T. Very-high-resolution electrical resistivity imaging of buried foundations of a Roman villa near Nonnweiler, Germany. Archaeol. Prospect 2018, 25, 209–218. [Google Scholar] [CrossRef]
- Coolen, J.; Wallner, M.; Trausmuth, T.; Konig, A. New Insights into a Romanesque Basilica Church in the Deserted Town of Corvey, Germany, Based on a High-Resolution GPR Survey. Archeosciences 2021, 45, 35–38. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Meo, A.; Gentile, V. The contribution of indirect topographic surveys (photogrammetry and laser scanner) and GPR investigations in the study of the vulnerability of the Abbey of Santa Maria a Mare, Tremiti Islands (Italy). Ann. Geophys. 2019, 62, 1–9. [Google Scholar] [CrossRef]
- Urban, T.M.; Murray, C.A.; Vella, C.; Lahikainen, A. Ground-penetrating radar survey on the island of Pantelleria (Italy) reveals an ancient architectural complex with likely Punic and Roman components. J. Appl. Geophys. 2015, 123, 164–169. [Google Scholar] [CrossRef]
- Booth, A.D.; Szpakowska, K.; Pischikova, E.; Griffin, K. Structure of an ancient Egyptian tomb inferred from ground-penetrating radar imaging of deflected overburden horizons. Archaeol. Prospect. 2015, 22, 33–44. [Google Scholar] [CrossRef]
- Shi, Z.; Tian, G.; Hobbs, R.W.; Wo, H.; Lin, J.; Wu, L.; Liu, H. Magnetic gradient and ground penetrating radar prospecting of buried earthen archaeological remains at the Qocho City site in Turpan, China. Near. Surf. Geophys. 2015, 13, 477–485. [Google Scholar] [CrossRef]
- Simpson, D.; Lehouck, A.; Verdonck, L.; Vermeersch, H.; Van Meirvenne, M.; Bourgeois, J.; Thoen, E.; Docter, R. Comparison between electromagnetic induction and fluxgate gradiometer measurements on the buried remains of a 17th century castle. J Appl Geophys. 2009, 68, 294–300. [Google Scholar] [CrossRef]
- Persson, K.; Olofsson, B. Inside a mound: Applied geophysics in archaeological prospecting at the Kings’ Mounds, Gamla Uppsala, Sweden. J. Archaeol. Sci. 2004, 31, 551–562. [Google Scholar] [CrossRef]
- Zheng, W.; Li, X.; Lam, N.; Wang, X.; Liu, S.; Yu, X.; Sun, Z.; Yao, J. Applications of integrated geophysical method in archaeological surveys of the ancient Shu ruins. J. Archaeol. Sci. 2013, 40, 166–175. [Google Scholar] [CrossRef]
- Keay, S.; Earl, G.; Hay, S.; Kay, S.; Ogden, J.; Strutt, K.D. The role of integrated geophysical survey methods in the assessment of archaeological landscapes: The case of Portus. Archaeol. Prospect. 2009, 16, 154–166. [Google Scholar] [CrossRef]
- Ward, S.H. Resistivity and induced polarization methods. In Geotechnical and Environmental Geophysics, 1st ed.; Ward, S.H., Ed.; Society of Exploration Geophysicists: Houston, TX, USA, 1990; Volume 5, pp. 147–189. [Google Scholar]
- Patella, D. Introduction to ground surface self-potential tomography. Geophys. Prospect. 1997, 45, 653–681. [Google Scholar] [CrossRef]
- Mauriello, P.; Patella, D. Resistivity anomaly imaging by probability tomography. Geophys. Prospect. 1999, 47, 411–429. [Google Scholar] [CrossRef]
- Mauriello, P.; Patella, D. Resistivity tensor probability tomography. Prog. Electromagn. Res. B 2008, 8, 129–146. [Google Scholar] [CrossRef]
- Mauriello, P.; Patella, D. Geoelectrical anomalies imaged by polar and dipolar probability tomography. Prog. Electromagn. Res. 2008, 87, 63–88. [Google Scholar] [CrossRef]
- Mauriello, P.; Patella, D. A data-adaptive probability-based fast ERT inversion method. Prog. Electromagn. Res. 2009, 97, 275–290. [Google Scholar] [CrossRef]
- Available online: www.idsgeoradar.com (accessed on 24 May 2023).
- Goodman, D. GPR-SLICE. Ground Penetrating Radar Imaging Software. User’s Manual; Geophysical Archaeometry Laboratory: Woodland Hills, CA, USA, 2004. [Google Scholar]
- Capper, J.E. Photographs of Stonehenge as seen from a War Balloon. Archaeologia 1907, 60, 571. [Google Scholar] [CrossRef]
- Gosh, S. History of Photogrammetry; Laval University: Québec City, QC, Canada, 1981. [Google Scholar]
- Guaitoli, M. Lo Sguardo di Icaro, Le Collezioni dell’Aerofototeca Nazionale per la Conoscenza del Territorio; Campisano Editore: Rome, Italy, 2003. [Google Scholar]
- Ihde, D. Postphenomenology; Essays in the Postmodern Context; Northwestern University Press: Evanston, IL, USA, 1993. [Google Scholar]
- Verhoeven, G. Providing an archeological bird’s eye view—An overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in Archeology. Archaeol. Prospect. 2009, 16, 233–249. [Google Scholar] [CrossRef]
- Campana, S. Drones in archaeology. State-of-the-art and future perspectives. Archaeol. Prospect. 2017, 24, 275–296. [Google Scholar] [CrossRef]
- Gabrielli, R.; Angelini, A.; Portarena, D. The Shawbak Castle from a balloon. An integrated methodological approach for the study of archaeological emergencies. Archeol. Aerea 2019, 11, 50–58. [Google Scholar]
- Altan, M.O.; Celikoyan, T.M.; Kemper, G.; Toz, G. Balloon photogrammetry for cultural heritage. In Proceedings of the Geo-Imagery Bridging Continents, XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Ahmet, K. The Western Papaguerıa from the air: Digital imagery using kite and balloon aerial photography. In Enter the Past. The E-Way into the Four Dimensions of Cultural Heritage. CAA 2003. Computer Applications and Quantitative Methods in Archaeology; der Stadt Wien, M., Erbe, R.K., Wien, S., Eds.; Archaeopress: Oxford, UK, 2003; pp. 46–49. [Google Scholar]
- Bogacki, M.; Malkowski, W.; Misiewicz, K. Kite aerial photography (KAP) as a tool for completing GIS models. Ptolemais (Libya) case study. In Proceedings of the Remote Sensing for Archaeology and Cultural Heritage Management, 1st International EARSeL Workshop, CNR, Rome, Italy, 30 September–4 October 2008. [Google Scholar]
- Eisenbeiss, H.; Lambers, K.; Sauerbier, M.; Li, Z. Photogrammetric documentation of an archaeological site (Palpa, Peru) Using an Autonomous Model Helicopter. In Proceedings of the CIPA 2005 XX International Symposium, Torino, Italy, 26 September–1 October 2005. [Google Scholar]
- Hailey, T.I. The powered parachute as an archaeological reconnaissance vehicle. Archaeol. Prospect. 2005, 12, 69–78. [Google Scholar] [CrossRef]
- Sauerbier, M.; Eisenbeiss, H. UAVs for the documentation of archaeological excavations. ISPRS 2010, 38, 526–531. [Google Scholar]
- Seitz, C.; Altenbach, H. Project Archeye—The quadrocopter as the archaelogist’s eye. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 38, 297–302. [Google Scholar] [CrossRef]
- Remondino, F.; Barazzetti, L.; Nex, F.; Scaioni, M.; Sarazzi, D. UAV photogrammetry for mapping and 3D modelling—Current status and future perspectives. In Proceedings of the ISPRS Zurich 2011 Workshop, Zurich, Switzerland, 14–16 September 2011; The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume 38. [Google Scholar]
- Rinaudo, F.; Chiabrando, F.; Lingua, A.; Spanò, A. Archaeological site monitoring: UAV photogrammetry could be an answer. ISPRS 2012, 39, 583–588. [Google Scholar] [CrossRef]
- Campana, S.; Sordini, M.; Rizzi, A. 3D Modeling of a Romanesque church in Tuscany: Archaeological aims and geomatic techniques. In Proceedings of the 3rd International Workshop on the 3D Virtual Reconstruction and Visualization of Complex Architectures, Trento, Italy, 25–28 February 2009. [Google Scholar]
- Fiorillo, F.; Jiménez Fernández-Palacios, B.; Remondino, F.; Barba, S. 3d Surveying and modelling of the archaeological area of Paestum, Italy. Virtual Archaeol. Rev. 2013, 4, 55–60. [Google Scholar] [CrossRef]
- Fiorillo, F.; Remondino, F.; Barba, S.; Santoriello, A.; De Vita, C.B.; Casellato, A. 3D digitization and mapping of heritage monuments and comparison with historical drawings. In Proceedings of the XXIV International CIPA Symposium, Strasbourg, France, 2–6 September 2013. [Google Scholar]
- Pueschel, H.; Sauerbier, M.; Eisenbeiss, H. A 3D model of Castle Landenberg (CH) from combined photogrammetric processing of terrestrial and UAV-based images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2008, 37, 93–98. [Google Scholar]
- Remondino, F.; Gruen, A.; Von Schwerin, J.; Eisenbeiss, H.; Rizzi, A.; Sauerbier, M.; Richards-Rissetto, H. Multisensors 3D documentation of the Maya site of Copan. In Proceedings of the 22nd CIPA Symposium, Kyoto, Japan, 11–15 October 2009. [Google Scholar]
- Bendea, H.; Chiabrando, F.; Tonolo, F.G.; Marenchino, D. Mapping of archaeological areas using a low-cost UAV. The Augusta Bagiennorum test site. In Proceedings of the CIPA 2007 XXI International Symposium, Athens, Greece, 1–6 October 2007. [Google Scholar]
- Chiabrando, F.; Nex, F.; Piatti, D.; Rinaudo, F. UAV and RPV systems for photogrammetric surveys in archeological areas: Two tests in the Piedmont Region (Italy). J. Archaeol. Sci. 2011, 38, 697–710. [Google Scholar] [CrossRef]
- Sonnemann, T.F.; Malatesta, E.H.; Hofman, C.L. Applying UAS photogrammetry to analyze spatial patterns of indigenous settlement sites in the northern Dominican Republic. In Archaeology in the Age of Sensing; Forte, M., Campana, S., Eds.; Springer: New York, NY, USA, 2016; pp. 71–87. [Google Scholar]
- Orihuela, A.; Molina-Fajardo, M.A. UAV Photogrammetry Surveying for Sustainable Conservation: The Case of Mondújar Castle (Granada, Spain). Sustainability 2021, 13, 24. [Google Scholar] [CrossRef]
- Gebel, H.G.K.; Nissen, H.J.; Zaydoon, Z. Basta II: The Architecture and Stratigraphy; Ex Oriente: Launaguet, France, 2006; Volume 2. [Google Scholar]
- Franchi, R.; Gabrielli, R.; Angelini, A. L’antico sistema idrico di Petra. Studio e analisi per la conservazione del patrimonio architettonico. In Proceedings of the Acqua Preziosa, Amman, Jordan, 18 October 2016; Nigro, L., Nucciotti, M., Gallo, E., Eds.; Percorsi delle Civiltà Giordane Visti Negli Scavi Archeologici Italiani: Amman, Jordan, 2016. [Google Scholar]
- Cozzolino, M.; Di Giovanni, E.; Mauriello, P.; Piro, S.; Zamuner, D. Geophysical Methods for Cultural Heritage Management; Springer: Cham, Switzerland, 2018. [Google Scholar]
- D’Annibale, E.; Fangi, G. Interactive Modeling by projection of oriented spherical panorama, Ad Deir, Petra, Jordan. In Proceedings of the 3 International Workshop 3D ARCH, 3D Virtual Reconstruction and Visualization of Complex Architecture, Trento, Italy, 25–28 February 2009. [Google Scholar]
- D’Annibale, E. Image Based Modeling from Spherical Photogrammetry and Structure for Motion; The case of the Treasury, Nabatean Architecture in Petra. In Proceedings of the XXIIIrd International CIPA Symposium, Prague, Czech Republic, 12–16 September 2011. [Google Scholar]
- Gabrielli, R.; Angelini, A.; Franchi, R. Studio e restauro per la conservazione dei Beni Culturali: Il caso di studio della Tomba Palazzo a Petra, Giordania. In Scavare, Documentare, Conservare: Viaggio Nella Ricerca Archeologica del CNR; Carnevale, A., Ed.; CNR Edizioni: Rome, Italy, 2016; pp. 282–289. [Google Scholar]
- Miller, J.M. Archeological Survey of the Kerak Plateau: Conducted Turing 1978–1982 under the Direction of J. Maxwell Miller and Jack M. Pinkerton; Scholars Press: Atlanta, GA, USA, 1991. [Google Scholar]
- Musil, A. Arabia Petraea, 1st ed.; A. Hölder: Vienna, Austria, 1907. [Google Scholar]
- Piccirillo, M. Madaba, le Chiese e i Mosaici; Edizioni Paoline: Cinesello Balsamo, Italy, 1989. [Google Scholar]
- Piccirillo, M. La Palestina Cristiana I-VII Secolo; Centro Editoriale Dehoniano (EDB): Bologna, Italy, 2008. [Google Scholar]
- Angelini, A.; Cozzolino, M.; Gabrielli, R.; Galatà, P.; Gentile, V.; Mauriello, P. Integrated Methodologies for the Survey and the Documentation of Two Byzantine Churches at the UNESCO Archaeological Site of Umm ar-Rasas (Jordan). In Proceedings of the International Conference on Computational Science and Its Applications, Malaga, Spain, 4–7 July 2022. [Google Scholar]
- Cozzolino, M.; Gabrielli, R.; Galata, P.; Gentile, V.; Greco, G.; Scopinaro, E. Combined use of 3D metric surveys and non-invasive geophysical surveys at the Stylite Tower (Umm ar-Rasas, Jordan). Ann. Geophys. 2019, 62, 339. [Google Scholar]
- Gabrielli, R.; Greco, G. Umm Ar-Rasas: The Application of Integrated Methodologies for the Valorization of a Unesco Site. GJAA 2018, 6, 555–688. [Google Scholar]
- Galatà, P.; Zavagnini, A.; Gabrielli, R.; Portarena, D.; Franceschinis, M. Tecniche di documentazione dei tappeti musivi del sito archeologico di Umm Al-Rasas–Kastron Mefaa (Giordania). Archeol. Calcolatori. 2017, 28, 201–218. [Google Scholar]
- Piccirillo, M. Umm al-Rasas, Mayfaah I; Studium Biblicum Franciscanum: Jerusalem, Israel, 1994. [Google Scholar]
- Savignac, R. Sur le pistes de Transjordanie méridianale. Rev. Biblique 1936, 45, 234–262. [Google Scholar]
- Saller, S.; Bagatti, B. The Town of Nebo (Khirnbet el−Mekhayyat). With a Brief Survey of Other Christian Monuments in Transjordan; Franciscan Press: Jerusalem, Israel, 1949. [Google Scholar]
- Wilson, C. Preliminary Reports, Palestine Exploration Fund Quarterly Statement (PEFQSt); Maney Publishing: London, UK, 1889; p. 316. [Google Scholar]
- Felicetti, A.; Albiero, A.; Gabrielli, R.; Pierdicca, R.; Paolanti, M.; Zingaretti, P.; Malinverni, E.S. Automatic Mosaic Digitalization: A Deep Learning approach to tessera segmentation. In Proceedings of the 2018 IIEE International Conference on Metrology for Archaeology and Cultural Heritage, Cassino, Italy, 22–24 October 2018. [Google Scholar]
- Malinverni, E.S.; Pierdicca, R.; Di Stefano, F.; Gabrielli, R.; Albiero, A. Virtual museum enriched by GIS data to share science and culture. Church of Saint Stephen in Umm Ar-Rasas (Jordan). Virtual Archaeol. Rev. 2019, 10, 31–39. [Google Scholar] [CrossRef]
- Pierdicca, R.; Intrigila, C.; Piccinini, F.; Malinverni, E.S.; Giannetti, I.; Caruso, G. Multidisciplinary approach for the analysis of structural heritage at risk: The case study of stylite tower at Umm ar-Rasas (Jordan). Int. J. Archit. Herit. 2023, 17, 745–769. [Google Scholar] [CrossRef]
- Felicetti, A.; Paolanti, M.; Zingaretti, P.; Pierdicca, R.; Malinverni, E.S.M.S. Mosaic image segmentation based on deep cascading learning. Virtual Archaeol. Rev. 2021, 12, 25–38. [Google Scholar] [CrossRef]
- Salvatori, M. Manuale di Metrologia per Architetti Studiosi di Storia Dell’architettura ed Archeologi; Liguori: Naples, Italy, 2006. [Google Scholar]
- Clemente, P.; Delmonaco, G.; Puzzilli, L.; Saitta, F. Stability and seismic vulnerability of the Stylite Tower at Umm ar-Rasas. Ann. Geophys. 2019, 61, 3. [Google Scholar] [CrossRef]
- Clemente, P.; Delmonaco, G.; Puzzilli, L.; Saitta, F. Seismic analysis of the Stylite Tower at Umm ar-Rasas. In Structural Analysis of Historical Constructions: An Interdisciplinary Approach; Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F., Eds.; Springer: Cham, Switzerland, 2019; pp. 1780–1788. [Google Scholar]
- Vannini, G.; Nucciotti, M. Da Petra a Shawbak. Archeologia di una Frontiera; Giunti: Florence, Italy, 2009. [Google Scholar]
- Vannini, G.; Vanni Desideri, A.; Nucciotti, M.; Tonghini, C. Medieval Petra. Archaeology of the Crusader-Ayyubid fortified installations in Trans-Jordan; Archaeological Mission of the University of Florence. In Proceedings of the Civiltà del Passato, Dialogo del Presente, Missioni di Ricerca Italiana in Giordania, Amman, Jordan, 17 October 2002. [Google Scholar]
- Bini, M.; Bertocci, S. Castelli di Pietre. Aspetti Formali e Materiali dei Castelli Crociati Nell’area di Petra in Transgiordania; Edizioni Polistampa: Florence, Italy, 2004. [Google Scholar]
- Gabrielli, R.; Angelini, A.; Giunta, E.; Taffi, E. From 2D to 3D data: Al-Wu’ayra’s crusader castle. In Proceedings of the 5th International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Istanbul, Turkey, 22–25 November 2011. [Google Scholar]
- Gabrielli, R.; Angelini, A.; Portarena, D. Strategie innovative di elaborazione e restituzione dati del castello crociato di Wu’Ayra. Archeol. Calcolatori. 2015, 26, 209–227. [Google Scholar]
- Angelini, A.; Gabrielli, R. Laser scanning e photoscanning. Tecniche di rilevamento per la documentazione 3D di beni architettonici e archeologici. Archeol. Calcolatori. 2013, 24, 379–394. [Google Scholar]
- Gabrielli, R.; Angelini, A.; Portarena, D. Il castello di Shawbak da pallone aerostatico. Un approccio metodologico integrato per lo studio delle emergenze archeologiche. Archeol. Aerea 2017, 11, 50–58. [Google Scholar]
- Piccirillo, M. La ricerca Archeologica Lungo il Cardo Romano di Madaba. Liber Annuus 1985, 35, 429–430. [Google Scholar]
- Piccirillo, M. The Mosaics of Jordan; Penn State University Press: University Park, PA, USA, 2003. [Google Scholar]
- Piccirillo, M. Il Parco Archeologico e la Scuola del Mosaico a Madaba in Giordania. Cronistoria di un progetto. In Siti e monumenti della Giordania. Rapporto Sullo Stato di Conservazione; Marino, L., Ed.; Edizioni Terra Santa: Florence, Italy, 1994; pp. 53–56. [Google Scholar]
- D’Andrea, M.; Polcaro, A.; Richard, S.; Clark, D.R. The new Madaba regional archaeological museum project (MRAMP). SHAJ 2019, 8, 475–487. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelini, A.; Cozzolino, M.; Gabrielli, R.; Gentile, V.; Mauriello, P. Geophysical and Geomatic Methods for the Knowledge, Conservation, and Management of Jordanian Cultural Heritage. Geosciences 2023, 13, 349. https://doi.org/10.3390/geosciences13110349
Angelini A, Cozzolino M, Gabrielli R, Gentile V, Mauriello P. Geophysical and Geomatic Methods for the Knowledge, Conservation, and Management of Jordanian Cultural Heritage. Geosciences. 2023; 13(11):349. https://doi.org/10.3390/geosciences13110349
Chicago/Turabian StyleAngelini, Andrea, Marilena Cozzolino, Roberto Gabrielli, Vincenzo Gentile, and Paolo Mauriello. 2023. "Geophysical and Geomatic Methods for the Knowledge, Conservation, and Management of Jordanian Cultural Heritage" Geosciences 13, no. 11: 349. https://doi.org/10.3390/geosciences13110349
APA StyleAngelini, A., Cozzolino, M., Gabrielli, R., Gentile, V., & Mauriello, P. (2023). Geophysical and Geomatic Methods for the Knowledge, Conservation, and Management of Jordanian Cultural Heritage. Geosciences, 13(11), 349. https://doi.org/10.3390/geosciences13110349