Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance
Abstract
:1. Introduction
2. Geological Setting
3. Rock Types and Metamorphic Imprints
3.1. Southalpine Domain
3.2. Austroalpine Domain
3.3. Penninic Domain
3.4. Helvetic–Dauphinois–Provençal Domain
Tect. Unit | Location | Group/Rock | Assemblage | Temp (°C) | Pres (GPa) | Age (Ma) | Method | Refs | Code |
---|---|---|---|---|---|---|---|---|---|
Serie dei Laghi Complex | Val Cannobbina | Cc metapelite | Qz, Pl, Grt, St, Bt, Hbl | 640 ± 50 | 0.70 ± 0.1 | 333 ± 26 | Ar/Ar (Wm) ⊙ | [84,142] | Svc1 |
Domaso–Cortafò Zone | Como Lake | Cc metapelite | Grt, Bt, Wm, Cld, Pl, Qz | 385 | K/Ar (Wm) ⊙ | [76,77,143,144] | Svco2a | ||
amphibolite | Amp, Grt, Pl, Qz, Bt, Ilm | ||||||||
Domaso–Cortafò Zone | Como Lake | Cc metapelite | St, Grt, Bt, Ms, Qz, Ky | 605 ± 45 | 0.90 ± 0.2 | 330 ± 8 | K/Ar (Amp) ⊙ | [77,144,145,146] | Svco2b |
amphibolite | Amp, Grt, Pl, Qz, Bt, Rt | ||||||||
Monte Muggio Zone | Monte Muggio | Cc metapelite | Qz, Chl, Bt, St, Ky, Ms | 570 ± 10 | 0.80 ± 0.1 | 330 ± 10 | K/Ar (Amp) ⊙ | [83,145,146,147,148] | Svc3 |
Dervio–Olgiasca Zone | Corenno Plinio | Cc metapelite | Ms, Bt, Grt, Pl, Qz, St, Ky | 630 ± 30 | 0.85 ± 0.15 | 315 ± 3 | U/Pb (Mnz) ⊙ | [75,144,149] | Svc5a |
amphibolite | Amph, Pl, Qz, Cpx, Bt, Ilm | ||||||||
Dervio–Olgiasca Zone | Corenno Plinio | Cc metapelite | Ms, Bt, Grt, Pl, Qz, St, Ky | 560 ± 30 | 1.0 ± 0.25 | 330 ± 10 | K/Ar (Wm) ⊙ | [144,146,149] | Svc5b |
amphibolite | Grt, Amph, Pl, Qz, Rt | ||||||||
Val Vedello Basement | Val Vedello | Cc metapelite | Ms, Bt, Grt, Pl, Qz, St, Ky | 629 ± 39 | 0.90 ± 0.2 | 330 ± 10 | K/Ar (Wm) ⊙ | [69,82,146] | Svc4 |
North-Eastern Orobic Basement (A) | Lago Belviso | Cc metapelite | Grt, St, Bt, Ms, Pl, Qz | 615 ± 45 | 1.00 ± 0.15 | 330 ± 10 | K/Ar (Amp) ⊙ | [145,150] | Svc6a |
North-Eastern Orobic Basement (A) | Lago Belviso | Cc metapelite | Grt, Cld, Bt, Ms, Pl, Qz | 500 ± 20 | 0.85 ± 0.1 | Devonian | [76,150] | Svc6b | |
North-Eastern Orobic Basement (B) | Edolo | Cc metapelite | Chl, Bt, Grt | 495 ± 55 | 0.55 ± 0.2 | 330 ± 10 | K/Ar (Amp) ⊙ | [71,82,145] | Svc7 |
Eastern Orobic Basement | Val Camonica | Cc metapelite | Qz, Pl, Grt, Bt, Wm, Cld, Rt, Ilm | 510 ± 60 | 0.85 ± 0.15 | Devonian | [76,81] | Svc14a | |
Eastern Orobic Basement | Val Camonica | Cc metapelite | Qz, Pl, Grt, Bt, Wm, St, Ilm | 600 ± 50 | 0.55 ± 0.15 | 330 ± 10 | K/Ar (Amp) ⊙ | [81,145] | Svc14b |
Eastern Orobic Basement | Val Camonica | Cc metapelite | Qz, Pl, Grt, Bt, Wm, St, And, Ep, Ilm | 550 ± 30 | 0.30 ± 0.1 | >late Permian | [81] | Svc14c | |
Trompia Valley Basement | Passo Maniva | Cc metapelite | Grt, Cld, Ms, Pl, Qz | 525 ± 25 | 1.10 ± 0.2 | late Devonian | [78,79,80] | Svc9 | |
Eisacktal | Brixen | Cc metapelite | Qtz, Pl, Bt, Kfs, Grt | 625 ± 25 | >0.3 | Devonian | [151] | Svc10 | |
Eisacktal | Brixen | Cc metapelite | Bt, Crd, Kfs, Pl, Qz, Sil | 500 ± 50 | 0.60 ± 0.05 | Carboniferous | [151] | Svc11 |
Tect. Unit | Location | Group | Assemblage | Temp (°C) | Pres (GPa) | Age (Ma) | Method | Refs | Code |
---|---|---|---|---|---|---|---|---|---|
Dent Blanche | Valpelline | Cc metapelite | Grt, Bt, Sil | 703 ± 42 | 0.55 ± 0.1 | 289.1 ± 6.3 | U/Pb (Zrn) ⊖ | [152,153,154] | Avc14 |
Dent Blanche | Valpelline | Cc metapelite | Fsp, Qz, Bt, Grt, Rt | 725 ± 25 | 0.95 ± 0.05 | 289.1 ± 6.3 | U/Pb (Zrn) ⊖ | [153,154,155] | Avc15 |
Dent Blanche | Valpelline | Cc metapelite | Grt, Bt, Sil | 703 ± 42 | 0.55 ± 0.1 | 288 ± 3.9 | U/Pb (Zrn) ⊖ | [152,153,154] | Avc24 |
II DK Zone | Val Sesia | Cc metapelite | Qz, Wm, Grt, Pl, Kfs, Bt, Zrn, Ilm | 623 ± 42.5 | 0.7 ± 0.1 | 294 ± 4.1 | U/Pb (Zrn) ⊖ | [154] | Apc26 |
Silvretta nappe | Ischgl | Un metabasite | Grt, Omp, Qz, Rt, Ms | 625 ± 25 | 2.60 ± 0.3 | Carboniferous | [99] | Avco8 | |
Silvretta nappe | Val Puntota | Un metabasite | Grt, Omp, Qz, Rt, Ms | 475 ± 25 | 2.60 ± 0.1 | Carboniferous | [99] | Avco9 | |
Silvretta nappe | Hochnoerderer | Un metabasite | Grt, Hbl, Cpx, Pl, Qz | 640 ± 40 | 0.65 ± 0.1 | Carboniferous | [156,157,158] | Avco10 | |
Silvretta nappe | Various | Un metabasite | eclogitic assemblage | 655 ± 15 | 2.80 | 351 ± 22 | Sm/Nd (WR) ⊙ | [159] | Avco11 |
Silvretta nappe | Pischahorn | Cc metapelite | Qz, Ms, And | 600 | 0.20 | Carboniferous | [157,160] | Avc11 | |
Languard-Campo | Sondalo | Cc metapelite | Sil, Opx, Kfs, Bt, Qz | 660 ± 90 | 0.5 ± 0.1 | 290 ± 2 | Sm/Nd (WR) ⊙ | [161,162] | Apc7 |
Languard-Campo | Mortirolo | Cc metapelite | Dum, Qz | 800 ± 50 | 2.00 | Devonian | [93] | Avc12 | |
Languard-Campo | Mortirolo | Cc metapelite | Di, Grt, Scp, Pl, Qz | 850 ± 100 | 0.77 ± 0.12 | Carboniferous | [95] | Avc13 | |
Languard-Campo | Mortirolo | Cc metapelite | Bt, St, Wm, Grt, Pl, Qz, Rt, Ilm, Tur | 620 ± 40 | 0.9 ± 0.2 | Dev.-Carb. | [98] | Avc16 | |
Languard-Campo | Mortirolo | Cc metapelite | Bt, Sil, Grt, Pl, Qz, Rt, Ilm | 815 ± 35 | 0.80 ± 0.2 | Dev.-Carb. | [98] | Avc17 | |
Languard-Campo | Mortirolo | Cc metapelite | Grt, St, Wm, Bt, Pl, Qz, Ilm | 600 ± 20 | 0.60 ± 0.01 | Dev.-Carb. | [163] | Avc18 | |
Oetztal–Stubai | Silandro | Cc metapelite | Grt, Sil, And, Bt, Pl, Qz, Crd | 605 ± 35 | 0.42 ± 0.1 | 290 ± 17 | Rb/Sr (WR) ⊙ | [164,165] | Apc9a |
Oetztal–Stubai | Lagenfeld | Un metabasite | Grt, Omp | 750 ± 50 | 2.70 ± 0.2 | 350 ± 8 | Sm/Nd (Gr) ⊙ | [97,166] | Avo3 |
Oetztal–Stubai | Burg | Cc metapelite | Grt, Wm, Pl, Qz, St, Ky | 600 ± 50 | 1.20 ± 0.1 | 355 ± 5 | Th/U/Pb (Mnz) ⊕ | [167] | Avc4 |
Oetztal–Stubai | Various | Cc metapelite | Pl, Wm, Bt, Qz, Kfs, Grt, Ky | 600 ± 50 | 0.55 ± 0.15 | 320 ± 58 | Th/U/Pb (Mnz) ⊘ | [168] | Avc25 |
Oetztal–Stubai | Kaunertal | Cc metagranitoid | Qz, Kfs, Pl, Wm, Bt, Grt, Ep, Ilm, Ttn | 630 | 0.75 ± 0.1 | 335.7 ± 9.6 | Sm/Nd (Gr-WR) ⊖ | [169] | Avc26 |
Oetztal–Stubai | Alpeiner Valley | Cc metapelite | Qz, Pl, Wm, Bt, Grt, St, Ilm | 680 ± 35 | 1.20 ± 0.1 | 327.5 ± 12.5 | Th/U/Pb (Mnz) ⊕ | [170] | Avc27a |
Oetztal–Stubai | Alpeiner Valley | Cc metapelite | Qz, Pl, Wm, Bt, Grt, St, Ilm | 600 ± 35 | 0.40 ± 0.1 | 310 ± 5 | Th/U/Pb (Mnz) ⊕ | [170] | Avc27b |
Oetztal–Stubai | Soelden-Umhausen | Cc metapelite | Qz, Grt, St, Ky, Pl | 600 ± 50 | 1.20 ± 0.1 | 365 ± 5 | Th/U/Pb (Mnz) ⊕ | [167] | Avc28a |
Oetztal–Stubai | Soelden-Umhausen | Cc metapelite | Qz, Grt, St, Sil, Pl | 700 ± 50 | 0.50 ± 0.1 | 323 ± 5 | Th/U/Pb (Mnz) ⊕ | [167] | Avc28b |
Ulten Zone | Samemberg Alm | Cc metapelite | Grt, Bt, Pl, Kfs, Ky, Rt | 700 ± 50 | 1.50 ± 0.5 | 365 | Pb/Pb (Zrn) ⊙ | [94,171,172] | Avc5 |
Ulten Zone | Samemberg Alm | Un metabasite | Grt, Omp, Qz | 700 ± 50 | 1.40 ± 0.2 | late Devonian | [94] | Avco6 | |
Ulten Zone | Samemberg Alm | Ma ultramafic | Grt-bearing | 790 ± 20 | 2.50 ± 0.3 | 330 ± 4 | Sm/Nd (Grt-CPx-WR) ⊙ | [94,96,101,102] | Avo7 |
Ulten Zone | Samemberg Alm | Cc metapelite | Ky, Grt, Qz, Pl, Bt, Rt | 625 ± 25 | 1.15 ± 0.05 | 347 ± 4 | Th/U/Pb (Mnz) ⊘ | [173,174] | Avc19 |
Ulten Zone | Samemberg Alm | Cc metapelite | Ky, Grt, Qz, Pl, Bt, Rt | 720 | 0.95 ± 0.05 | 328 ± 2 | Th/U/Pb (Mnz) ⊘ | [173,174] | Avc20 |
Ulten Zone | Hochwart | Cc metabasite | Ol, Opx, Sp, Cpx, Amph | 790 ± 20 | 2.50 ± 0.3 | 330 ± 6 | Sm/Nd (Zrn) ⊖ | [175] | Avc29 |
Schobergruppe | Lienz | Cc metapelite | Grt, Qz, Pl, Ms, Bt, St, Chl, Ky | 500 | 321 ± 14 | Th/Pb (Mnz) ⊕ | [176] | Avc1 | |
Schobergruppe | Barrenlesee | Un metabasite | Grt, Cpx, Amph, Qz, Wm, Im, Ep, Pl | 700 ± 50 | 1.50 ± 0.2 | 305 ± 5 | Lu/Hf (Grt-WR) ⊙ | [177] | Avco12 |
Woelz Unit | Hochgroessen | Oc metabasite | Grt, Omp, Amp, Rt, Ilm, Ep | 700 ± 50 | 2.00 ± 0.2 | 397 ± 8 | Ar/Ar (Amp) ⊙ | [158,178] | Avo2 |
Rappold Unit | Various | Cc metapelite | 540 ± 15 | 0.66 ± 0.08 | Carboniferous | [179,180] | Avc23 | ||
Saualpe | Various | Cc metapelite | Qz, Grt, Ky, Wm, Pl, St, Bt | 575 ± 75 | 0.50 ± 0.1 | 320 ± 16 | Th/U/Pb (Mnz) ⊕ | [181] | Avc30 |
Lower Austroalpine | Sopron | Cc metapelite | Bt, And, Sil, Qz, Pl | 637 ± 62 | 0.28 ± 0.1 | 300 ± 40 | Th/U/Pb (Mnz) ⊕ | [182] | Apc14 |
Tect. Unit | Location | Group | Assemblage | Temp (°C) | Pres (GPa) | Age (Ma) | Method | Refs | Code |
---|---|---|---|---|---|---|---|---|---|
Savona Massif | Savona | Cc metabasite | Grt, Omp, Qz, Ms | 700 ± 50 | 1.70 | 383 ± 9 | U/Pb (Zrn) ⊖ | [116,120,122] | Pvc1 |
Clarea Complex | Cottian Alps | Cc metapelite | Grt, Ms, Pl, Ky, Rt, Qz | 600 ± 50 | 0.95 ± 0.15 | 350 ± 10 | Ar/Ar (Wm) ⊙ | [111,183] | Pvc2 |
Dora-Maira Massif | Punta Muret | Cc metapelite | Qz, Wm, Grt, St, Bi, Ilm | 650 ± 10 | 0.70 ± 0.1 | 324 ± 6 | U/Pb (Mnz) ⊖ | [184] | Pvc8 |
Gran Paradiso Massif | Valnontey | Cc metapelite | Grt, St, Ilm, Qtz | 625 ± 25 | 0.60 ± 0.1 | Dev.-Carb. | [185] | Pvc3 | |
Monte Rosa Massif | Gressoney Valley | Cc metapelite | Grt, Qz | 562 ± 12 | 0.50 ± 0.1 | Dev.-Carb. | [186] | Pvc5 | |
Mischabel nappe | Siviez | Cc metabasite | Hbl, Pl, Qz | 600 ± 50 | 0.55 ± 0.05 | Dev.-Carb. | [103,109] | Pvc7 | |
Adula nappe | Trescolmen | Un metabasite | Grt, Omp, Ms, Amp, Qz, Chl | 750 ± 75 | 2.20 ± 0.25 | 374 ± 28 | U/Pb (Zrn) ⊖ | [119,121] | Pvco8 |
Adula nappe | Vals, Confin | Un metabasite | Grt, Omp, Ky, Rt, Ms, Ep, Pl, Qz | 640 ± 75 | 1.70 ± 0.25 | 329 ± 25 | U/Pb (Zrn) ⊖ | [119,121] | Pvco9 |
metagranitoid | Pl, Qz, Grt, Ms, Ep, Rt | ||||||||
Suretta nappe | Avers | Un metabasite | Grt, Hbl, Cpx, Ep, Qz | 683 ± 66 | 2.00 | Dev.-Carb. | [118] | Pvco10 | |
Tauren Window | Frosnitztal | Un metabasite | Grt, Omp, Qz | 450 ± 50 | 1.00 ± 0.2 | 418.5 ± 18.5 | Sm/Nd-U/Pb (WR-Zrn) ⊖ | [114,117] | Pvco11 |
Tauren Window | Mallnitz | Un metabasite | Grt, Omp, Qz | 620 ± 100 | 1.20 | 418.5 ± 18.5 | Sm/Nd-U/Pb (WR-Zrn) ⊖ | [113,117] | Pvco12 |
Tect. Unit | Location | Group | Assemblage | Temp (°C) | Pres (GPa) | Age (Ma) | Method | Refs | Code |
---|---|---|---|---|---|---|---|---|---|
Argentera Massif | Tinèe | Un metabasite | Grt, Hbl, Cpx, Pl, Qz | 735 ± 25 | 1.30 ± 0.1 | Devonian | [134] | Hvco1a | |
Argentera Massif | Valle Gesso; Valle Stura; Vésubie | Un metabasite | Grt, Hbl, Cpx, Pl, Qz | 735 ± 25 | 1.30 ± 0.1 | Devonian | [134] | Hvco1b | |
Argentera Massif | Passo della Mena, Frisson lakes | Cc metapelite | Grt, Hbl, Cpx, Pl, Qz, Rt/Ilm | 735 ± 15 | 1.38 ± 0.05 | 340 ± 4 | U/Pb (Zrn) ⊖ | [137,187] | Hvc2 |
Argentera Massif | Various | Un metabasite | Grt, Hbl, Cpx, Pl, Qz | 735 ± 25 | 1.30 ± 0.1 | Devonian | [134] | Hvco16 | |
Argentera Massif | Various | Un metabasite | Grt, Hbl, Cpx, Pl, Qz | 735 ± 25 | 1.30 ± 0.1 | Devonian | [134] | Hvco17 | |
Argentera Massif | Lac Long | Oc metabasite | Cpx, Pl, Amph, Grt, Rt, Ilm | 690 ± 55 | 1.50 ± 0.25 | >339.7 ± 12 | Ar/Ar (Amp) ⊖ | [138] | Hvo17a |
Argentera Massif | Lago Valscura | Oc metabasite | Cpx, Pl, Amph, Grt, Rt, Ilm | 690 ± 55 | 1.50 ± 0.25 | >339.7 ± 12 | Ar/Ar (Amp) ⊖ | [138] | Hvo17b |
Argentera Massif | Various | Un metabasite | Grt, Hbl, Cpx, Pl, Qz | 735 ± 25 | 1.30 ± 0.1 | Devonian | [134] | Hvco18 | |
Argentera Massif | Various | Un metabasite | Grt, Hbl, Cpx, Pl, Qz | 735 ± 25 | 1.30 ± 0.1 | Devonian | [134] | Hvco19 | |
Pelvoux Massif | La Lavey | Un metabasite | 850 ± 50 | 1.40 ± 0.1 | Devonian | [188,189] | Hvco7 | ||
Pelvoux Massif | Peyre Arguet | Un metabasite | Cpx, Grt, Pl, Prg, Rt, Qz | 800 ± 50 | 0.50 ± 0.2 | Dev.-Carb. | [188,189,190] | Hvco8 | |
Pelvoux Massif | La Lavey | Un metabasite | Grt, Cpx, Qz, Rt, Pl, Amph, Bt | 690 ± 40 | 1.60 ± 0.1 | 337.5 ± 7.5 | U/Pb (Rt) ⊖ | [191] | Hvco21a |
Pelvoux Massif | La Lavey | Un metabasite | Cpx, Qz, Pl, Amph | 835 ± 35 | 0.75 ± 0.15 | 315.5 ± 21.5 | U/Pb (Zrn) ⊖ | [191] | Hvco21b |
Pelvoux Massif | Valgaudemar Valley | Ma ultramafic | Grt-bearing | 1055 ± 85 | 3.50 ± 0.5 | Devonian | [192] | Hvco23 | |
Grandes Rousses | Romanche Valley | Un metabasite | Cpx, Grt, Qz, Rt | 717 ± 67 | 0.55 ± 0.15 | 321 ± 10 | Ar/Ar (Amp) ⊙ | [193] | Hvco5 |
Grandes Rousses | Oisan | Un metabasite | Cpx, Grt, Qz, Rt | 884 ± 109 | 1.30 ± 0.4 | Dev.-Carb. | [193] | Hvco6 | |
Belledonne | Lac de la Croix | Un | Grt, Cpx, Pl, Qz, Rt | 640 ± 30 | 1.20 ± 0.1 | Devonian | [189] | Hvco9 | |
Massif | metabasite | Grt, Hbl, Cpx, Qz, Rt, Zo | |||||||
Belledonne Massif | Allemond | Cc metapelite | Grt, St, Bt, Ms, Chl, Pl, Qz, Rt | 550 ± 50 | 1.00 ± 0.1 | Devonian | [23,194] | Hvc3 | |
Belledonne Massif | Livet | Cc metapelite | Gt, St, Bt, Ms, Pl, Qz, Ilm | 590 ± 60 | 0.80 ± 0.2 | 352 ± 55 | K/Ar (Amp) ⊙ | [23,194,195] | Hvc4 |
Belledonne Massif | Grand Mont | Cc metapelite | Qz, Pl, Bt, Grt, Rt | 740 ± 40 | 1.20 ± 0.2 | 322 ± 12.5 | U/Pb (Zrn) ⊖ | [126] | Hvc16b |
Belledonne Massif | Grand Mont | Cc metapelite | Qz, Pl, Bt, Grt, Ilm | 650 ± 50 | 0.95 ± 0.15 | Carboniferous | [126] | Hvc16a | |
Belledonne Massif | Grand Mont | Cc metapelite | Qz, Pl, Bt, Grt, Ilm | 580 ± 30 | 0.65 ± 0.15 | 306 ± 3 | U/Pb (Zrn) ⊖ | [126] | Hvc16c |
Belledonne Massif | Taillefer | Cc metapelite | Qz, Wm, Pl, Bt, St, Grt, Ky | 608 ± 14 | 0.58 ± 0.06 | 337 ± 7 | U/Pb (Zrn) ⊙ | [196] | Hvc17 |
Belledonne Massif | Grand Mont | Un metabasite | Grt, Cpx, Qz, Rt, Amp | 715 ± 25 | 1.50 ± 0.1 | 340 ± 11 | U/Pb (Rt) ⊖ | [126] | Hvco20a |
Belledonne Massif | Grand Mont | Un metabasite | Grt, Cpx, Amp, Ilm, Pl, Qz | 580 ± 30 | 0.65 ± 0.15 | 306 ± 3 | U/Pb (Zrn) ⊖ | [126] | Hvco20b |
Aiguilles Rouges | Lac Cornu | Un metabasite | Grt, Cpx, Hbl, Qz, Rt | 737 ± 12 | 1.55 ± 0.05 | Devonian | [124,133] | Hvco10 | |
Aiguilles Rouges | Col de Bérard | Cc metapelite | Grt, Ms, Ky, Qz, Pl | 650 ± 25 | 1.30 ± 0.1 | Carboniferous | [197] | Hvc11 | |
Aiguilles Rouges | Emosson lake | Cc metapelite | Bt, Qz, Kfs, Pl, Ms, Gt | 550 ± 25 | 0.90 ± 0.1 | Carboniferous | [198] | Hvc12a | |
Aiguilles Rouges | Emosson lake | Cc metapelite | Bt, Qz, Kfs, Pl, Ms, Gt | 650 ± 20 | 0.31 ± 0.01 | 320 ± 1 | U/Pb (Mnz) ⊙ | [198,199] | Hvc12b |
Aiguilles Rouges | St-Gervais-les-Bains | Cc metapelite | 700 ± 50 | 1.00 ± 0.15 | Dev.-Carb. | [200] | Hvc15 | ||
Aiguilles Rouges | Lac Cornu | Un metabasite | Amp, Grt, Cpx, Qz, Rt | 700 ± 50 | 1.75 ± 0.15 | 337.5 ± 2.5 | U/Pb (Rt) ⊖ | [127] | Hvco22a |
Aiguilles Rouges | Lac Cornu | Un metabasite | Amp, Grt, Cpx, Pl, Qz, Ilm | 650 ± 50 | 0.95 ± 0.15 | Carboniferous | [127] | Hvco22b | |
Mont Blanc | Martigny | Cc metabasite | Hbl, Grt, Qz, Pl | 544 ± 45 | 0.68 ± 0.07 | 321 ± 14 | Ar/Ar (Amp) ⊙ | [201] | Hvc13 |
Massif | skarn | Grt, Mag, Di, Hd | |||||||
Aar Massif | Susten Pass | Cc metapelite | 330 ± 3 | U/Pb (Zrn) ⊙ | [123,202] | Hvc14 |
4. Metamorphic Evolution
4.1. Devonian (420–370 Ma)
4.2. Late Devonian–Late Carboniferous (370–330 Ma)
4.3. Late Carboniferous–Early Permian (330–290 Ma)
4.4. Metamorphic Field Gradients
5. Discussion
ALPINE TECTONIC DOMAINS | VARISCAN TECTONIC DOMAINS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALPS | BOHEMIAN MASSIF | VOSGES–BLACK FOREST | FRENCH CENTRAL MASSIF | MAURES–ESTÉREL–CORSICA–SARDINIA | |||||||||
HDP | P | A | S | Mid-Variscan | Relative | Mid-Variscan | Relative | Mid-Variscan | Para-Autochton/ | Mid-Variscan | Para-Autochton/ | ||
Allochton | Autochton | Allochton | Autochton | Allochton | Autochton | Allochton | Autochton | ||||||
Devonian | Facies | HPG>EA-A | E>EA-A | E | EA>A | E>G>A | E>A>EA>Gs | E>HPG>A | E? | ||||
(420–365) | Field gradient | uB>F | F>uB | F | uB-B | F-uB | F-B | F-uB | F? | ||||
Late Devonian–late Carboniferous | Facies | HPG-E>A>EA | A>E | E>A>G>HPG | A>EA>Gs-LG-UnM | HPG>A>EA | A>EA>Gs | A>HPG>E>EA>Gs | A>EA>Gs | A>HPG>G>Gs | Gs | A>HPG>E>EA | A>EA>Gs |
(365–330) | Field gradient | F>uB>B>A | B>uB>F | F>uB-B>A | uB-B>F | B-uB | B | F-uB-B | B | B>uB | B | F-uB-B | B |
Late Carboniferous–Early Permian | Facies | A>G>EA>HPG | A>E | A>G>HPG>E | A-Gs>G | A>EA | Gs | A>EA>G | Gs | A>EA>G>Gs | Gs>EA>G>E | A>EA>G | Gs |
(330–290) | Field gradient | B>A | B>F | B-uB>A>F | B-A | B | B | A-B | B | B>A | B>A>uB | A-B | B |
References | See references in Table 1, Table 2, Table 3 and Table 4 of this work | [9,220,221,222,223,224,225,226,227] | [220,224,228,229,230,231] | [232,233,234,235,236,237,238] | [9,11,16,220,239,240,241,242,243,244] | [9,11,16,217,240,244] | [9,11,245,246,247,248] | [249,250,251,252,253,254,255] | [253,256,257,258,259,260] | ||||
[18,19,63,244,261,262,263,264,265,266] | [18,19,63,244,267] | [18,19,20,241,243,244,268] | [18,19,20,35,217,218,269,270,271] | [9,11,16,217,240,244] | [16,18,19,20,219,244,272] | [19,273,274,275,276,277,278] | [19,274,279,280,281,282] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Matte, P. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 1986, 126, 329–374. [Google Scholar] [CrossRef]
- Ledru, P.; Lardeaux, J.M.; Santallier, D.; Autran, A.; Quenardel, J.M.; Floc’h, J.P.; Lerouge, G.; Maillet, N.; Marchand, J.; Ploquin, A. Ou sont les nappes dans le massif central francais? Bull. Soc. Geol. Fr. 1989, V, 605–618. [Google Scholar] [CrossRef]
- Oliver, G.J.H.; Corfu, F.; Krogh, T.E. U-Pb ages from SW Poland: Evidence for a Caledonian suture zone between Baltica and Gondwana. J. Geol. Soc. 1993, 150, 355–369. [Google Scholar] [CrossRef]
- Finger, F.; von Quadt, A. U-Pb ages of zircons from a plagiogranite-gneiss in the southeastern Bohemian massif, Austria: Further evidence for an important early Paleozoic rifting episode in the eastern Variscides. Schweiz. Mineral. Und Petrogr. Mitteilungen 1995, 75, 265–270. [Google Scholar]
- Faure, M.; Leloix, C.; Roig, J.Y. Polycyclic evolution of the Hercynian belt; [L’évolution polycyclique de la chaîne hercynienne]. Bull. Soc. Geol. Fr. 1997, 168, 695–705. [Google Scholar]
- Michard, A.; Goffé, B.; Bouybaouene, M.; Saddiqi, O. Late Hercynian–Mesozoic thinning in the Alboran domain: Metamorphic data from the northern Rif, Morocco. Terra Nova 1997, 9, 171–174. [Google Scholar] [CrossRef]
- Tait, J.A.; Bachtadse, V.; Franke, W.; Soffel, H.C. Geodynamic evolution of the European Variscan fold belt: Palaeomagnetic and geological constraints. Geol. Rundsch. 1997, 86, 585. [Google Scholar] [CrossRef]
- Torsvik, T.H. Palaeozoic palaeogeography: A North Atlantic viewpoint. GFF 1998, 120, 109–118. [Google Scholar] [CrossRef]
- Matte, P. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 2001, 13, 122–128. [Google Scholar] [CrossRef]
- von Raumer, J.; Stampfli, G.; Borel, G.; Bussy, F. Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int. J. Earth Sci. 2002, 91, 35–52. [Google Scholar] [CrossRef]
- Faure, M.; Lardeaux, J.M.; Ledru, P. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geosci. 2009, 341, 202–213. [Google Scholar] [CrossRef]
- Martín-Algarra, A.; Mazzoli, S.; Perrone, V.; Rodríguez-Cañero, R.; Navas-Parejo, P. Variscan Tectonics in the Malaguide Complex (Betic Cordillera, Southern Spain): Stratigraphic and Structural Alpine versus Pre-Alpine Constraints from the Ardales Area (Province of Malaga). I. Stratigraphy. J. Geol. 2009, 117, 241–262. [Google Scholar] [CrossRef]
- Kroner, U.; Romer, R. Two plates—Many subduction zones: The Variscan orogeny reconsidered. Gondwana Res. 2013, 24, 298–329. [Google Scholar] [CrossRef]
- Stampfli, G.; Hochard, C.; Vérard, C.; Wilhem, C.; von Raumer, J.F. The formation of Pangea. Tectonophysics 2013, 593, 1–19. [Google Scholar] [CrossRef]
- Ballèvre, M.; Martínez Catalán, J.R.; ópez-Carmona, A.; Pitra, P.; Abati, J.; Fernández, R.D.; Ducassou, C.; Arenas, R.; Bosse, V.; Castiñeiras, P.; et al. Correlation of the Nappe Stack in the Ibero-Armorican Arc across the Bay of Biscay: A Joint French–Spanish Project; Geological Society, Special Publications: London, UK, 2014; Volume 405, pp. 77–113. [Google Scholar] [CrossRef]
- Lardeaux, J.M. Deciphering orogeny: A metamorphic perspective Examples from European Alpine and Variscan belts: Part II: Variscan metamorphism in the French Massif Centra—A review. Bull. Soc. Geol. Fr. 2014, 185, 281–310. [Google Scholar] [CrossRef]
- Franke, W.; Cocks, L.R.M.; Torsvik, T.H. The Palaeozoic Variscan oceans revisited. Gondwana Res. 2017, 48, 257–284. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Schulmann, K.; Ghienne, J.F. The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth-Sci. Rev. 2021, 220, 103700. [Google Scholar] [CrossRef]
- Schulmann, K.; Edel, J.B.; Martínez Catalán, J.R.; Mazur, S.; Guy, A.; Lardeaux, J.M.; Ayarza, P.; Palomeras, I. Tectonic evolution and global crustal architecture of the European Variscan belt constrained by geophysical data. Earth-Sci. Rev. 2022, 234, 104195. [Google Scholar] [CrossRef]
- Lardeaux, J.M. Metamorphism and linked deformation in understanding tectonic processes at varied scales. Comptes Rendus. Geosci. 2023, 356, 1–25. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Neubauer, F. Late Precambrian and Palaeozoic Evolution of the Alpine Basement—An Overview. In Pre-Mesozoic Geology in the Alps; von Raumer, J.F., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 625–639. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Stampfli, G.M.; Bussy, F. Gondwana-derived microcontinents—The constituents of the Variscan and Alpine collisional orogens. Tectonophysics 2003, 365, 7–22. [Google Scholar] [CrossRef]
- Guillot, S.; di Paola, S.; Ménot, R.P.; Ledru, P.; Spalla, M.I.; Gosso, G.; Schwartz, S. Suture zones and importance of strike-slip faulting for Variscan geodynamic reconstructions of the External Crystalline Massifs of the western Alps. Bull. Soc. Geol. Fr. 2009, 180, 483–500. [Google Scholar] [CrossRef]
- Compagnoni, R.; Ferrando, S.; Lombardo, B.; Radulesco, N.; Rubatto, D. Paleo-European crust of the Italian Western Alps: Geological history of the Argentera Massif and comparison with Mont Blanc-Aiguilles Rouges and Maures-Tanneron Massifs. J. Virtual Explor. 2010, 36, 228. [Google Scholar] [CrossRef]
- Spiess, R.; Cesare, B.; Mazzoli, C.; Sassi, R.; Sassi, F.P. The crystalline basement of the Adria microplate in the eastern Alps: A review of the palaeostructural evolution from the Neoproterozoic to the Cenozoic. Rend. Lincei 2010, 21, 31–50. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Bussy, F.; Schaltegger, U.; Schulz, B.; Stampfli, G.M. Pre-Mesozoic Alpine basements-Their place in the European Paleozoic framework. Geol. Soc. Am. Bull. 2013, 125, 89–108. [Google Scholar] [CrossRef]
- Faure, M.; Ferrière, J. Reconstructing the Variscan Terranes in the Alpine Basement: Facts and Arguments for an Alpidic Orocline. Geosciences 2022, 12, 65. [Google Scholar] [CrossRef]
- Neubauer, F.; Liu, Y.; Dong, Y.; Chang, R.; Genser, J.; Yuan, S. Pre-Alpine tectonic evolution of the Eastern Alps: From Prototethys to Paleotethys. Earth-Sci. Rev. 2022, 226, 103923. [Google Scholar] [CrossRef]
- Rutland, R.W.R. Andean orogeny and ocean floor spreading. Nature 1971, 233, 252–255. [Google Scholar] [CrossRef]
- von Huene, R.; Scholl, D.W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 1991, 29, 279–316. [Google Scholar] [CrossRef]
- Stern, C.R. The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Res. 2020, 88, 220–249. [Google Scholar] [CrossRef]
- Roda, M.; Zucali, M.; Regorda, A.; Spalla, M.I. Formation and evolution of a subduction-related mélange: The example of the Rocca Canavese Thrust Sheets (Western Alps). GSA Bull. 2020, 132, 884–896. [Google Scholar] [CrossRef]
- Termier, P. A la Gloire de la Terre, 8th ed.; Desclée De Brouwer et Cie: Paris, France, 1922; p. 425. [Google Scholar]
- Spalla, M.I.; Marotta, A.M. P-T evolutions vs. numerical modelling: A key to unravel the Paleozoic to early-Mesozoic tectonic evolution of the Alpine area. Period. Mineral. 2007, 76, 267–308. [Google Scholar] [CrossRef]
- Regorda, A.; Lardeaux, J.M.; Roda, M.; Marotta, A.M.; Spalla, M.I. How many subductions in the Variscan orogeny? Insights from numerical models. Geosci. Front. 2020, 11, 1025–1052. [Google Scholar] [CrossRef]
- Miyashiro, A. Evolution of Metamorphic Belts. J. Petrol. 1961, 2, 277–311. [Google Scholar] [CrossRef]
- Ernst, W.G. Metamorphic zonations on presumably subducted lithospheric plates from Japan, California and the Alps. Contrib. Mineral. Petrol. 1971, 34, 43–59. [Google Scholar] [CrossRef]
- Ernst, W.G. Metamorphism and Ancient Continental Margins. In The Geology of Continental Margins; Burk, C.A., Drake, C.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1974; pp. 907–919. [Google Scholar] [CrossRef]
- Ernst, W.G. Petrologic Phase Equilibria; W.H. Freeman and Co. Ltd.: San Francisco, CA, USA, 1976; p. 333. [Google Scholar]
- Ernst, W.G. Tectonics and prograde versus retrograde P-T trajectories of High-pressure metamorphic belts. Rend. Della Soc. Ital. Mineral. Petrol. 1977, 33, 191–220. [Google Scholar]
- England, P.C.; Richardson, S.W. The influence of erosion upon the mineral fades of rocks from different metamorphic environments. J. Geol. Soc. 1977, 134, 201–213. [Google Scholar] [CrossRef]
- Cloos, M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 1993, 105, 715. [Google Scholar] [CrossRef]
- Spear, F.S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths; Mineralogical Society of America: Washington, DC, USA, 1993; p. 799. [Google Scholar]
- Kornprobst, J. Metamorphic Rocks and Their Geodynamic Significance. Petrology and Structural Geology, 1st ed.; Springer: Dordrecht, The Netherlands, 2002; Volume 12, p. 206. [Google Scholar] [CrossRef]
- Royden, L.; Horváth, F.; Nagymarosy, A.; Stegena, L. Evolution of the Pannonian Basin System: 2. Subsidence and thermal history. Tectonics 1983, 2, 91–137. [Google Scholar] [CrossRef]
- Cavazza, W.; Wezel, F.C. The Mediterranean region—A geological primer. Episodes 2003, 26, 160–168. [Google Scholar] [CrossRef]
- Dal Piaz, G.V. The Italian Alps: A journey across two centuries of Alpine geology. J. Virtual Explor. 2010, 36, 8. [Google Scholar] [CrossRef]
- Gosso, G.; Lardeaux, J.M.; Zanoni, D.; Volante, S.; Corsini, M.; Bersezio, R.; Mascle, J.; Spaggiari, L.; Spalla, M.I.; Zucali, M.; et al. Mapping the progressive geologic history at the junction of the Alpine Mountain Belt and the Western Mediterranean Ocean. Ofioliti 2019, 44, 97–110. [Google Scholar]
- Polino, R.; Dal Piaz, G.V.; Gosso, G. Tectonic erosion at the Adria margin and accretionary processes for the Cretaceous orogeny of the Alps. Mem. Soc. Geol. Fr. 1990, 156, 345–367. [Google Scholar]
- Pfiffner, A.; Lehner, P.; Heitzman, P.; Mueller, S.; Steck, A. Deep Structure of the Swiss Alps—Results from NFP 20; Birkhäuser: Basel, Switzerland, 1997; p. 330. [Google Scholar]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Brack, P. Structures in the southwestern border of the Adamello intrusion (Alpi Bresciane, Italy). Schweiz. Mineral. Und Petrogr. Mitteilungen 1981, 61, 37–50. [Google Scholar] [CrossRef]
- Crespi, R.; Liborio, G.; Mottana, A. Metamorfismo tardo-alpino di grado bassissimo nel basamento a sud della Linea Insubrica. Rend. Della Soc. Ital. Mineral. Petrol. 1981, 37, 813–824. [Google Scholar]
- Filippi, M.; Zanoni, D.; Rebay, G.; Roda, M.; Regorda, A.; Lardeaux, J.M.; Spalla, M.I. Quantification of Alpine Metamorphism in the Edolo Diabase, Central Southern Alps. Geosciences 2022, 12, 312. [Google Scholar] [CrossRef]
- Roure, F.; Heitzman, P.; Polino, R. Deep Structure of the Alps; Volume speciale della Società Geologica Italiana: Roma, Italy, 1990; p. 367. [Google Scholar]
- Spalla, M.I.; Lardeaux, J.M.; Dal Piaz, G.V.; Gosso, G.; Messiga, B. Tectonic significance of Alpine eclogites. J. Geodyn. 1996, 21, 257–285. [Google Scholar] [CrossRef]
- Handy, M.R.; Oberhänsli, R. Explanatory notes to the map: Metamorphic structure of the Alps age map of the metamorphic structure of the Alps—Tectonic interpretation and outstanding problem. Mitt. Österr. Miner. Ges. 2004, 149, 201–225. [Google Scholar]
- Berger, A.; Bousquet, R. Subduction-Related Metamorphism in the Alps: Review of Isotopic Ages Based on Petrology and their Geodynamic Consequences; Geological Society Special Publications: London, UK, 2008; Volume 298, pp. 117–144. [Google Scholar] [CrossRef]
- Platt, J.P. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol. Soc. Am. Bull. 1986, 97, 1037. [Google Scholar] [CrossRef]
- Roda, M.; Spalla, M.I.; Marotta, A.M. Integration of natural data within a numerical model of ablative subduction: A possible interpretation for the Alpine dynamics of the Austroalpine crust. J. Metamorph. Geol. 2012, 30, 973–996. [Google Scholar] [CrossRef]
- Spalla, M.I.; Zanoni, D.; Marotta, A.M.; Rebay, G.; Roda, M.; Zucali, M.; Gosso, G. The Transition from Variscan Collision to Continental Break-Up in the Alps: Insights from the Comparison between Natural Data and Numerical Model Predictions; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 363–400. [Google Scholar] [CrossRef]
- Roda, M.; Regorda, A.; Spalla, M.I.; Marotta, A.M. What drives Alpine Tethys opening? Clues from the review of geological data and model predictions. Geol. J. 2019, 54, 2646–2664. [Google Scholar] [CrossRef]
- Schulmann, K.; Catalán, J.R.M.; Lardeaux, J.M.; Janoušek, V.; Oggiano, G. The Variscan orogeny: Extent, timescale and the formation of the European crust. Geol. Soc. Spec. Publ. 2014, 405, 1–6. [Google Scholar] [CrossRef]
- Wennekers, J. The structure of the Bergamo Alps compared with that of the North-West Highlands of Scotland. Leidse Geol. Meded. 1931, 4, 83–93. [Google Scholar]
- de Sitter, L.U.; de Sitter-Koomans, C. The Geology of the Bergamasc Alps Lombardia Italy. Leidse Geol. Meded. 1949, 14, 1–257. [Google Scholar]
- Gaetani, M.; Jadoul, F. The structure of Bergamasc Alps. Atti dell’Accademia Naz. Dei Lincei 1979, 66, 411–416. [Google Scholar]
- Laubscher, H.P. Large-scale, thin-skinned thrusting in the southern Alps: Kinematic models. Geol. Soc. Am. Bull. 1985, 96, 710. [Google Scholar] [CrossRef]
- Cassinis, G.; Dal Piaz, G.; Eusebio, A.; Gosso, G.; Martinotti, G.; Massari, F.; Milano, P.; Pennacchioni, G.; Perello, M.; Pessina, C.; et al. Report on a structural and sedimentological analysis in the Uranium Province of the Orobic Alps. Uranium 1986, 2, 241–260. [Google Scholar]
- Milano, P.F.; Pennacchioni, G.; Spalla, M.I. Alpine and pre-Alpine tectonics in the Central Orobic Alps (Southern Alps). Eclogae Geol. Helv. 1988, 81, 273–293. [Google Scholar]
- Carminati, E.; Siletto, G.B.; Battaglia, D. Thrust kinematics and internal deformation in basement-involved fold and thrust belts: The eastern Orobic Alps case (Central Southern Alps, northern Italy). Tectonics 1997, 16, 259–271. [Google Scholar] [CrossRef]
- Spalla, M.I.; Gosso, G. Pre-Alpine tectonometamorphic units in the Central Southern Alps: Structural and metamorphic memory. Mem. Sci. Geol. 1999, 51, 221–229. [Google Scholar]
- Rebay, G.; Maroni, M.; Siletto, G.B.; Spalla, M.I. Superposed syn-metamorphic structures of the Alpine and pre-Alpine convergent cycles in the Southalpine basement of the Orobic Alps (Northern Italy). J. Maps 2015, 11, 168–180. [Google Scholar] [CrossRef]
- Zanchetta, S.; Malusà, M.G.; Zanchi, A.M. Precollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps). Lithosphere 2015, 7, L466.1. [Google Scholar] [CrossRef]
- Ewing, T.; Hermann, J.; Rubatto, D. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib. Mineral. Petrol. 2013, 165, 757–779. [Google Scholar] [CrossRef]
- Real, C.; Fassmer, K.; Carosi, R.; Froitzheim, N.; Rubatto, D.; Groppo, C.; Münker, C.; Ferrando, S. Carboniferous-Triassic tectonic and thermal evolution of the middle crust section of the Dervio-Olgiasca Zone (Southern Alps). J. Metamorph. Geol. 2023, 41, 685–718. [Google Scholar] [CrossRef]
- McDowell, F.W. Potassium-Argon Ages from the Ceneri Zone, Southern Swiss Alps. Contrib. Mineral. Petrol. 1970, 28, 165–182. [Google Scholar] [CrossRef]
- di Paola, S.; Spalla, M.I.; Gosso, G. New structural mapping and metamorphic evolution of the Domaso-Cortafò Zone (Southern Alps—Lake Como). Mem. Sci. Geol. 2001, 53, 1–4. [Google Scholar]
- Origoni Giobbi, E.; Gregnanin, A. The crystalline basement of the “Massiccio delle Tre Valli Bresciane”: New petrographic and chemical data. Mem. Della Soc. Geol. Ital. 1983, 26, 133–144. [Google Scholar]
- Riklin, K. Kontaktmetamorphose Permischer Sandsteine im Adamello-Massiv. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 1983. [Google Scholar]
- Spalla, M.I.; Zanoni, D.; Gosso, G.; Zucali, M. Deciphering the geologic memory of a Permian conglomerate of the Southern Alps by pebble P–T estimates. Int. J. Earth Sci. 2009, 98, 203–226. [Google Scholar] [CrossRef]
- Filippi, M.; Spalla, M.I.; Pigazzini, N.; Diella, V.; Lardeaux, J.M.; Zanoni, D. Cld-St-And-Bearing Assemblages in the Central Southalpine Basement: Markers of an Evolving Thermal Regime during Variscan Convergence. Minerals 2021, 11, 1124. [Google Scholar] [CrossRef]
- Zanoni, D.; Spalla, M.I.; Gosso, G. Vestiges of lost tectonic units in conglomerate pebbles? A test in Permian sequences of the Southalpine Orobic Alps. Geol. Mag. 2010, 147, 98–122. [Google Scholar] [CrossRef]
- Zanoni, D.; Spalla, M.I. The Variscan evolution in the basement cobbles of the Permian Ponteranica Formation by microstructural and petrologic analysis. Ital. J. Geosci. 2018, 137, 254–271. [Google Scholar] [CrossRef]
- Boriani, A.C.; Villa, I.M. Geochronology of regional metamorphism in the Ivrea-Verbano Zone and Serie dei Laghi, Italian Alps. Schweiz. Mineral. Und Petrogr. Mitteilungen 1997, 77, 381–401. [Google Scholar] [CrossRef]
- Boriani, A.; Giobbi Origoni, E. Does the basement of western souther Alps display a tilted section through the continental crust? A review and discussion. Period. Mineral. 2004, 73, 5–22. [Google Scholar]
- Boriani, A.; Burlini, L.; Sacchi, R. The Cossato-Mergozzo-Brissago Line and the Pogallo Line (Southern Alps, Northern Italy) and their relationships with the late-Hercynian magmatic and metamorphic events. Tectonophysics 1990, 182, 91–102. [Google Scholar] [CrossRef]
- Borghi, A. Structural evolution of the north-eastern sector of the Serie dei Laghi (Southern Alps). Boll. Della Soc. Geol. Ital. 1991, 110, 639–647. [Google Scholar]
- Sassi, F.; Cesare, B.; Mazzoli, C.; Peruzzo, L.; Sassi, R.; Spiess, R. The crystalline basements of the Italian Eastern Alps: A review of the metamorphic features. Period. Mineral. 2004, 73, 23–42. [Google Scholar]
- Sassi, R.; Venturini, C.; Akrai, P. The boundary between the metamorphic and non- to anchi-metamorphic domains in the Southalpine basement s.l. of the eastern southern Alps: A review. Period. Mineral. 2004, 73, 131–143. [Google Scholar]
- von Raumer, J. The Palaeozoic evolution in the Alps: From Gondwana to Pangea. Geol. Rundsch. 1998, 87, 407–435. [Google Scholar] [CrossRef]
- Desmons, J.; Compagnoni, R.; Cortesogno, L.; Frey, M.; Gaggero, L. Pre-Alpine metamorphism of the internal zone of the Western Alps. Schweiz. Mineral. Und Petrogr. Mitteilungen 1999, 79, 23–39. [Google Scholar]
- Miller, C.; Thöni, M. Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): Geochemistry and Sm-Nd vs. Rb-Sr isotope systematics. Chem. Geol. 1995, 122, 199–225. [Google Scholar] [CrossRef]
- Gosso, G.; Spalla, M.I.; Messiga, B. Dumorterite-Kyanite relicts within the HT-LP country rocks of the Sondalo gabbro: A record of extension related to uplift of HP-rocks. In Proceedings of the IOS International Ophiolite Symposium, Pavia, Italy, 18–23 September 1995; p. 55. [Google Scholar]
- Godard, G.; Martin, S.; Prosser, G.; Kienast, J.; Morten, L. Variscan migmatites, eclogites and garnet-peridotites of the Ulten zone, Eastern Austroalpine system. Tectonophysics 1996, 259, 313–341. [Google Scholar] [CrossRef]
- Zucali, M. La Correlazione nei Terreni Metamorfici: Due Esempi dall’Austroalpino Occidentale (Zona Sesia-Lanzo) e Centrale (Falda Languard-Campo/Serie del Tonale). Ph.D. Thesis, Università degli Studi di Milano, Milano, Italy, 2001. [Google Scholar]
- Morten, L.; Nimis, P.; Rampone, E. Records of mantle–crust exchange processes during continental subduction–exhumation in the Nonsberg–Ultental garnet peridotites (eastern Alps). A review. Period. Mineral. 2004, 73, 119–129. [Google Scholar]
- Konzett, J.; Miller, C.; Armstrong, R.; Thöni, M. Metamorphic Evolution of Iron-rich Mafic Cumulates from the Oeztal-Stubai Crystalline Complex, Eastern Alps, Austria. J. Petrol. 2004, 46, 717–747. [Google Scholar] [CrossRef]
- Roda, M.; Zucali, M.; Li, Z.X.; Spalla, M.I.; Yao, W. Pre-Alpine contrasting tectono-metamorphic evolutions within the Southern Steep Belt, Central Alps. Lithos 2018, 310–311, 31–49. [Google Scholar] [CrossRef]
- Schweinehage, R.; Massone, H.J. Geochemistry and metamorphic evolution of metabasites from Silvretta nappe, Eastern Alps. Mem. Sci. Geol. 1999, 51, 191–203. [Google Scholar]
- Andreatta, C. La formazione gneissico-kinzigitica e le oliviniti di Val d’Ultimo (Alto Adige). Mem. Mus. Stor. Natturale Venezia Tridentina 1935, 3, 1–160. [Google Scholar]
- Herzberg, C.; Riccio, L.; Chiesa, S.; Fornoni, A.; Gatto, G.O.; Gregnanin, A.; Piccrillo, E.M.; Scolari. Petrogenetic evolution of a spinel-garnet-lherzolite in the Austridic crystalline basement from Val di Clapa. Cons. Naz. Delle Ric. Mem. dell’Instituto Geol. Mineral. Padova 1977, 30, 3–28. [Google Scholar]
- Tumiati, S.; Thöni, M.; Nimis, P.; Martin, S.; Mair, V. Mantle–crust interactions during Variscan subduction in the Eastern Alps (Nonsberg–Ulten zone): Geochronology and new petrological constraints. Earth Planet. Sci. Lett. 2003, 210, 509–526. [Google Scholar] [CrossRef]
- Thélin, P.; Sartori, M.; Burri, M.; Gouffon, Y.; Chessex, R. The Pre-Alpine Basement of the Briançonnais (Wallis, Switzerland). In Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 297–315. [Google Scholar] [CrossRef]
- Desmons, J.; Mercier, D. Passing through the Briançon zone. In Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 279–296. [Google Scholar]
- Boriani, A.; Dal Piaz, G.; Hunziker, J.; von Raumer, J.F.; Sassi, F. Caratteri, distribuzione ed età del metamorfismo pre-Alpino nelle Alpi. Mem. Della Soc. Geol. Ital. 1974, 13, 165–225. [Google Scholar]
- Frisch, W.; Ménot, R.P.; Neubauer, F.; von Raumer, J. Correlation and evolution of the Alpine basement. Schweiz. Mineral. Und Petrogr. Mitteilungen 1990, 70, 265–285. [Google Scholar]
- Dal Piaz, G. Evolution of Austro-Alpine and Upper Penninic Basement in the Northwestern Alps from Variscan Convergence to Post-Variscan Extension. In Pre-Mesozoic Geology in the Alps; Raumer, J.F., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 327–344. [Google Scholar] [CrossRef]
- Bergomi, M.A.; Dal Piaz, G.; Malusà, M.G.; Monopoli, B.; Tunesi, A. The Grand St Bernard-Briançonnais Nappe System and the Paleozoic Inheritance of the Western Alps Unraveled by Zircon U-Pb Dating. Tectonics 2017, 36, 2950–2972. [Google Scholar] [CrossRef]
- Thélin, P.; Sartori, M.; Lengeler, R.; Schaerer, J.P. Eclogites of Paleozoic or early Alpine age in the basement of the Penninic Siviez-Mischabel nappe, Wallis, Switzerland. Lithos 1990, 25, 71–88. [Google Scholar] [CrossRef]
- Bussy, F.; Sartori, M.; Thélin, P. U-Pb zircon dating in the middle Penninic basement of the Western Alps (Valais, Switzerland). Schweiz. Mineral. Und Petrogr. Mitteilungen 1996, 76, 81–84. [Google Scholar] [CrossRef]
- Borghi, A.; Gattiglio, M.; Mondino, F.; Zaccone, G. Structural and metamorphic evidence of pre-Alpine basement in the Ambin nappe (Cottian Alps, Italy). Mem. Della Soc. Geol. Ital. 1999, 51, 205–220. [Google Scholar]
- Giorgis, D.; Thélin, P.; Stampfli, G.M.; Bussy, F. The Mont-Mort metapelites: Variscan metamorphism and geodynamic context (Briançonnais basement, Western Alps, Swizerland). Schweiz. Mineral. Und Petrogr. Mitteilungen 1999, 79, 381–398. [Google Scholar] [CrossRef]
- Droop, G.T.R. Pre-Alpine eclogites in the Pennine Basement Complex of the Eastern Alps. J. Metamorph. Geol. 1983, 1, 3–12. [Google Scholar] [CrossRef]
- Zimmermann, V.R.; Franz, G. Die eklogite der Unteren schieferhülle; Frosnitztal/Südvenediger (Tauern, Oesterreich). Mittelungen Der Oestereichischen Geol. Ges. 1989, 81, 167–188. [Google Scholar]
- Droop, G.T.R.; Lombardo, B.; Pognante, U. Formation and distribution of eclogite facies rocks in the Alps. In Eclogite Facies Rocks; Carswell, D.A., Ed.; Blackie: Glasgow, UK, 1990; pp. 225–259. [Google Scholar]
- Messiga, B.; Tribuzio, R.; Caucia, F. Amphibole evolution in Variscan eclogite-amphibolites from the Savona crystalline massif (Western Ligurian Alps, Italy): Controls on the decompressional P-T-t path. Lithos 1991, 27, 215–230. [Google Scholar]
- von Quadt, A.; Günther, D.; Frischknecht, R. The evolution of pre-Variscan ecloogites of the Tauern Window (Eastern Alps): A Sm/Nd-, conventional and Laser ICP-MS zircon U-Pb study. Schweiz. Mineral. Und Petrogr. Mitteilungen 1997, 77, 265–279. [Google Scholar] [CrossRef]
- Nussbaum, C.; Marquer, D.; Biino, G.G. Two subduction events in a polycyclic basement: Alpine and pre-Alpine high-pressure metamorphism in the Suretta nappe, Swiss Eastern Alps. J. Metamorph. Geol. 1998, 16, 591–605. [Google Scholar] [CrossRef]
- Dale, J.; Holland, T.J.B. Geothermobarometry, P-T paths and metamorphic field gradients of high-pressure rocks from the Adula Nappe, Central Alps. J. Metamorph. Geol. 2003, 21, 813–829. [Google Scholar] [CrossRef]
- Giacomini, F.; Braga, R.; Tiepolo, M.; Tribuzio, R. New constraints on the origin and age of Variscan eclogitic rocks (Ligurian Alps, Italy). Contrib. Mineral. Petrol. 2007, 153, 29–53. [Google Scholar] [CrossRef]
- Liati, A.; Gebauer, D.; Fanning, C. Geochronological evolution of HP metamorphic rocks of the Adula nappe, Central Alps, in pre-Alpine and Alpine subduction cycles. J. Geol. Soc. 2009, 166, 797–810. [Google Scholar] [CrossRef]
- Maino, M.; Dallagiovanna, G.; Gaggero, L.; Seno, S.; Tiepolo, M. U-Pb zircon geochronological and petrographic constraints on late to post-collisional Variscan magmatism and metamorphism in the Ligurian Alps, Italy. Geol. J. 2012, 47, 632–652. [Google Scholar] [CrossRef]
- Schaltegger, U. Unravelling the pre-Mesozoic history of Aar and Gotthard massifs (Central Alps) by isotopic dating: A review. Schweiz. Mineral. Petrogr. Mitteilungen 1994, 74, 41–51. [Google Scholar] [CrossRef]
- von Raumer, J.; Abrecht, J.; Bussy, F.; Lombardo, B.; Ménot, R.; Schaltegger, U. The Paleozoic metamorphic evolution of the Alpine External Massifs. Schweiz. Mineral. Petrogr. Mitteilungen 1999, 79, 5–22. [Google Scholar]
- von Raumer, J.; Bussy, F. Mont Blanc and Aiguilles-Rouges: Geology of their polymetamorphic basement (External massifs, France- Switzerland). Mem. Geol. Lausanne 2004, 42, 1–203. [Google Scholar]
- Jacob, J.; Guillot, S.; Rubatto, D.; Janots, E.; Melleton, J.; Faure, M. Carboniferous high-P metamorphism and deformation in the Belledonne Massif (Western Alps). J. Metamorph. Geol. 2021, 39, 1009–1044. [Google Scholar] [CrossRef]
- Vanardois, J.; Roger, F.; Trap, P.; Goncalves, P.; Lanari, P.; Paquette, J.; Marquer, D.; Cagnard, F.; Le Bayon, B.; Melleton, J.; et al. Exhumation of deep continental crust in a transpressive regime: The example of Variscan eclogites from the Aiguilles-Rouges massif (Western Alps). J. Metamorph. Geol. 2022, 40, 1087–1120. [Google Scholar] [CrossRef]
- Corsini, M.; Ruffet, G.; Caby, R. Alpine and late-hercynian geochronological constraints in the Argentera Massif (Western Alps). Eclogae Geol. Helv. 2004, 97, 3–15. [Google Scholar] [CrossRef]
- Sanchez, G.; Rolland, Y.; Schneider, J.; Corsini, M.; Oliot, E.; Goncalves, P.; Verati, C.; Lardeaux, J.M.; Marquer, D. Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour Massif (SW Alps). Lithos 2011, 125, 521–536. [Google Scholar] [CrossRef]
- Filippi, M.; Zanoni, D.; Gosso, G.; Lardeaux, J.M.; Verati, C.; Spalla, M.I. Structure of lamprophyres: A discriminant marker for Variscan and Alpine tectonics in the Argentera-Mercantour Massif, Maritime Alps. BSGF—Earth Sci. Bull. 2019, 190, 12. [Google Scholar] [CrossRef]
- Filippi, M.; Zanoni, D.; Lardeaux, J.M.; Spalla, M.I.; Gosso, G. Evidence of Tethyan continental break-up and Alpine collision in the Argentera-Mercantour Massif, Western Alps. Lithos 2020, 372–373, 105653. [Google Scholar] [CrossRef]
- von Raumer, J.F. Zur Metamorphose amphibolitischer Gesteine im Altkristallin des Mont-Blanc- und Aguilles-Rouges-Massivs. Schweiz. Mineral. Und Petrogr. Mitteilungen 1974, 54, 471–488. [Google Scholar]
- Liégeois, J.P.; Duchesne, J.C. The Lac Cornu retrograded eclogites (Aiguilles Rouges massif, Western Alps, France): Evidence of crustal origin and metasomatic alteration. Lithos 1981, 14, 35–48. [Google Scholar] [CrossRef]
- Latouche, L.; Bogdanoff, S. Evolution précoce du massif de l’Argentera: Apport des eclogites et des granulites; Les massifs cristallins externs. Geol. Alp. 1987, 63, 151–164. [Google Scholar]
- Bogdanoff, S.; Ménot, R.; Vivier, G. Les massif cristallins externes des Alpes occidentales françaises, un fragment de la zone interne varisque. Sci. Geol. Bull. 1991, 44, 237–285. [Google Scholar] [CrossRef]
- Colombo, F.; Compagnoni, R.; Lombardo, B. Le rocce eclogitiche dei Laghi del Frisson (Argentera sud-orientale, Alpi Marittime). Atti Ticinesi Sci. Della Terra Ser. Spec. 1994, 1, 75–82. [Google Scholar]
- Ferrando, S.; Lombardo, B.; Compagnoni, R. Metamorphic history of HP mafic granulites from the Gesso-Stura Terrain (Argentera Massif, Western Alps, Italy). Eur. J. Mineral. 2008, 20, 777–790. [Google Scholar] [CrossRef]
- Jouffray, F.; Spalla, M.I.; Lardeaux, J.M.; Filippi, M.; Rebay, G.; Corsini, M.; Zanoni, D.; Zucali, M.; Gosso, G. Variscan eclogites from the Argentera-Mercantour Massif (External Crystalline Massifs, SW Alps): A dismembered cryptic suture zone. Int. J. Earth Sci. 2020, 109, 1273–1294. [Google Scholar] [CrossRef]
- Paquette, J.L.; Ballèvre, M.; Peucat, J.J.; Cornen, G. From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France). Lithos 2017, 294–295, 418–437. [Google Scholar] [CrossRef]
- Zucali, M.; Corti, L.; Roda, M.; Ortolano, G.; Visalli, R.; Zanoni, D. Quantitative X-ray Maps Analaysis of Composition and Microstructure of Permian High-Temperature Relicts in Acidic Rocks from the Sesia-Lanzo Zone Eclogitic Continental Crust, Western Alps. Minerals 2021, 11, 1421. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Boriani, A.; Giobbi Mancini, E.; Villa, I. Pre-Alpine ophiolites in the basement of Southern Alps: The presence of a bimodal association (LAG- Leptyno-Amphibolitic Group) in the Serie del Laghi (N-Italy, Ticino-CH). Rend. Lincei 2003, 14, 79–101. [Google Scholar] [CrossRef]
- Fumasoli, M. Geologie des Gebietes Nördlich und Südlich der Jorio-Tonale-Linie im Westen von Gravedona (Como, Italia). Ph.D. Thesis, ETH—Zurich, Zurich, Switzerland, 1974. [Google Scholar]
- di Paola, S.; Spalla, M.I. Contrasting tectonic records in pre-Alpine metabasites of the Southern Alps (lake Como, Italy). J. Geodyn. 2000, 30, 167–189. [Google Scholar] [CrossRef]
- Bocchio, R.; De Capitani, L.; Liborio, G.; Mottana, A.; Nicoletti, M.; Petrucciani, C. K-Ar radiometric age determinations of the South-Alpine metamorphic complex, western Orobic Alps (Italy). Neues Jahrb. Fur Mineral.—Monatshefte 1981, 7, 289–307. [Google Scholar]
- Mottana, A.; Nicoletti, M.; Petrucciani, C.; Liborio, G.; De Capitani, L.; Bocchio, R. Pre-alpine and alpine evolution of the South-alpine basement of the Orobic Alps. Geol. Rundsch. 1985, 74, 353–366. [Google Scholar] [CrossRef]
- Bertotti, G.; Siletto, G.; Spalla, M. Deformation and metamorphism associated with crustal rifting: The Permian to Liassic evolution of the Lake Lugano-Lake Como area (Southern Alps). Tectonophysics 1993, 226, 271–284. [Google Scholar] [CrossRef]
- Siletto, G.B.; Spalla, M.I.; Tunesi, A.; Lardeaux, J.M.; Colombo, A. Pre-Alpine Structural and Metamorphic Histories in the Orobic Southern Alps, Italy. In Pre-Mesozoic Geology in the Alps; Springer: Berlin/Heidelberg, Germany, 1993; pp. 585–598. [Google Scholar]
- Diella, V.; Spalla, M.I.; Tunesi, A. Contrasting thermomechanical evolutions in the Southalpine metamorphic basement of the Orobic Alps (Central Alps, Italy). J. Metamorph. Geol. 1992, 10, 203–219. [Google Scholar] [CrossRef]
- Spalla, M.I.; Carminati, E.; Ceriani, S.; Oliva, A.; Battaglia, D. Influence of deformation partitioning and metamorphic re-equilibration on P-T path reconstruction in the pre-Alpine basement of central Southern Alps (Northern Italy). J. Metamorph. Geol. 2001, 17, 319–336. [Google Scholar] [CrossRef]
- Benciolini, L.; Poli, M.E.; Visonà, D.; Zanferrari, A. Looking inside Late Variscan tectonics: Structural and metamorphic heterogeneity of the Eastern Southalpine Basement (NE Italy). Geodin. Acta 2006, 19, 17–32. [Google Scholar] [CrossRef]
- Zucali, M.; Manzotti, P.; Diella, V.; Pesenti, C.; Risplendente, A.; Darling, J.; Engi, M. Permian tectonometamorphic evolution of the Dent-Blanche Unit (Austroalpine domain, Western Italian Alps). Rend. Online Della Soc. Geol. Ital. 2011, 15, 133–136. [Google Scholar]
- Manzotti, P.; Zucali, M. The pre-Alpine tectonic history of the Austroalpine continental basement in the Valpelline unit (Western Italian Alps). Geol. Mag. 2013, 150, 153–172. [Google Scholar] [CrossRef]
- Kunz, B.E.; Manzotti, P.; von Niederhäusern, B.; Engi, M.; Darling, J.R.; Giuntoli, F.; Lanari, P. Permian high-temperature metamorphism in the Western Alps (NW Italy). Int. J. Earth Sci. 2018, 107, 203–229. [Google Scholar] [CrossRef]
- Gardien, V.; Reusser, E.; Marquer, D. Pre-Alpine metamorphic evolution of the gneisses from the Valpelline series (Western Alps, Italy). Schweiz. Mineral. Und Petrogr. Mitteilungen 1994, 74, 489–502. [Google Scholar] [CrossRef]
- Maggetti, M.; Galetti, G. Evolution of the Silvretta eclogites: Metamorphic and magmatic events. Schweiz. Mineral. Petrogr. Mitteilungen 1988, 68, 467–484. [Google Scholar] [CrossRef]
- Maggetti, M.; Flisch, M. Evolution of the Silvretta Nappe. In Pre-Mesozoic Geology in the Alps; von Raumer, J.F., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 469–484. [Google Scholar] [CrossRef]
- Melcher, F.; Meisel, T.; Puhl, J.; Koller, F. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: Constraints from geochemistry. Lithos 2002, 65, 69–112. [Google Scholar] [CrossRef]
- Ladenhauf, C.; Armstrong, R.; Konzett, J.; Miller, C. The timing of pre-Alpine high-pressure metamorphism in the Eastern Alps: Constraints from U–Pb SHRIMP dating of eclogite zircons from the Austroalpine Silvretta nappe. J. Conf. Abstr. 2001, 6, 600. [Google Scholar]
- Brugger, J. Les veines à andalousite du Pischahorn (Grisons, Suisse) = Andalusite veins from the Pischahorn (Grisons, Switzerland). Schweiz. Mineral. Und Petrogr. Mitteilungen 1994, 74, 191–202. [Google Scholar] [CrossRef]
- Giacomini, F.; Messiga, B.; Tribuzio, R.; Braga, R. The Sondalo gabbroic complex and its country rocks: New geological and petrological data. In Tuebinger Geowissenschaftliche Arbeiten. Reihe A: Geologie, Palaeontologie, Stratigraphie; Institut für Geowissenschaften: Kiel, Germany, 1999; p. 156. [Google Scholar]
- Tribuzio, R.; Thirwall, M.F.; Messiga, B. Petrology, mineral and isotope geochemistry of the Sondalo gabbroic complex (Central Alps, Northern Italy): Implications for the origin of post-Variscan magmatism. Contrib. Mineral. Petrol. 1999, 136, 48–62. [Google Scholar] [CrossRef]
- Petri, B.; Mohn, G.; Štípská, P.; Schulmann, K.; Manatschal, G. The Sondalo gabbro contact aureole (Campo unit, Eastern Alps): Implications for mid-crustal mafic magma emplacement. Contrib. Mineral. Petrol. 2016, 171, 52. [Google Scholar] [CrossRef]
- Gregnanin, A. Metamorphism and magmatism in the western italian Tyrol. Riv. Ital. Mineral. Petrol. 1980, 36, 49–64. [Google Scholar]
- Haas, R. Zur Metamorphose des Suedlichen Oetz—Talkristallins unter Besonderer Beruecksichtigung der Matscher Einheit (Vintschgau/Suedtirol). Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 1985. [Google Scholar]
- Thöni, M. Sm–Nd isotope systematics in garnet from different lithologies (Eastern Alps): Age results, and an evaluation of potential problems for garnet Sm–Nd chronometry. Chem. Geol. 2002, 185, 255–281. [Google Scholar] [CrossRef]
- Rode, S.; Rösel, D.; Schulz, B. Constraints on the Variscan P-T evolution by EMP Th-U-Pb monazite dating in the polymetamorphic Austroalpine Oetztal-Stubai basement (Eastern Alps). Z. Der Dtsch. Ges. Fur Geowiss. 2012, 163, 43–67. [Google Scholar] [CrossRef]
- Thöny, W.F.; Tropper, P.; Schennach, F.; Krenn, E.; Finger, F.; Kaindl, R.; Bernhard, F.; Hoinkes, G. The metamorphic evolution of migmatites from the Ötztal Complex (Tyrol, Austria) and constraints on the timing of the pre-Variscan high-T event in the Eastern Alps. Swiss J. Geosci. 2008, 101, 111–126. [Google Scholar] [CrossRef]
- Hoinkes, G.; Thöni, M.; Lichem, C. Metagranitoids and associated metasediments as indicators for the pre-Alpine magmatic and metamorphic evolution of the western Austroalpine Ötztal Basement (Kaunertal, Tirol). Schweiz. Mineral. Und Petrogr. Mitteilungen 1997, 77, 299–314. [Google Scholar]
- Schulz, B.; Krause, J.; Zimmermann, R. Electron microprobe petrochronology of monazite-bearing garnet micaschists in the Oetztal-Stubai Complex (Alpeiner Valley, Stubai). Swiss J. Geosci. 2019, 112, 597–617. [Google Scholar] [CrossRef]
- Hauzenberger, C.; Höller, W.; Hoinkes, G.; Kloetzli, U.; Thöni, M. Metamorphic evolution of the Austroalpine basement in the Nonsberg area, Ultental (Val d’Ultimo), Southern Tyrol. Terra Nova 1993, 5, 13. [Google Scholar]
- Hauzenberger, C.A.; Höller, W.; Hoinkes, G. Transition from eclogite to amphibolite-facies metamorphism in the Austroalpine Ulten Zone. Mineral. Petrol. 1996, 58, 111–130. [Google Scholar] [CrossRef]
- Braga, R.; Massonne, H.J.; Morten, L. An early metamorphic stage for the Variscan Ulten Zone gneiss (NE Italy): Evidence from mineral inclusions in kyanite. Mineral. Mag. 2007, 71, 691–702. [Google Scholar] [CrossRef]
- Langone, A.; Braga, R.; Massonne, H.J.; Tiepolo, M. Preservation of old (prograde metamorphic) U-Th-Pb ages in unshielded monazite from the high-pressure paragneisses of the Variscan Ulten Zone (Italy). Lithos 2011, 127, 68–85. [Google Scholar] [CrossRef]
- Tumiati, S.; Godard, G.; Martin, S.; Klötzli, U.; Monticelli, D. Fluid-controlled crustal metasomatism within a high-pressure subducted mélange (Mt. Hochwart, Eastern Italian Alps). Lithos 2007, 94, 148–167. [Google Scholar] [CrossRef]
- Krenn, E.; Schulz, B.; Finger, F. Three generations of monazite in Austroalpine basement rocks to the south of the Tauern Window: Evidence for Variscan, Permian and Eo-Alpine metamorphic events. Swiss J. Geosci. 2012, 105, 343–360. [Google Scholar] [CrossRef]
- Hauke, M.; Froitzheim, N.; Nagel, T.J.; Miladinova, I.; Fassmer, K.; Fonseca, R.O.C.; Sprung, P.; Münker, C. Two high-pressure metamorphic events, Variscan and Alpine, dated by Lu–Hf in an eclogite complex of the Austroalpine nappes (Schobergruppe, Austria). Int. J. Earth Sci. 2019, 108, 1317–1331. [Google Scholar] [CrossRef]
- Faryad, S.W.; Melcher, F.; Hoinkes, G.; Puhl, J.; Meisel, T.; Frank, W. Relics of eclogite facies metamorphism in the Austroalpine basement, Hochgroessen (Speik complex), Austria. Mineral. Petrol. 2002, 74, 49–73. [Google Scholar]
- Faryad, S.W.; Hoinkes, G. P-T gradient of Eo-Alpine metamorphism within the Austroalpine basement units east of the Tauern Window (Austria). Mineral. Petrol. 2003, 77, 129–159. [Google Scholar] [CrossRef]
- Schermaier, A.; Haunschmid, B.; Finger, F. Distribution of Variscan I- and S-type granites in the Eastern Alps: A possible clue to unravel pre-Alpine basement structures. Tectonophysics 1997, 272, 315–333. [Google Scholar] [CrossRef]
- Schulz, B. Polymetamorphism in garnet micaschists of the Saualpe Eclogite Unit (Eastern Alps, Austria), resolved by automated SEM methods and EMP-Th-U-Pb monazite dating. J. Metamorph. Geol. 2017, 35, 141–163. [Google Scholar] [CrossRef]
- Nagy, G.; Draganits, E.; Demény, A.; Pantó, G.; Árkai, P. Genesis and transformations of monazite, florencite and rhabdophane during medium grade metamorphism: Examples from the Sopron Hills, Eastern Alps. Chem. Geol. 2002, 191, 25–46. [Google Scholar] [CrossRef]
- Monié, P. Preservation of Hercynian 40Ar/39Ar ages through high-pressure low-temperature Alpine metamorphism in the Western Alps. Eur. J. Mineral. 1990, 2, 343–361. [Google Scholar] [CrossRef]
- Nosenzo, F.; Manzotti, P.; Poujol, M.; Ballèvre, M.; Langlade, J. A window into an older orogenic cycle: P-T conditions and timing of the pre-Alpine history of the Dora-Maira Massif (Western Alps). J. Metamorph. Geol. 2022, 40, 789–821. [Google Scholar] [CrossRef]
- Le Bayon, B.; Pitra, P.; Ballèvre, M.; Bohn, M. Reconstructing P-T paths during continental collision using multi-stage garnet (Gran Paradiso nappe, Western Alps). J. Metamorph. Geol. 2006, 24, 477–496. [Google Scholar] [CrossRef]
- Gasco, I.; Gattiglio, M. Geological map of the middle Orco Valley, Western Italian Alps. J. Maps 2011, 7, 463–477. [Google Scholar] [CrossRef]
- Rubatto, D.; Ferrando, S.; Compagnoni, R.; Lombardo, B. Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy), Southern European Variscan belt. Lithos 2010, 116, 65–76. [Google Scholar] [CrossRef]
- Le Fort, P. Geologie du Haut-Dauphine Cristallin (Alpes Française): Etudes Petrologique et Structurale de la Partie Occidentale. Ph.D. Thesis, Université Nancy, Nancy, France, 1973. [Google Scholar]
- Guillot, S.; Ménot, R.P.; Fernandez, A. Paleozoic evolution of the external crystalline massifs along the Belledonne-Oisans transect (Western Alps). Acta Univ. Carol. Geol. 1998, 42, 257–258. [Google Scholar]
- Grandjean, V.; Guillot, S.; Pecher, A. A new record of the LP-HT late-Variscan metamorphism: The Peyre-Arguet unit (Haut-Dauphiné). Comptes Rendus L’Academie Des Science Serie 2, Fascicule Sciences Terre Des Planetes: Earth Planet 1996, 322, 189–195. [Google Scholar]
- Jacob, J.B.; Janots, E.; Guillot, S.; Rubatto, D.; Fréville, K.; Melleton, J.; Faure, M. HT overprint of HP granulites in the Oisans–Pelvoux massif: Implications for the dynamics of the Variscan collision in the external western Alps. Lithos 2022, 416–417, 106650. [Google Scholar] [CrossRef]
- Jacob, J.B.; Janots, E.; Cordier, C.; Guillot, S. Discovery of Variscan orogenic peridotites in the Pelvoux Massif (Western Alps, France). BSGF—Earth Sci. Bull. 2023, 194, 2. [Google Scholar] [CrossRef]
- di Paola, S. Eredità Litostratigrafica, Strutturale e Metamorfica Paleozoica nel Margine Interno Europeo (Grandes Rousses e Argentera), Ristrutturato Durante l’Orogenesi Alpina. Ph.D. Thesis, Università degli Studi di Milano, Milano, Italy, 2001. [Google Scholar]
- Guillot, S.; Ménot, R.P. Nappe stacking and first evidence of Late Variscan extension in the Belledonne Massif (External Crystalline Massifs, French Alps). Geodin. Acta 1999, 12, 97–111. [Google Scholar] [CrossRef]
- Ménot, R.P.; Bonhomme, M.G.; Vivier, G. Structuration tectono-métamorphique carbonifère dans le massif de Belledonne (Alpes occidentales françaises): Apport de la géochronologie K/Ar des amphiboles. Schweiz. Mineral. Und Petrogr. Mitteilungen 1987, 67, 273–284. [Google Scholar] [CrossRef]
- Fréville, K.; Trap, P.; Faure, M.; Melleton, J.; Li, X.H.; Lin, W.; Blein, O.; Bruguier, O.; Poujol, M. Structural, metamorphic and geochronological insights on the Variscan evolution of the Alpine basement in the Belledonne Massif (France). Tectonophysics 2018, 726, 14–42. [Google Scholar] [CrossRef]
- Schulz, B.; von Raumer, J.F. Discovery of Ordovician–Silurian metamorphic monazite in garnet metapelites of the Alpine External Aiguilles Rouges Massif. Swiss J. Geosci. 2011, 104, 67–79. [Google Scholar] [CrossRef]
- Genier, F.; Bussy, F.; Epard, J.L.; Baumgartner, L. Water-assisted migmatization of metagraywackes in a Variscan shear zone, Aiguilles-Rouges massif, western Alps. Lithos 2008, 102, 575–597. [Google Scholar] [CrossRef]
- Bussy, F.; Hernandez, J.; von Raumer, J.F. Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened variscan continental lithosphere (Aiguilles Rouges/Mont-Blanc massifs, western Alps). Trans. R. Soc. Edinb. 2000, 91, 221–233. [Google Scholar]
- Dobmeier, C. Variscan P-T deformation paths from the southwestern Aiguilles Rouges massif (External massif, western Alps) and their implication for its tectonic evolution. Geologische Rundschau 1998, 87, 107–123. [Google Scholar] [CrossRef]
- Marshall, D.; Kirschner, D.; Bussy, F. A Variscan pressure-temperature-time path for the N-E Mont Blanc massif. Contrib. Mineral. Petrol. 1997, 126, 416–428. [Google Scholar] [CrossRef]
- Schaltegger, U. The evolution of the polymetamorphic basement in the Central Alps unravelled by precise U-Pb zircon dating. Contrib. Mineral. Petrol. 1993, 113, 466–478. [Google Scholar] [CrossRef]
- Paquette, J.L.; Ménot, R.P.; Peucat, J.J. REE, SmNd and UPb zircon study of eclogites from the Alpine External Massifs (Western Alps): Evidence for crustal contamination. Earth Planet. Sci. Lett. 1989, 96, 181–198. [Google Scholar] [CrossRef]
- Ernst, W.G.; Liou, J.G. High- and ultrahigh-pressure metamorphism: Past results and future prospects. Am. Mineral. 2008, 93, 1771–1786. [Google Scholar] [CrossRef]
- Regorda, A.; Spalla, M.I.; Roda, M.; Lardeaux, J.; Marotta, A.M. Metamorphic Facies and Deformation Fabrics Diagnostic of Subduction: Insights From 2D Numerical Models. Geochem. Geophys. Geosyst. 2021, 22, e2021GC009899. [Google Scholar] [CrossRef]
- Gasco, I.; Borghi, A.; Gattiglio, M. Metamorphic evolution of the Gran Paradiso Massif: A case study of an eclogitic metagabbro and a polymetamorphic glaucophane–garnet micaschist. Lithos 2010, 115, 101–120. [Google Scholar] [CrossRef]
- Ernst, W.G. Interpretative Synthesis of Metamorphism in the Alps. Geol. Soc. Am. Bull. 1973, 84, 2053. [Google Scholar] [CrossRef]
- England, P.C.; Thompson, A.B. Pressure–Temperature–Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. J. Petrol. 1984, 25, 894–928. [Google Scholar] [CrossRef]
- Thompson, A.B.; England, P.C. Pressure–Temperature–Time Paths of Regional Metamorphism II. Their Inference and Interpretation using Mineral Assemblages in Metamorphic Rocks. J. Petrol. 1984, 25, 929–955. [Google Scholar] [CrossRef]
- Jamieson, R.A.; Beaumont, C.; Fullsack, P.; Lee, B. Barrovian Regional Metamorphism: Where’s the Heat? Geological Society Special Publication: London, UK, 1998; Volume 138, pp. 23–51. [Google Scholar] [CrossRef]
- Sandiford, M.; Powell, R. Some remarks on high-temperature-low-pressure metamorphism in convergent orogens. J. Metamorph. Geol. 1991, 9, 333–340. [Google Scholar] [CrossRef]
- Ryan, P.D.; Dewey, J.F. The sources of metamorphic heat during collisional orogeny: The Barrovian enigma. Can. J. Earth Sci. 2019, 56, 1309–1317. [Google Scholar] [CrossRef]
- Mevel, C.; Caby, R.; Kienast, J.R. Amphibolite facies conditions in the oceanic crust: Example of amphibolitized flaser-gabbro and amphibolites from the Chenaillet ophiolite massif (Hautes Alpes, France). Earth Planet. Sci. Lett. 1978, 39, 98–108. [Google Scholar] [CrossRef]
- Verati, C.; Lardeaux, J.M.; Favier, A.; Corsini, M.; Philippon, M.; Legendre, L. Arc-related metamorphism in the Guadeloupe archipelago (Lesser Antilles active island arc): First report and consequences. Lithos 2018, 320–321, 592–598. [Google Scholar] [CrossRef]
- Vanderhaeghe, O. The thermal–mechanical evolution of crustal orogenic belts at convergent plate boundaries: A reappraisal of the orogenic cycle. J. Geodyn. 2012, 56–57, 124–145. [Google Scholar] [CrossRef]
- Penniston-Dorland, S.C.; Kohn, M.J.; Manning, C.E. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet. Sci. Lett. 2015, 428, 243–254. [Google Scholar] [CrossRef]
- Lotout, C.; Pitra, P.; Poujol, M.; Anczkiewicz, R.; Van Den Driessche, J. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif. Lithos 2018, 308–309, 381–394. [Google Scholar] [CrossRef]
- Lotout, C.; Poujol, M.; Pitra, P.; Anczkiewicz, R.; Van Den Driessche, J. From Burial to Exhumation: Emplacement and Metamorphism of Mafic Eclogitic Terranes Constrained Through Multimethod Petrochronology, Case Study from theévézou Massif (French Massif Central, Variscan Belt). J. Petrol. 2020, 61, egaa046. [Google Scholar] [CrossRef]
- Pitra, P.; Poujol, M.; Van Den Driessche, J.; Bretagne, E.; Lotout, C.; Cogné, N. Late Variscan (315 Ma) subduction or deceptive zircon REE patterns and U-Pb dates from migmatite-hosted eclogites? (Montagne Noire, France). J. Metamorph. Geol. 2022, 40, 39–65. [Google Scholar] [CrossRef]
- Franke, W. The Mid-European Segment of the Variscides: Tectonostratigraphic Units, Terrane Boundaries and Plate Tectonic Evolution; Geological Society Special Publications: London, UK, 2000; Volume 179, pp. 35–61. [Google Scholar] [CrossRef]
- Medaris, L.G.; Beard, B.L.; Jelínek, E. Mantle-Derived, UHP Garnet Pyroxenite and Eclogite in the Moldanubian Gföhl Nappe, Bohemian Massif: A Geochemical Review, New P-T Determinations, and Tectonic Interpretation. Int. Geol. Rev. 2006, 48, 765–777. [Google Scholar] [CrossRef]
- Kotková, J. High-pressure granulites of the Bohemian Massif: Recent advances and open questions. J. Geosci. 2007, 52, 45–71. [Google Scholar] [CrossRef]
- Schulmann, K.; Lexa, O.; Štípská, P.; Racek, M.; Tajčmanová, L.; Konopásek, J.; Edel, J.B.; Peschler, A.; Lehmann, J. Vertical extrusion and horizontal channel flow of orogenic lower crust: Key exhumation mechanisms in large hot orogens? J. Metamorph. Geol. 2008, 26, 273–297. [Google Scholar] [CrossRef]
- Schulmann, K.; Konopásek, J.; Janoušek, V.; Lexa, O.; Lardeaux, J.M.; Edel, J.B.; Štípská, P.; Ulrich, S. An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geosci. 2009, 341, 266–286. [Google Scholar] [CrossRef]
- Lexa, O.; Schulmann, K.; Janoušek, V.; Štípská, P.; Guy, A.; Racek, M. Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J. Metamorph. Geol. 2011, 29, 79–102. [Google Scholar] [CrossRef]
- Chopin, F.; Schulmann, K.; Štípská, P.; Martelat, J.; Pitra, P.; Lexa, O.; Petri, B. Microstructural and metamorphic evolution of a high-pressure granitic orthogneiss during continental subduction (Orlica-Śnieżnik dome, Bohemian Massif). J. Metamorph. Geol. 2012, 30, 347–376. [Google Scholar] [CrossRef]
- Faryad, S.W.; Jedlicka, R.; Ettinger, K. Subduction of lithospheric upper mantle recorded by solid phase inclusions and compositional zoning in garnet: Example from the Bohemian Massif. Gondwana Res. 2013, 23, 944–955. [Google Scholar] [CrossRef]
- Timmermann, H.; Stedrá, V.; Gerdes, A.; Noble, S.R.; Parrish, R.R.; Dörr, W. The Problem of Dating High-pressure Metamorphism: A U-Pb Isotope and Geochemical Study on Eclogites and Related Rocks of the Marianske Lazne Complex, Czech Republic. J. Petrol. 2004, 45, 1311–1338. [Google Scholar] [CrossRef]
- Konopásek, J.; Schulmann, K. Contrasting Early Carboniferous field geotherms: Evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides). J. Geol. Soc. 2005, 162, 463–470. [Google Scholar] [CrossRef]
- Linnemann, U.; Romer, R.L. Pre-Mesozoic Geology of Saxo-Thuringia; Schweizerbart Science Publishers: Stuttgart, Germany, 2010. [Google Scholar]
- Faryad, S.W. High-pressure polymetamorphic garnet growth in eclogites from the Mariánskéázně Complex (Bohemian Massif). Eur. J. Mineral. 2012, 24, 483–497. [Google Scholar] [CrossRef]
- Schaltegger, U.; Fanning, C.M.; Günther, D.; Maurin, J.C.; Schulmann, K.; Gebauer, D. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: Conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib. Mineral. Petrol. 1999, 134, 186–201. [Google Scholar] [CrossRef]
- Gayk, T.; Kleinschrodt, R. Hot contacts of garnet peridotites in middle/upper crustal levels: New constraints on the nature of the late Variscan high-T/low-P event in the Moldanubian (Central Vosges/NE France). J. Metamorph. Geol. 2000, 18, 293–305. [Google Scholar] [CrossRef]
- Kalt, A.; Altherr, R.; Hanel, M. The Variscan basement of the Schwarzwald. Eur. J. Mineral. 2000, 12, 1–43. [Google Scholar]
- Chen, F.; Todt, W.; Hann, H.P. Zircon and Garnet Geochronology of Eclogites from the Moldanubian Zone of the Black Forest, Germany. J. Geol. 2003, 111, 207–222. [Google Scholar] [CrossRef]
- Marschall, H.R.; Kalt, A.; Hanel, M. P-T Evolution of a Variscan Lower-Crustal Segment: A Study of Granulites from the Schwarzwald, Germany. J. Petrol. 2003, 44, 227–253. [Google Scholar] [CrossRef]
- Kober, B.; Kalt, A.; Hanel, M.; Pidgeon, R.T. SHRIMP dating of zircons from high-grade metasediments of the Schwarzwald/SW-Germany and implications for the evolution of the Moldanubian basement. Contrib. Mineral. Petrol. 2004, 147, 330–345. [Google Scholar] [CrossRef]
- Edel, J.B.; Schulmann, K. Geophysical constraints and model of the “Saxothuringian and Rhenohercynian subductions—Magmatic arc system” in NE France and SW Germany. Bull. Soc. Geol. Fr. 2009, 180, 545–558. [Google Scholar] [CrossRef]
- Altherr, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzer, H. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
- Faure, M.; Monié, P.; Pin, C.; Maluski, H.; Leloix, C. Late Visean thermal event in the northern part of the French Massif Central: New 40Ar/39Ar and Rb-Sr isotopic constraints on the Hercynian syn-orogenic extension. Int. J. Earth Sci. 2002, 91, 53–75. [Google Scholar] [CrossRef]
- Edel, J.B.; Schulmann, K.; Skrzypek, E.; Cocherie, A. Tectonic evolution of the European Variscan belt constrained by palaeomagnetic, structural and anisotropy of magnetic susceptibility data from the Northern Vosges magmatic arc (eastern France). J. Geol. Soc. 2013, 170, 785–804. [Google Scholar] [CrossRef]
- Skrzypek, E.; Tabaud, A.S.; Edel, J.B.; Schulmann, K.; Cocherie, A.; Guerrot, C.; Rossi, P. The significance of Late Devonian ophiolites in the Variscan orogen: A record from the Vosges Klippen Belt. Int. J. Earth Sci. 2012, 101, 951–972. [Google Scholar] [CrossRef]
- Skrzypek, E.; Schulmann, K.; Tabaud, A.S.; Edel, J.B. Palaeozoic Evolution of the Variscan Vosges Mountains; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 45–75. [Google Scholar] [CrossRef]
- Lardeaux, J.M.; Schulmann, K.; Faure, M.; Janoušek, V.; Lexa, O.; Skrzypek, E.; Edel, J.B.; Štípská, P. The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif Revisited: Differences and Similarities; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 7–44. [Google Scholar] [CrossRef]
- Ledru, P.; Courrioux, G.; Dallain, C.; Lardeaux, J.; Montel, J.; Vanderhaeghe, O.; Vitel, G. The Velay dome (French Massif Central): Melt generation and granite emplacement during orogenic evolution. Tectonophysics 2001, 342, 207–237. [Google Scholar] [CrossRef]
- Faure, M.; Cocherie, A.; Mézème, E.B.; Charles, N.; Rossi, P. Middle Carboniferous crustal melting in the Variscan Belt: New insights from U-Th-Pbtot. monazite and U-Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res. 2010, 18, 653–673. [Google Scholar] [CrossRef]
- Franke, W.; Doublier, M.P.; Klama, K.; Potel, S.; Wemmer, K. Hot metamorphic core complex in a cold foreland. Int. J. Earth Sci. 2011, 100, 753–785. [Google Scholar] [CrossRef]
- Faure, M.; Cocherie, A.; Gaché, J.; Esnault, C.; Guerrot, C.; Rossi, P.; Wei, L.; Qiuli, L. Middle Carboniferous Intracontinental Subduction in the Outer Zone of the Variscan Belt (Montagne Noire Axial Zone, French Massif Central): Multimethod Geochronological Approach of Polyphase Metamorphism; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 289–311. [Google Scholar] [CrossRef]
- Bellot, J.P.; Triboulet, C.; Laverne, C.; Bronner, G. Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P-T-t-d paths of metabasites in distinct allochthonous units of the Maures massif (SE France). Int. J. Earth Sci. 2003, 92, 7–26. [Google Scholar] [CrossRef]
- Palmeri, R.; Fanning, M.; Franceschelli, M.; Memmi, I.; Ricci, C.A. SHRIMP dating of zircons in eclogite from the Variscan basement in north-eastern Sardinia (Italy). Neues Jahrb. Mineral.—Monatshefte 2004, 2004, 275–288. [Google Scholar] [CrossRef]
- Giacomini, F.; Bomparola, R.M.; Ghezzo, C. Petrology and geochronology of metabasites with eclogite facies relics from NE Sardinia: Constraints for the Palaeozoic evolution of Southern Europe. Lithos 2005, 82, 221–248. [Google Scholar] [CrossRef]
- Giacomini, F.; Dallai, L.; Carminati, E.; Tiepolo, M.; Ghezzo, C. Exhumation of a Variscan orogenic complex: Insights into the composite granulitic–Amphibolitic metamorphic basement of south-east Corsica (France). J. Metamorph. Geol. 2008, 26, 403–436. [Google Scholar] [CrossRef]
- Franceschelli, M.; Puxeddu, M.; Cruciani, G.; Utzeri, D. Metabasites with eclogite facies relics from Variscides in Sardinia, Italy: A review. Int. J. Earth Sci. 2007, 96, 795–815. [Google Scholar] [CrossRef]
- Corsini, M.; Rolland, Y. Late evolution of the southern European Variscan belt: Exhumation of the lower crust in a context of oblique convergence. Comptes Rendus Geosci. 2009, 341, 214–223. [Google Scholar] [CrossRef]
- Rossi, P.; Oggiano, G.; Cocherie, A. A restored section of the “southern Variscan realm” across the Corsica–Sardinia microcontinent. Comptes Rendus Geosci. 2009, 341, 224–238. [Google Scholar] [CrossRef]
- Morillon, A.C.; Féraud, G.; Sosson, M.; Ruffet, G.; Crevola, G.; Lerouge, G. Diachronous cooling on both sides of a major strike slip fault in the Variscan Maures Massif (south-east France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 2000, 321, 103–126. [Google Scholar] [CrossRef]
- Conti, P.; Carmignani, L.; Funedda, A. Change of nappe transport direction during the Variscan collisional evolution of central-southern Sardinia (Italy). Tectonophysics 2001, 332, 255–273. [Google Scholar] [CrossRef]
- Bellot, J.P. The Palaeozoic evolution of the Maures massif (France) and its potential correlation with others areas of the Variscan belt: A review. J. Virtual Explor. 2005, 19, 4. [Google Scholar] [CrossRef]
- Elter, F.M.; Pandeli, E. Structural-Metamorphic Correlations Between Three Variscan Segments In Southern Europe: Maures Massif (France), Corsica(France)-Sardinia(Italy), And Northern Appennines (Italy). J. Virtual Explor. 2005, 19, 1. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Tiepolo, M.; Frassi, C. Geochronological constraints on post-collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova 2012, 24, 42–51. [Google Scholar] [CrossRef]
- Medaris, G.; Jelínek, E.; Beard, B.; Valley, J.; Spicuzza, M.; Strnad, L. Garnet pyroxenite in the Biskupice peridotite, Bohemian Massif: Anatomy of a Variscan high-pressure cumulate. J. Geosci. 2013, 58, 3–19. [Google Scholar] [CrossRef]
- Maierová, P.; Lexa, O.; Schulmann, K.; Štípská, P. Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model. Gondwana Res. 2014, 25, 509–521. [Google Scholar] [CrossRef]
- Štípská, P.; Powell, R.; Hacker, B.R.; Holder, R.; Kylander-Clark, A.R.C. Uncoupled U/Pb and REE response in zircon during the transformation of eclogite to mafic and intermediate granulite (Blanský les, Bohemian Massif). J. Metamorph. Geol. 2016, 34, 551–572. [Google Scholar] [CrossRef]
- Collett, S.; Štípská, P.; Schulmann, K.; Peřestý, V.; Soldner, J.; Anczkiewicz, R.; Lexa, O.; Kylander-Clark, A. Combined Lu-Hf and Sm-Nd geochronology of the Mariánské ázně Complex: New constraints on the timing of eclogite- and granulite-facies metamorphism. Lithos 2018, 304–307, 74–94. [Google Scholar] [CrossRef]
- Maierová, P.; Schulmann, K.; Štípská, P.; Gerya, T.; Lexa, O. Trans-lithospheric diapirism explains the presence of ultra-high pressure rocks in the European Variscides. Commun. Earth Environ. 2021, 2, 56. [Google Scholar] [CrossRef]
- Collett, S.; Schulmann, K.; Deiller, P.; Štípská, P.; Peřestý, V.; Ulrich, M.; Jiang, Y.; de Hoÿm de Marien, L.; Míková, J. Reconstruction of the mid-Devonian HP-HT metamorphic event in the Bohemian Massif (European Variscan belt). Geosci. Front. 2022, 13, 101374. [Google Scholar] [CrossRef]
- Collett, S.; Schulmann, K.; Štípská, P.; Míková, J. Chronological and geochemical constraints on the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondwana Res. 2020, 79, 27–48. [Google Scholar] [CrossRef]
- Altherr, R. Retrograded garnet peridotites from Col des Bagenelles and Crébimont in the Variscan Vosges Mountains (NE France). Contrib. Mineral. Petrol. 2021, 176, 53. [Google Scholar] [CrossRef]
- Tabaud, A.S.; Janoušek, V.; Skrzypek, E.; Schulmann, K.; Rossi, P.; Whitechurch, H.; Guerrot, C.; Paquette, J.L. Chronology, petrogenesis and heat sources for successive Carboniferous magmatic events in the Southern–Central Variscan Vosges Mts (NE France). J. Geol. Soc. 2014, 172, 87–102. [Google Scholar] [CrossRef]
- Benmammar, A.; Berger, J.; Triantafyllou, A.; Duchene, S.; Bendaoud, A.; Baele, J.M.; Bruguier, O.; Diot, H. Pressure-temperature conditions and significance of Upper Devonian eclogite and amphibolite facies metamorphisms in southern French Massif central. BSGF—Earth Sci. Bull. 2020, 191, 28. [Google Scholar] [CrossRef]
- de Hoÿm de Marien, L.; Pitra, P.; Poujol, M.; Cogné, N.; Cagnard, F.; Le Bayon, B. Complex geochronological record of an emblematic Variscan eclogite (Haut-Allier, French Massif Central). J. Metamorph. Geol. 2023, 41, 1–29. [Google Scholar] [CrossRef]
- Whitney, D.L.; Hamelin, C.; Teyssier, C.; Raia, N.H.; Korchinski, M.S.; Seaton, N.C.A.; Bagley, B.C.; von der Handt, A.; Roger, F.; Rey, P.F. Deep crustal source of gneiss dome revealed by eclogite in migmatite (Montagne Noire, French Massif Central). J. Metamorph. Geol. 2020, 38, 297–327. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Groppo, C. P-T evolution of eclogite-facies metabasite from NE Sardinia, Italy: Insights into the prograde evolution of Variscan eclogites. Lithos 2011, 121, 135–150. [Google Scholar] [CrossRef]
- Schneider, J.; Corsini, M.; Reverso-Peila, A.; Lardeaux, J.M. Thermal and Mechanical Evolution of an Orogenic Wedge During Variscan Collision: An Example in the Maures–Tanneron Massif (SE France); Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 313–331. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Groppo, C.; Oggiano, G.; Spano, M.E. Re-equilibration history and P-T path of eclogites from Variscan Sardinia, Italy: A case study from the medium-grade metamorphic complex. Int. J. Earth Sci. 2015, 104, 797–814. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Carosi, R.; Montomoli, C. P-T path from garnet zoning in pelitic schist from NE Sardinia, Italy: Further constraints on the metamorphic and tectonic evolution of the north Sardinia Variscan belt. Lithos 2022, 428–429, 106836. [Google Scholar] [CrossRef]
- Cruciani, G.; Dulcetta, L.; Franceschelli, M.; Frassi, C.; Musumeci, G. Hot metamorphic complex in the Foreland Zone of the Variscan chain: Insights from the Monte Filau orthogneiss (SW Sardinia), Italy. Ital. J. Geosci. 2022, 141, 385–399. [Google Scholar] [CrossRef]
- Jouffray, F.; Lardeaux, J.M.; Tabaud, A.S.; Corsini, M.; Schneider, J. Deciphering the nature and age of the protoliths and peak P-T conditions in retrogressed mafic eclogites from the Maures-Tannneron Massif (SE France) and implications for the southern European Variscides. BSGF—Earth Sci. Bull. 2023, 194, 10. [Google Scholar] [CrossRef]
- Edel, J.B.; Casini, L.; Oggiano, G.; Rossi, P.; Schulmann, K. Early Permian 90° Clockwise Rotation of the Maures-Estérel-Corsica-Sardinia Block Confirmed by New Palaeomagnetic Data and Followed by a Triassic 60° Clockwise Rotation; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 333–361. [Google Scholar] [CrossRef]
- Edel, J.B.; Schulmann, K.; Lexa, O.; Lardeaux, J.M. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Sci. Rev. 2018, 177, 589–612. [Google Scholar] [CrossRef]
- Oliot, E.; Melleton, J.; Schneider, J.; Corsini, M.; Gardien, V.; Rolland, Y. Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): New in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bull. Soc. Fr. 2015, 186, 145–169. [Google Scholar] [CrossRef]
- Gerbault, M.; Schneider, J.; Reverso-Peila, A.; Corsini, M. Crustal exhumation during ongoing compression in the Variscan Maures-Tanneron Massif, France-Geological and thermo-mechanical aspects. Tectonophysics 2018, 746, 439–458. [Google Scholar] [CrossRef]
- Rubatto, D. Dating of Pre-Alpine magmatism, Jurassic Ophiolites and Alpine Subductions in the Western Alps. Ph.D. Thesis, ETH—Zurich, Zurich, Switzerland, 1998. [Google Scholar]
- Vho, A.; Rubatto, D.; Lanari, P.; Regis, D. The evolution of the Sesia Zone (Western Alps) from Carboniferous to Cretaceous: Insights from zircon and allanite geochronology. Swiss J. Geosci. 2020, 113, 24. [Google Scholar] [CrossRef]
- Delleani, F.; Rebay, G.; Zucali, M.; Tiepolo, M.; Spalla, M.I. Insights on Variscan geodynamics from the structural and geochemical characterization of a Devonian-Carboniferous gabbro from the Austroalpine Domain (Western Alps). Ofioliti 2018, 43, 23–29. [Google Scholar] [CrossRef]
- Sloman, L.E. Triassic shoshonites from the Dolo- mites, Northern Italy: Alkaline arc rocks in a strike- slip setting. J. Geophys. Res. 1989, 94, 4655–4666. [Google Scholar] [CrossRef]
- Lustrino, M.; Abbas, H.; Agostini, S.; Caggiati, M.; Carminati, E.; Gianolla, P. Origin of Triassic magmatism of the Southern Alps (Italy): Constraints from geochemistry and Sr-Nd-Pb isotopic ratios. Gondwana Res. 2019, 75, 218–238. [Google Scholar] [CrossRef]
- Cocks, L.; Torsvik, T. Earth geography from 500 to 400 million years ago: A faunal and palaeomagnetic review. J. Geol. Soc. 2002, 159, 631–644. [Google Scholar] [CrossRef]
- Nance, R.D.; Gutiérrez-Alonso, G.; Keppie, J.D.; Linnemann, U.; Murphy, J.B.; Quesada, C.; Strachan, R.A.; Woodcock, N.H. Evolution of the Rheic Ocean. Gondwana Res. 2010, 17, 194–222. [Google Scholar] [CrossRef]
- Linnemann, U.; Gerdes, A.; Drost, K.; Buschmann, B. The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision; Geological Society of America: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Marotta, A.M.; Roda, M.; Conte, K.; Spalla, M.I. Thermo-mechanical numerical model of the transition from continental rifting to oceanic spreading: The case study of the Alpine Tethys. Geol. Mag. 2018, 155, 250–279. [Google Scholar] [CrossRef]
- Furlong, K.P.; Chapman, D.S. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annu. Rev. Earth Planet. Sci. 2013, 41, 385–410. [Google Scholar] [CrossRef]
- Doré, A.G.; Stewart, I.C. Similarities and differences in the tectonics of two passive margins: The Northeast Atlantic Margin and the Australian North West Shelf. In The Sedimentary Basins of Western Australia 3; Keep, M., Moss, S.J., Eds.; Petroleum Exploration Society of Australia (PESA): Beaumaris, VIC, Australia, 2002; pp. 89–117. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roda, M.; Spalla, M.I.; Filippi, M.; Lardeaux, J.-M.; Rebay, G.; Regorda, A.; Zanoni, D.; Zucali, M.; Gosso, G. Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance. Geosciences 2023, 13, 300. https://doi.org/10.3390/geosciences13100300
Roda M, Spalla MI, Filippi M, Lardeaux J-M, Rebay G, Regorda A, Zanoni D, Zucali M, Gosso G. Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance. Geosciences. 2023; 13(10):300. https://doi.org/10.3390/geosciences13100300
Chicago/Turabian StyleRoda, Manuel, Maria Iole Spalla, Marco Filippi, Jean-Marc Lardeaux, Gisella Rebay, Alessandro Regorda, Davide Zanoni, Michele Zucali, and Guido Gosso. 2023. "Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance" Geosciences 13, no. 10: 300. https://doi.org/10.3390/geosciences13100300
APA StyleRoda, M., Spalla, M. I., Filippi, M., Lardeaux, J. -M., Rebay, G., Regorda, A., Zanoni, D., Zucali, M., & Gosso, G. (2023). Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance. Geosciences, 13(10), 300. https://doi.org/10.3390/geosciences13100300