Next Article in Journal
Geomorphology, Geoarchaeology, and Geochronology of the Upper Pleistocene Archaeological Site of El Olivo Cave (Llanera, Asturias, Northern Spain)
Previous Article in Journal
Weathering Effects on Engineering Geological Properties of Trachydacitic Volcanic Rocks from the Monte Amiata (Southern Tuscany, Italy)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance

1
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy
2
UMR Geoazur, Université Nice Sophia-Antipolis, 250 Rue A. Einstein, 06560 Valbonne, France
3
Center for Lithospheric Research, Czech Geological Survey, 11821 Praha, Czech Republic
4
Dipartimento di Scienze della Terra e dell’Ambiente, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
*
Author to whom correspondence should be addressed.
Geosciences 2023, 13(10), 300; https://doi.org/10.3390/geosciences13100300
Submission received: 13 July 2023 / Revised: 16 September 2023 / Accepted: 2 October 2023 / Published: 6 October 2023
(This article belongs to the Section Structural Geology and Tectonics)

Abstract

:
Lithospheric slices preserving pre-Alpine metamorphic imprints are widely described in the Alps. The Variscan parageneses recorded in continental, oceanic, and mantle rocks suggest a heterogeneous metamorphic evolution across the Alpine domains. In this contribution, we collect quantitative metamorphic imprints and ages of samples that document Variscan tectonometamorphic evolution from 420 to 290 Ma. Based on age distribution and metamorphic imprint, three main stages can be identified for the Variscan evolution of the Alpine region: Devonian (early Variscan), late Devonian–late Carboniferous (middle Variscan), and late Carboniferous–early Permian (late Variscan). The dominant metamorphic imprint during Devonian times was recorded under eclogite and HP granulite facies conditions in the Helvetic–Dauphinois–Provençal, Penninic, and eastern Austroalpine domains and under Ep-amphibolite facies conditions in the Southalpine domain. These metamorphic conditions correspond to a mean Franciscan-type metamorphic field gradient. During the late Devonian–late Carboniferous period, in the Helvetic–Dauphinois–Provençal and central Austroalpine domains, the dominant metamorphic imprint developed under eclogite and HP granulite facies conditions with a Franciscan field gradient. Amphibolite facies conditions dominated in the Penninic and Southalpine domains and corresponded to a Barrovian-type metamorphic field gradient. At the Carboniferous–Permian transition, the metamorphic imprints mainly developed under amphibolite-LP granulite facies conditions in all domains of the Alps, corresponding to a mean metamorphic field gradient at the transition between Barrovian and Abukuma (Buchan) types. This distribution of the metamorphic imprints suggests a pre-Alpine burial of oceanic and continental crust underneath a continental upper plate, in a scenario of single or multiple oceanic subductions preceding the continental collision. Both scenarios are discussed and revised considering the consistency of collected data and a comparison with numerical models. Finally, the distribution of Devonian to Triassic geothermal gradients agrees with a sequence of events that starts with subduction, continues with continental collision, and ends with the continental thinning announcing the Jurassic oceanization.

1. Introduction

The Variscan belt constitutes the skeleton of the European continental crust and, for this reason, is one of the most investigated orogens in the world. The palaeogeographic-geodynamic reconstructions are numerous and contrasted, and the proposed subdivisions into structural domains (e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]) are rendered incomplete by the Meso–Cenozoic “tectonic disturbance” induced by the Betic Cordillera, the Pyrenees, and the Alps (Figure 1). The resolution of the Variscan structural setting of these domains would allow for correlating the central and the southern part of the European Variscides, possibly solving doubts or helping to overcome misfits. In particular, numerous palaeogeographic-tectonic interpretations have recently been proposed for the Alps, generally based on the lithostratigraphic affinity between lithotectonic units constituting the pre-Alpine continental crust of the chain [21,22,23,24,25,26,27,28]. However, the validity of these reconstructions becomes critical when they are also proposed for the axial zone of the Alps where, differently from the external structural domains, the tectonic reworking was pervasive during the Alpine convergence. In present-day subduction settings [29,30,31], tectonic erosion is one of the main destructive mechanisms that characterize such systems. It implies a significant reorganization of the original structure of the upper plate margins and strongly contributes to the generation of the tectonic mélange that typically characterizes subduction complexes [32]. The latter generally coincide with the axial zones of the orogens, so early remarked by [33] as places in which there are “portions of terrains that are not in their place, lying on an accidental substrate, which is not their original substrate”. In this context, it appears more productive to examine the Variscan metamorphic imprints recorded across internal and external domains of the Alps, which, albeit with a discontinuous record, indicate the potential existence of one or more suture zones, as already attempted for exploring the possible pre-Alpine evolution of the Palaeozoic continental crust with quantitative geodynamic modelling (e.g., [34,35]).
In this light, this contribution shows the distribution of quantitative Variscan metamorphic conditions and the compositional affinity of protoliths across the different structural domains of the Alps. This information will be completed with the age relative to the different Variscan metamorphic imprints that range from Devonian to early Permian. In the end, the Variscan metamorphic signatures and their ages are here discussed in relation to the metamorphic gradients that have largely been used to interpret subduction-collision chains [36,37,38,39,40,41,42,43,44]. Therefore, rather than identifying and unravelling the palaeogeographical origin of lithotectonic units, this study aims at the identification of the link beyond the “Meso-Cenozoic disturbances”, to find relationships between the Variscan subduction-collision metamorphic markers and their distribution across the Alpine suture.

2. Geological Setting

The Alps were generated by the subduction of the Ligurian-Piedmont ocean (Western Tethys) under the Adria continental margin during the Meso–Cenozoic time, followed by the collision of the European passive continental margin. The chain suture stretches from Graz in SE Wien to the Gulf of Genova in NW Italy, south of which it is truncated by the Neogenic Algero-Provençal basin (Figure 2). At its eastern end, it disappears under the Neogene sedimentary rocks of the Pannonian basin system, which separates the Alps from the Carpathians [45,46,47,48].
Along a western section from the Alpine front to the Po plain (Figure 2), the main structural domains are (e.g., [49,50,51]) (a) the European foreland basin, underthrusted by the Alpine belt during the final stages of convergence; (b) the pre-Alpine basement and cover of the Helvetic–Dauphinois–Provençal domain, affected by the inversion of Mesozoic listric faults into a thrust system during Palaeogene Alpine continental collision; (c) the subduction system, between the Penninic Front (PF) and the Periadriatic Fault System (PFS), which is constituted of a mélange of Penninic and Austroalpine continental nappes wrapped by oceanic covers and basement rocks, belonging to the sutured western Tethys ocean; and (d) the Southalpine domain that consists of continental basements and cover units only locally affected by low-grade Alpine metamorphism and involved in a south-verging thrust system active since the Cretaceous period (e.g., [52,53,54]). This domain constitutes the hinterland of the Alpine belt.
The study of the tectonic setting of the area was integrated via the ECORS-CROP-NFP20-TRANSALP seismic project [55], which identified the subduction complex within the axial part of the chain. Such a hidden structure consists of a Cretaceous–Palaeogene rootless crustal prism, which is confined by the PF towards the Helvetic–Dauphinois–Provençal domain and by the PFS towards the Southalpine domain. The rootless crustal prism records Cretaceous to Palaeogene high-pressure and ultra-high-pressure metamorphism (e.g., [16,56,57,58]) and includes continental rocks that were buried in the subduction system through either continental collision or ablative subduction. In the second case, the high-pressure and ultra-high-pressure continental rocks were ablated from the upper continental plate by the subducting oceanic plate before continental collision (e.g., [49,56,59,60]). Consequently, regardless of the chosen interpretation, it clearly appears that in the subduction complex, the possibility of individuating a continuity of pre-Alpine structures and lithostratigraphy, which allows for the reconstruction of Variscan lithotectonic units, is strongly compromised.
Since Variscan metamorphic relicts were found in the pre-Alpine Penninic and Austroalpine continental crust, it is possible to compare their metamorphic imprints with those of the basement rocks of the Helvetic–Dauphinois–Provençal and Southalpine domains, where Alpine tectonics has been less destructive [22,25,34,61,62], and potentially identify scars of the Variscan suture.

3. Rock Types and Metamorphic Imprints

In this section, we describe the rock types from the different domains of the Alps (Southalpine, Austroalpine, Penninic, and Helvetic–Dauphinois–Provençal; Figure 2) that display evidence of Variscan metamorphism over a time frame spanning from early Devonian to early Permian (ca. 420 to 290 Ma; [63]). Data on each rock, including tectonic unit, location, interpreted protolith affinity (continental, oceanic, mantle, or undefined crusts), mineral assemblage, temperature and pressure conditions, and the age of the Variscan metamorphic imprint, are reported in Table 1, Table 2, Table 3 and Table 4, following the different structural domains. The different rock types mainly consist of metasediments or metagranitoids of continental affinity in all domains, although metabasites of oceanic affinity and mantle rocks are also reported in the Austroalpine, Penninic, and Helvetic–Dauphinois–Provençal domains (Figure 2a). The first letter of the sample code in the tables is the domain (S = Southalpine, A = Austroalpine, P = Penninic, and H = Helvetic–Dauphinois–Provençal), and the second is the age (v = Variscan, p = Permian).

3.1. Southalpine Domain

The Southalpine domain represents a well-preserved portion of the pre-Alpine Adria crust, minimally affected by the Alpine metamorphism during the development of an E-W-trending and S-verging fold and thrust system and involving the pre-Alpine basement and Permian–Mesozoic volcanic and sedimentary sequences [52,53,54,64,65,66,67,68,69,70,71,72,73]. The basement rocks (labelled Sv in Table 1) are exposed from the eastern termination of the Southalpine thrust system to the Canavese Line (the westernmost portion of the Periadriatic Fault System).
The Variscan metamorphic rocks of the Southalpine basement include micaschists, paragneisses, metagranitoids, metabasites, quartzites, carbonatic schists, marbles, and pegmatites. The dominant metamorphic imprints (Figure 2b and Figure 3a,b) were quantitatively inferred mainly from metapelites and their ages generally fall between 330 and 340 Ma except for two younger ages in the Ivrea and Dervio–Olgiasca Zones [74,75]. In these rocks, cm sized relicts preserve mineral assemblages of low-temperature and intermediate-pressure conditions (epidote-amphibolite facies imprints; Figure 2b and Figure 3a), recorded during the T-prograde Variscan evolutions and predating the T m a x imprint (ca. 385 Ma; [76,77,78,79,80,81]. The late Carboniferous syn-metamorphic structures consist of a regional scale fold system, generally associated with an axial plane foliation marked by greenschist facies minerals, locally mylonitic ([61] and refs therein). The microstructural and petrologic analyses of metamorphic pebbles from the late orogenic–early Permian conglomerates, capping the central Southalpine basement, reveal that coherent metamorphic evolutions were recorded via Variscan rocks, exposed to erosion during early Permian times [80,82,83]. Towards the western termination of the Southalpine basement, a continuous horizon of metabasites, minor paragneisses, metagabbros, retrogressed eclogites, and lenses of ultramafites are comprised in the Serie dei Laghi Complex. Here, the dominant metamorphic imprint under amphibolite facies conditions was dated between 307 and 359 Ma (e.g., [84,85]). This horizon separates two main units of the Serie dei Laghi Complex (Strona-Ceneri and Scisti dei Laghi), and it is interpreted as ophiolitic relicts marking a pre-Variscan suture, successively deformed and re-equilibrated under amphibolite facies conditions together with the surrounding rocks (e.g., [86,87]). The west-ending portion of the Southalpine basement, separated from the subduction complex by the Periadriatic Fault System, corresponds to the Ivrea Zone where the dominant metamorphic imprint in granulite facies is late to post-Variscan (i.e., Permian; [62,74]). Conversely, the eastern sector of the Southalpine basement is mainly constituted of metapelites and metapsammites with intercalations of acidic and basic metavolcanics ([88] and refs therein). In contrast with the central and western Southalpine basement, the dominant metamorphic imprint never exceeds the epidote amphibolite to greenschists facies conditions (Figure 2b), with metamorphic ages comprised between Devonian and Carboniferous. Starting from the Cadore region in the eastern Alps, the Variscan basement consists of non- to low-grade metamorphic sequences of the eastern Palaeocarnic chain [89].

3.2. Austroalpine Domain

The metamorphic basement of the Austroalpine domain is generally referred to the Adriatic margin (e.g., [49]) and is interpreted as belonging to Gondwana before being involved in the Variscan collision [28,90,91]. In the western Austroalpine domain, the Variscan metamorphic imprint is generally preserved in structural relicts, whereas it is better preserved in the central and eastern parts. Here, eclogites and related high-pressure rocks have been detected in metabasite lenses, which are enclosed in high- to medium-grade metapelites. They generally show a polyphasic tectonometamorphic evolution [35,88,92,93,94,95,96,97,98], and their radiometric ages range between early Devonian and Carboniferous (Table 2). High-pressure rocks mainly occur in the Schobergruppe, Oetztal–Stubai, Silvretta, and Languard-Campo nappes (Figure 2). Here, Variscan high-pressure assemblages developed both in mafic and acidic igneous protoliths and in metasediments are variably re-equilibrated mainly under amphibolite facies conditions (Figure 2, [35,61]), and this attests the deep subduction of the continental lithosphere. Eclogite protoliths from Silvretta are of MORB type and have mainly Mississippian metamorphic ages [99]. Variscan eclogitized mantle rocks from the Austroalpine domain (Nonsberg–Ulten Zone) consist of spinel lherzolite evolving to garnet peridotite (Figure 3d), and the inferred pressure prograde path indicates cooling during deep burial in the subduction system [94,96,100,101,102].

3.3. Penninic Domain

The continental crust belonging to the Penninic domain consists of Precambrian to early Palaeozoic polymetamorphic or monometamorphic basement [90,91,103,104] comprising mafic and acidic metaintrusives and metasediments (labelled Pv in Table 3 and Figure 2a). In greater detail, Variscan metamorphic rocks consist of high-grade paragneisses with minor marbles, metagranitoids, and metabasites [105,106,107]. In the Grand St. Bernard nappe garnet-bearing amphibolites, locally preserving eclogite facies mineral assemblages [91,103,108] occur within garnet-, staurolite-, and aluminum silicate-bearing metapelites [103,104,109,110,111,112]. High-pressure rocks and eclogites also occur in the mafic lenses of the polymetamorphic basement of Savona Massif (Figure 3e,f; western Alps), of the Adula and Suretta nappes (central Alps), and of the Tauern Window (eastern Alps) [113,114,115,116,117,118,119,120,121,122]. The Variscan dominant metamorphic imprint generally developed under eclogite or amphibolite facies conditions (Figure 2b). Geochronologic determinations point to early Devonian ages in the Savona Massif, Tauern Window, and Adula Variscan basements and to early Carboniferous in the other Penninic nappes of the western and central Alps (Table 3 and refs therein).

3.4. Helvetic–Dauphinois–Provençal Domain

The Helvetic–Dauphinois–Provençal domain, which derives from the pre-Alpine European passive margin (the lower plate of the Alpine subduction), has only been involved in the Alpine convergent system since the continental collision, and as a result, it has largely avoided most of the structural and metamorphic effects caused by subduction. The metamorphic pre-Alpine basement (labelled Hv in Table 4) is found in the “External Crystalline Massifs” (Argentera, Pelvoux–Belledonne–Grandes Rousses, Mont Blanc–Aiguilles Rouges, and Aar-Gotthard), where pre-Alpine structural and metamorphic features are well preserved (e.g., [23,24,48,106,123,124,125,126,127]). The “External Crystalline Massifs”, exposed in the western Alps, consist of metamorphic rocks with ages ranging from Cambrian to Carboniferous, capped by late Carboniferous to Permian sedimentary sequences and intruded by Permo–Carboniferous granitoids. All of these rocks show a discontinuous Alpine metamorphic and structural signature (e.g., [24,128,129,130,131]). Variscan eclogites, granulites, amphibolites, high-grade metapelites, and metagranitoids [124,126,127,132,133,134,135,136,137,138] document a polyphase metamorphic history, ranging from eclogite–granulite to Ep-amphibolite facies (Figure 2b). Eclogites and high-pressure granulites occur as lenses or boudins (Figure 3g) wrapped by sillimanite biotite-bearing foliations within migmatitic gneisses. The rims of these pods are extensively re-equilibrated under amphibolite or granulite facies conditions (Figure 3h). Radiometric ages related to high-pressure imprints are mainly Carboniferous (Table 4), with some old Devonian determinations whose reliability is questioned today [139]. Variscan high-pressure assemblages have never been detected in the Aar-Gotthard Massif, where Variscan imprints developed under amphibolite facies conditions during early Carboniferous times (Table 4). Late Carboniferous to early Permian granitoid stocks and acidic and mafic dykes crosscut the migmatitic foliations and high-pressure pods [130].
In the Permian–Triassic period, a high temperature-low pressure metamorphism and intense mafic to acidic igneous activity affected the Variscan continental crust of the Penninic, Austroalpine, and Southalpine domains. No similar metamorphic features have been described in the rocks of the Helvetic–Dauphinois–Provençal domain [62,140].
Table 1. Rock type for the Southalpine domain including the metamorphic assemblages, P-T conditions, and Variscan ages. Cc = continental crust; Oc = oceanic crust; Ma = mantle; Un = undefined crust. Geochronological data acquisition: ⊙ mineral separation. See reference coding in Appendix A. Mineral abbreviations are after [141].
Table 1. Rock type for the Southalpine domain including the metamorphic assemblages, P-T conditions, and Variscan ages. Cc = continental crust; Oc = oceanic crust; Ma = mantle; Un = undefined crust. Geochronological data acquisition: ⊙ mineral separation. See reference coding in Appendix A. Mineral abbreviations are after [141].
Tect. UnitLocationGroup/RockAssemblageTemp (°C)Pres (GPa)Age (Ma)MethodRefsCode
Serie dei Laghi ComplexVal CannobbinaCc metapeliteQz, Pl, Grt, St, Bt, Hbl640 ± 500.70 ± 0.1333 ± 26Ar/Ar (Wm) ⊙ [84,142]Svc1
Domaso–Cortafò ZoneComo LakeCc metapeliteGrt, Bt, Wm, Cld, Pl, Qz 385K/Ar (Wm) ⊙ [76,77,143,144]Svco2a
amphiboliteAmp, Grt, Pl, Qz, Bt, Ilm
Domaso–Cortafò ZoneComo LakeCc metapeliteSt, Grt, Bt, Ms, Qz, Ky605 ± 450.90 ± 0.2330 ± 8K/Ar (Amp) ⊙ [77,144,145,146]Svco2b
amphiboliteAmp, Grt, Pl, Qz, Bt, Rt
Monte Muggio ZoneMonte MuggioCc metapeliteQz, Chl, Bt, St, Ky, Ms570 ± 100.80 ± 0.1330 ± 10K/Ar (Amp) ⊙ [83,145,146,147,148]Svc3
Dervio–Olgiasca ZoneCorenno PlinioCc metapeliteMs, Bt, Grt, Pl, Qz, St, Ky630 ± 300.85 ± 0.15315 ± 3U/Pb (Mnz) ⊙ [75,144,149]Svc5a
amphiboliteAmph, Pl, Qz, Cpx, Bt, Ilm
Dervio–Olgiasca ZoneCorenno PlinioCc metapeliteMs, Bt, Grt, Pl, Qz, St, Ky560 ± 301.0 ± 0.25330 ± 10K/Ar (Wm) ⊙ [144,146,149]Svc5b
amphiboliteGrt, Amph, Pl, Qz, Rt
Val Vedello BasementVal VedelloCc metapeliteMs, Bt, Grt, Pl, Qz, St, Ky629 ± 390.90 ± 0.2330 ± 10K/Ar (Wm) ⊙ [69,82,146]Svc4
North-Eastern Orobic Basement (A)Lago BelvisoCc metapeliteGrt, St, Bt, Ms, Pl, Qz615 ± 451.00 ± 0.15330 ± 10K/Ar (Amp) ⊙ [145,150]Svc6a
North-Eastern Orobic Basement (A)Lago BelvisoCc metapeliteGrt, Cld, Bt, Ms, Pl, Qz500 ± 200.85 ± 0.1Devonian  [76,150]Svc6b
North-Eastern Orobic Basement (B)EdoloCc metapeliteChl, Bt, Grt495 ± 550.55 ± 0.2330 ± 10K/Ar (Amp) ⊙ [71,82,145]Svc7
Eastern Orobic BasementVal CamonicaCc metapeliteQz, Pl, Grt, Bt, Wm, Cld, Rt, Ilm510 ± 600.85 ± 0.15Devonian  [76,81]Svc14a
Eastern Orobic BasementVal CamonicaCc metapeliteQz, Pl, Grt, Bt, Wm, St, Ilm600 ± 500.55 ± 0.15330 ± 10K/Ar (Amp) ⊙ [81,145]Svc14b
Eastern Orobic BasementVal CamonicaCc metapeliteQz, Pl, Grt, Bt, Wm, St, And, Ep, Ilm550 ± 300.30 ± 0.1>late Permian  [81]Svc14c
Trompia Valley BasementPasso ManivaCc metapeliteGrt, Cld, Ms, Pl, Qz525 ± 251.10 ± 0.2late Devonian  [78,79,80]Svc9
EisacktalBrixenCc metapeliteQtz, Pl, Bt, Kfs, Grt625 ± 25>0.3Devonian  [151]Svc10
EisacktalBrixenCc metapeliteBt, Crd, Kfs, Pl, Qz, Sil500 ± 500.60 ± 0.05Carboniferous  [151]Svc11
Table 2. Rock type for the Austroalpine domain including the metamorphic assemblages, P-T conditions, and Variscan age. Cc = continental crust; Oc = oceanic crust; Ma = mantle; Un = undefined crust. Geochronological data acquisition: ⊙ mineral separation; ⊖ mineral separation and trace elements; ⊘ in situ; ⊕ in situ and trace elements. See reference coding in Appendix A. Mineral abbreviations are after [141].
Table 2. Rock type for the Austroalpine domain including the metamorphic assemblages, P-T conditions, and Variscan age. Cc = continental crust; Oc = oceanic crust; Ma = mantle; Un = undefined crust. Geochronological data acquisition: ⊙ mineral separation; ⊖ mineral separation and trace elements; ⊘ in situ; ⊕ in situ and trace elements. See reference coding in Appendix A. Mineral abbreviations are after [141].
Tect. UnitLocationGroupAssemblageTemp (°C)Pres (GPa)Age (Ma)MethodRefsCode
Dent BlancheValpellineCc metapeliteGrt, Bt, Sil703 ± 420.55 ± 0.1289.1 ± 6.3U/Pb (Zrn) ⊖ [152,153,154]Avc14
Dent BlancheValpellineCc metapeliteFsp, Qz, Bt, Grt, Rt725 ± 250.95 ± 0.05289.1 ± 6.3U/Pb (Zrn) ⊖ [153,154,155]Avc15
Dent BlancheValpellineCc metapeliteGrt, Bt, Sil703 ± 420.55 ± 0.1288 ± 3.9U/Pb (Zrn) ⊖ [152,153,154]Avc24
II DK ZoneVal SesiaCc metapeliteQz, Wm, Grt, Pl, Kfs, Bt, Zrn, Ilm623 ± 42.50.7 ± 0.1294 ± 4.1U/Pb (Zrn) ⊖ [154]Apc26
Silvretta nappeIschglUn metabasiteGrt, Omp, Qz, Rt, Ms625 ± 252.60 ± 0.3Carboniferous  [99]Avco8
Silvretta nappeVal PuntotaUn metabasiteGrt, Omp, Qz, Rt, Ms475 ± 252.60 ± 0.1Carboniferous  [99]Avco9
Silvretta nappeHochnoerdererUn metabasiteGrt, Hbl, Cpx, Pl, Qz640 ± 400.65 ± 0.1Carboniferous  [156,157,158]Avco10
Silvretta nappeVariousUn metabasiteeclogitic assemblage655 ± 152.80351 ± 22Sm/Nd (WR) ⊙ [159]Avco11
Silvretta nappePischahornCc metapeliteQz, Ms, And6000.20Carboniferous  [157,160]Avc11
Languard-CampoSondaloCc metapeliteSil, Opx, Kfs, Bt, Qz660 ± 900.5 ± 0.1290 ± 2Sm/Nd (WR) ⊙ [161,162]Apc7
Languard-CampoMortiroloCc metapeliteDum, Qz800 ± 502.00Devonian  [93]Avc12
Languard-CampoMortiroloCc metapeliteDi, Grt, Scp, Pl, Qz850 ± 1000.77 ± 0.12Carboniferous  [95]Avc13
Languard-CampoMortiroloCc metapeliteBt, St, Wm, Grt, Pl, Qz, Rt, Ilm, Tur620 ± 400.9 ± 0.2Dev.-Carb.  [98]Avc16
Languard-CampoMortiroloCc metapeliteBt, Sil, Grt, Pl, Qz, Rt, Ilm815 ± 350.80 ± 0.2Dev.-Carb.  [98]Avc17
Languard-CampoMortiroloCc metapeliteGrt, St, Wm, Bt, Pl, Qz, Ilm600 ± 200.60 ± 0.01Dev.-Carb.  [163]Avc18
Oetztal–StubaiSilandroCc metapeliteGrt, Sil, And, Bt, Pl, Qz, Crd605 ± 350.42 ± 0.1290 ± 17Rb/Sr (WR) ⊙ [164,165]Apc9a
Oetztal–StubaiLagenfeldUn metabasiteGrt, Omp750 ± 502.70 ± 0.2350 ± 8Sm/Nd (Gr) ⊙ [97,166]Avo3
Oetztal–StubaiBurgCc metapeliteGrt, Wm, Pl, Qz, St, Ky600 ± 501.20 ± 0.1355 ± 5Th/U/Pb (Mnz) ⊕ [167]Avc4
Oetztal–StubaiVariousCc metapelitePl, Wm, Bt, Qz, Kfs, Grt, Ky600 ± 500.55 ± 0.15320 ± 58Th/U/Pb (Mnz) ⊘ [168]Avc25
Oetztal–StubaiKaunertalCc metagranitoidQz, Kfs, Pl, Wm, Bt, Grt, Ep, Ilm, Ttn6300.75 ± 0.1335.7 ± 9.6Sm/Nd (Gr-WR) ⊖ [169]Avc26
Oetztal–StubaiAlpeiner ValleyCc metapeliteQz, Pl, Wm, Bt, Grt, St, Ilm680 ± 351.20 ± 0.1327.5 ± 12.5Th/U/Pb (Mnz) ⊕ [170]Avc27a
Oetztal–StubaiAlpeiner ValleyCc metapeliteQz, Pl, Wm, Bt, Grt, St, Ilm600 ± 350.40 ± 0.1310 ± 5Th/U/Pb (Mnz) ⊕ [170]Avc27b
Oetztal–StubaiSoelden-UmhausenCc metapeliteQz, Grt, St, Ky, Pl600 ± 501.20 ± 0.1365 ± 5Th/U/Pb (Mnz) ⊕ [167]Avc28a
Oetztal–StubaiSoelden-UmhausenCc metapeliteQz, Grt, St, Sil, Pl700 ± 500.50 ± 0.1323 ± 5Th/U/Pb (Mnz) ⊕ [167]Avc28b
Ulten ZoneSamemberg AlmCc metapeliteGrt, Bt, Pl, Kfs, Ky, Rt700 ± 501.50 ± 0.5365Pb/Pb (Zrn) ⊙ [94,171,172]Avc5
Ulten ZoneSamemberg AlmUn metabasiteGrt, Omp, Qz700 ± 501.40 ± 0.2late Devonian  [94]Avco6
Ulten ZoneSamemberg AlmMa ultramaficGrt-bearing790 ± 202.50 ± 0.3330 ± 4Sm/Nd (Grt-CPx-WR) ⊙ [94,96,101,102]Avo7
Ulten ZoneSamemberg AlmCc metapeliteKy, Grt, Qz, Pl, Bt, Rt625 ± 251.15 ± 0.05347 ± 4Th/U/Pb (Mnz) ⊘ [173,174]Avc19
Ulten ZoneSamemberg AlmCc metapeliteKy, Grt, Qz, Pl, Bt, Rt7200.95 ± 0.05328 ± 2Th/U/Pb (Mnz) ⊘ [173,174]Avc20
Ulten ZoneHochwartCc metabasiteOl, Opx, Sp, Cpx, Amph790 ± 202.50 ± 0.3330 ± 6Sm/Nd (Zrn) ⊖ [175]Avc29
SchobergruppeLienzCc metapeliteGrt, Qz, Pl, Ms, Bt, St, Chl, Ky500 321 ± 14Th/Pb (Mnz) ⊕ [176]Avc1
SchobergruppeBarrenleseeUn metabasiteGrt, Cpx, Amph, Qz, Wm, Im, Ep, Pl700 ± 501.50 ± 0.2305 ± 5Lu/Hf (Grt-WR) ⊙ [177]Avco12
Woelz UnitHochgroessenOc metabasiteGrt, Omp, Amp, Rt, Ilm, Ep700 ± 502.00 ± 0.2397 ± 8Ar/Ar (Amp) ⊙ [158,178]Avo2
Rappold UnitVariousCc metapelite 540 ± 150.66 ± 0.08Carboniferous  [179,180]Avc23
SaualpeVariousCc metapeliteQz, Grt, Ky, Wm, Pl, St, Bt575 ± 750.50 ± 0.1320 ± 16Th/U/Pb (Mnz) ⊕ [181]Avc30
Lower AustroalpineSopronCc metapeliteBt, And, Sil, Qz, Pl637 ± 620.28 ± 0.1300 ± 40Th/U/Pb (Mnz) ⊕ [182]Apc14
Table 3. Rock type for the Penninic domain including the metamorphic assemblages, P-T conditions, and Variscan ages. Cc = continental crust; Oc = oceanic crust; Ma = mantle; Un = undefined crust. Geochronological data acquisition: ⊙ mineral separation; ⊖ mineral separation and trace elements. See reference coding in Appendix A. Mineral abbreviations are after [141].
Table 3. Rock type for the Penninic domain including the metamorphic assemblages, P-T conditions, and Variscan ages. Cc = continental crust; Oc = oceanic crust; Ma = mantle; Un = undefined crust. Geochronological data acquisition: ⊙ mineral separation; ⊖ mineral separation and trace elements. See reference coding in Appendix A. Mineral abbreviations are after [141].
Tect. UnitLocationGroupAssemblageTemp (°C)Pres (GPa)Age (Ma)MethodRefsCode
Savona MassifSavonaCc metabasiteGrt, Omp, Qz, Ms700 ± 501.70383 ± 9U/Pb (Zrn) ⊖ [116,120,122]Pvc1
Clarea ComplexCottian AlpsCc metapeliteGrt, Ms, Pl, Ky, Rt, Qz600 ± 500.95 ± 0.15350 ± 10Ar/Ar (Wm) ⊙ [111,183]Pvc2
Dora-Maira MassifPunta MuretCc metapeliteQz, Wm, Grt, St, Bi, Ilm650 ± 100.70 ± 0.1324 ± 6U/Pb (Mnz) ⊖ [184]Pvc8
Gran Paradiso MassifValnonteyCc metapeliteGrt, St, Ilm, Qtz625 ± 250.60 ± 0.1Dev.-Carb.  [185]Pvc3
Monte Rosa MassifGressoney ValleyCc metapeliteGrt, Qz562 ± 120.50 ± 0.1Dev.-Carb.  [186]Pvc5
Mischabel nappeSiviezCc metabasiteHbl, Pl, Qz600 ± 500.55 ± 0.05Dev.-Carb.  [103,109]Pvc7
Adula nappeTrescolmenUn metabasiteGrt, Omp, Ms, Amp, Qz, Chl750 ± 752.20 ± 0.25374 ± 28U/Pb (Zrn) ⊖ [119,121]Pvco8
Adula nappeVals, ConfinUn metabasiteGrt, Omp, Ky, Rt, Ms, Ep, Pl, Qz640 ± 751.70 ± 0.25329 ± 25U/Pb (Zrn) ⊖[119,121]Pvco9
metagranitoidPl, Qz, Grt, Ms, Ep, Rt
Suretta nappeAversUn metabasiteGrt, Hbl, Cpx, Ep, Qz683 ± 662.00Dev.-Carb.  [118]Pvco10
Tauren WindowFrosnitztalUn metabasiteGrt, Omp, Qz450 ± 501.00 ± 0.2418.5 ± 18.5Sm/Nd-U/Pb (WR-Zrn) ⊖ [114,117]Pvco11
Tauren WindowMallnitzUn metabasiteGrt, Omp, Qz620 ± 1001.20418.5 ± 18.5Sm/Nd-U/Pb (WR-Zrn) ⊖ [113,117]Pvco12
Table 4. Rock type for the Helvetic–Dauphinois–Provençal domain including the metamorphic assemblages, P-T conditions, and Variscan ages. Cc = continental crust; Oc = oceanic crust; Ma = mantle; Un = undefined crust. Geochronological data acquisition: ⊙ mineral separation; ⊖ mineral separation and trace elements. See reference coding in Appendix A. Mineral abbreviations are after [141].
Table 4. Rock type for the Helvetic–Dauphinois–Provençal domain including the metamorphic assemblages, P-T conditions, and Variscan ages. Cc = continental crust; Oc = oceanic crust; Ma = mantle; Un = undefined crust. Geochronological data acquisition: ⊙ mineral separation; ⊖ mineral separation and trace elements. See reference coding in Appendix A. Mineral abbreviations are after [141].
Tect. UnitLocationGroupAssemblageTemp (°C)Pres (GPa)Age (Ma)MethodRefsCode
Argentera MassifTinèeUn metabasiteGrt, Hbl, Cpx, Pl, Qz735 ± 251.30 ± 0.1Devonian  [134]Hvco1a
Argentera MassifValle Gesso; Valle Stura; VésubieUn metabasiteGrt, Hbl, Cpx, Pl, Qz735 ± 251.30 ± 0.1Devonian  [134]Hvco1b
Argentera MassifPasso della Mena, Frisson lakesCc metapeliteGrt, Hbl, Cpx, Pl, Qz, Rt/Ilm735 ± 151.38 ± 0.05340 ± 4U/Pb (Zrn) ⊖ [137,187]Hvc2
Argentera MassifVariousUn metabasiteGrt, Hbl, Cpx, Pl, Qz735 ± 251.30 ± 0.1Devonian  [134]Hvco16
Argentera MassifVariousUn metabasiteGrt, Hbl, Cpx, Pl, Qz735 ± 251.30 ± 0.1Devonian  [134]Hvco17
Argentera MassifLac LongOc metabasiteCpx, Pl, Amph, Grt, Rt, Ilm690 ± 551.50 ± 0.25>339.7 ± 12Ar/Ar (Amp) ⊖ [138]Hvo17a
Argentera MassifLago ValscuraOc metabasiteCpx, Pl, Amph, Grt, Rt, Ilm690 ± 551.50 ± 0.25>339.7 ± 12Ar/Ar (Amp) ⊖ [138]Hvo17b
Argentera MassifVariousUn metabasiteGrt, Hbl, Cpx, Pl, Qz735 ± 251.30 ± 0.1Devonian  [134]Hvco18
Argentera MassifVariousUn metabasiteGrt, Hbl, Cpx, Pl, Qz735 ± 251.30 ± 0.1Devonian  [134]Hvco19
Pelvoux MassifLa LaveyUn metabasite 850 ± 501.40 ± 0.1Devonian  [188,189]Hvco7
Pelvoux MassifPeyre ArguetUn metabasiteCpx, Grt, Pl, Prg, Rt, Qz800 ± 500.50 ± 0.2Dev.-Carb.  [188,189,190]Hvco8
Pelvoux MassifLa LaveyUn metabasiteGrt, Cpx, Qz, Rt, Pl, Amph, Bt690 ± 401.60 ± 0.1337.5 ± 7.5U/Pb (Rt) ⊖ [191]Hvco21a
Pelvoux MassifLa LaveyUn metabasiteCpx, Qz, Pl, Amph835 ± 350.75 ± 0.15315.5 ± 21.5U/Pb (Zrn) ⊖ [191]Hvco21b
Pelvoux MassifValgaudemar ValleyMa ultramaficGrt-bearing1055 ± 853.50 ± 0.5Devonian  [192]Hvco23
Grandes RoussesRomanche ValleyUn metabasiteCpx, Grt, Qz, Rt717 ± 670.55 ± 0.15321 ± 10Ar/Ar (Amp) ⊙ [193]Hvco5
Grandes RoussesOisanUn metabasiteCpx, Grt, Qz, Rt884 ± 1091.30 ± 0.4Dev.-Carb.  [193]Hvco6
BelledonneLac de la CroixUnGrt, Cpx, Pl, Qz, Rt640 ± 301.20 ± 0.1Devonian [189]Hvco9
Massif metabasiteGrt, Hbl, Cpx, Qz, Rt, Zo
Belledonne MassifAllemondCc metapeliteGrt, St, Bt, Ms, Chl, Pl, Qz, Rt550 ± 501.00 ± 0.1Devonian  [23,194]Hvc3
Belledonne MassifLivetCc metapeliteGt, St, Bt, Ms, Pl, Qz, Ilm590 ± 600.80 ± 0.2352 ± 55K/Ar (Amp) ⊙ [23,194,195]Hvc4
Belledonne MassifGrand MontCc metapeliteQz, Pl, Bt, Grt, Rt740 ± 401.20 ± 0.2322 ± 12.5U/Pb (Zrn) ⊖ [126]Hvc16b
Belledonne MassifGrand MontCc metapeliteQz, Pl, Bt, Grt, Ilm650 ± 500.95 ± 0.15Carboniferous  [126]Hvc16a
Belledonne MassifGrand MontCc metapeliteQz, Pl, Bt, Grt, Ilm580 ± 300.65 ± 0.15306 ± 3U/Pb (Zrn) ⊖ [126]Hvc16c
Belledonne MassifTailleferCc metapeliteQz, Wm, Pl, Bt, St, Grt, Ky608 ± 140.58 ± 0.06337 ± 7U/Pb (Zrn) ⊙ [196]Hvc17
Belledonne MassifGrand MontUn metabasiteGrt, Cpx, Qz, Rt, Amp715 ± 251.50 ± 0.1340 ± 11U/Pb (Rt) ⊖ [126]Hvco20a
Belledonne MassifGrand MontUn metabasiteGrt, Cpx, Amp, Ilm, Pl, Qz580 ± 300.65 ± 0.15306 ± 3U/Pb (Zrn) ⊖ [126]Hvco20b
Aiguilles RougesLac CornuUn metabasiteGrt, Cpx, Hbl, Qz, Rt737 ± 121.55 ± 0.05Devonian  [124,133]Hvco10
Aiguilles RougesCol de BérardCc metapeliteGrt, Ms, Ky, Qz, Pl650 ± 251.30 ± 0.1Carboniferous  [197]Hvc11
Aiguilles RougesEmosson lakeCc metapeliteBt, Qz, Kfs, Pl, Ms, Gt550 ± 250.90 ± 0.1Carboniferous  [198]Hvc12a
Aiguilles RougesEmosson lakeCc metapeliteBt, Qz, Kfs, Pl, Ms, Gt650 ± 200.31 ± 0.01320 ± 1U/Pb (Mnz) ⊙ [198,199]Hvc12b
Aiguilles RougesSt-Gervais-les-BainsCc metapelite 700 ± 501.00 ± 0.15Dev.-Carb.  [200]Hvc15
Aiguilles RougesLac CornuUn metabasiteAmp, Grt, Cpx, Qz, Rt700 ± 501.75 ± 0.15337.5 ± 2.5U/Pb (Rt) ⊖ [127]Hvco22a
Aiguilles RougesLac CornuUn metabasiteAmp, Grt, Cpx, Pl, Qz, Ilm650 ± 500.95 ± 0.15Carboniferous  [127]Hvco22b
Mont BlancMartignyCc metabasiteHbl, Grt, Qz, Pl544 ± 450.68 ± 0.07321 ± 14Ar/Ar (Amp) ⊙[201]Hvc13
Massif skarnGrt, Mag, Di, Hd
Aar MassifSusten PassCc metapelite 330 ± 3U/Pb (Zrn) ⊙ [123,202]Hvc14

4. Metamorphic Evolution

The distribution of absolute ages together with evolutionary paths of metamorphism (Figure 4, Figure 5 and Figure 6) identifies three main tectonic stages for the Variscan history of the Alpine area [63]: Devonian (420–370 Ma—early Variscan), late Devonian–late Carboniferous (370–330 Ma—middle Variscan), and late Carboniferous–early Permian (330–290 Ma—late Variscan).

4.1. Devonian (420–370 Ma)

Scarce Devonian tectonometamorphic relicts are found in all the Alpine domains (Figure 4a). Eclogites from the Penninic and Austroalpine domains (Adula nappe, Savona Massif, and Woelz Unit; [116,119,120,121,158,178]), characterized by garnet, omphacite, and rutile mineral association, and metapelites with dumortierite in the Languard-Campo nappe (central Austroalpine domain; [93]) document eclogite facies conditions (Figure 4a,b). Similarly, metabasites containing garnet, clinopyroxene, amphibole, and plagioclase are described in the Argentera, Pelvoux, and Aiguilles Rouges Massifs in the Helvetic–Dauphinois–Provençal domain. The symplectites of clinopyroxene and plagioclase replacing omphacite document the re-equilibration of eclogite facies conditions or HP granulite facies conditions [134,203]. The ages of the majority of these metabasites are only geologically constrained (Table 2, Table 3 and Table 4 and Figure 4a,b). Ep-amphibolite facies conditions are commonly recorded via garnet-chloritoid-biotite-bearing metapelites from the Southalpine domain [71,80,81], garnet-staurolite-biotite-bearing metapelite from the Belledonne Massif [23,194], and metabasite from the Tauren Window [114,117]. In addition, amphibolite facies conditions (Figure 4a,b) are documented via few rocks in the Tauren Window (Penninic domain; [113,117]) and Belledonne Massif (Helvetic–Dauphinois–Provençal domain; [189]).
The Devonian metamorphic imprint developed under a general low to moderate T/P ratio which indicates Franciscan to cold Barrovian metamorphic field gradients (Figure 4c). The coldest thermal states are documented with rocks from the Austroalpine and Penninic domains. Rocks from the Southalpine and Helvetic–Dauphinois–Provençal domains record a cold Barrovian metamorphic field gradient (Figure 4c).
Figure 4. (a) Devonian metamorphic imprints and geochronological and geological ages. (b) PT data of Devonian samples and relative metamorphic facies (modified after [43,204,205]). (c) PT data of Devonian samples and relative metamorphic field gradients (modified after [35,204]). See reference coding in Appendix A and codes information in Table 1, Table 2, Table 3 and Table 4.
Figure 4. (a) Devonian metamorphic imprints and geochronological and geological ages. (b) PT data of Devonian samples and relative metamorphic facies (modified after [43,204,205]). (c) PT data of Devonian samples and relative metamorphic field gradients (modified after [35,204]). See reference coding in Appendix A and codes information in Table 1, Table 2, Table 3 and Table 4.
Geosciences 13 00300 g004

4.2. Late Devonian–Late Carboniferous (370–330 Ma)

Abundant relicts with a late Devonian to late Carboniferous metamorphic imprint occur in the central and western Alps (Figure 5a). In the Helvetic–Dauphinois–Provençal domain, the metamorphic imprint generally developed under HP granulite facies conditions (Figure 5a,b) with the mineral association characterized by garnet, clinopyroxene, and amphibole in metabasites and quartz, garnet, and kyanite in metapelites (e.g., [77,126,137,138,189]). One sample in the Aiguilles Rouges Massif (Figure 5a,b) still preserves eclogite facies imprints (Lac Cornu—Hvco22a, [127]). Two samples of metapelites in the Belledonne Massif document amphibolite facies conditions (Hvc4 and Hvc17; Figure 5a,b) characterized by quartz, garnet, and staurolite mineral association [194,195,196]. Ep-amphibolite and granulite facies conditions are documented in two cases from the Aiguilles Rouges and Pelvoux Massifs, respectively [188,198], but no radiometric age is available (Figure 5a,b).
Figure 5. (a) Late Devonian–late Carboniferous metamorphic imprint and age types (geochronological and geological age). (b) PT data of Late Devonian–late Carboniferous samples and relative metamorphic facies (modified after [43,204,205]). (c) PT data of Late Devonian–late Carboniferous samples and relative metamorphic field gradients (modified after [35,204]). See reference coding in Appendix A and codes information in Table 1, Table 2, Table 3 and Table 4.
Figure 5. (a) Late Devonian–late Carboniferous metamorphic imprint and age types (geochronological and geological age). (b) PT data of Late Devonian–late Carboniferous samples and relative metamorphic facies (modified after [43,204,205]). (c) PT data of Late Devonian–late Carboniferous samples and relative metamorphic field gradients (modified after [35,204]). See reference coding in Appendix A and codes information in Table 1, Table 2, Table 3 and Table 4.
Geosciences 13 00300 g005
Rocks from the Penninic domain commonly indicate amphibolite facies conditions for the late Devonian to late Carboniferous metamorphic imprints (Figure 5a,b) with metapelites characterized by quartz, garnet, and staurolite assemblages [110,183,185,186,206] and metabasites by garnet, amphibole, and clinopyroxene mineral associations [103,109,118]. In the Austroalpine domain, the late Devonian to late Carboniferous metamorphic imprint lies in different conditions. Eclogite, Ep-eclogite, and Lws-eclogite facies conditions are documented with metabasites from the Oetztal–Stubai Complex and Silvretta nappe (Figure 5a,b), all supported by radiometric age [92,94,99,101,102,159,166,175]. Amphibolite facies conditions are instead documented with metapelites and metabasites from the same units and from the Languard-Campo nappe [94,98,156,158,163,167,169,173,179]. In the latter unit, granulite facies conditions are recorded with metapelites in the Mortirolo area, but their age is estimated only by geological constraints [95,98]. In the Southalpine domain, amphibolite and Ep-amphibolite facies conditions are documented with metapelites across the Orobic basement and Strona-Ceneri unit, characterized by quartz, garnet, biotite, staurolite, and minor kyanite mineral associations [71,78,80,81,82,84,142,144,146,148].
The late Devonian–late Carboniferous metamorphic imprint developed under a general moderate T/P ratio, especially in the Penninic and Southalpine domains, resulting in a Barrovian metamorphic field gradient (Figure 5c). However, some rocks in the central Austroalpine and Helvetic–Dauphinois–Provençal domains document a colder thermal state that points to the Franciscan metamorphic field gradient (Figure 5c).

4.3. Late Carboniferous–Early Permian (330–290 Ma)

Most of the rocks that recorded late Carboniferous to early Permian metamorphism are derived from the continental crust (metapelites and paragneisses). The metamorphic imprint during this period was dominated by (HP) granulites and amphibolites facies conditions (Figure 6a,b), with only a few exceptions such as the record of Ep-amphibolite facies in the Belledonne Massif from the Helvetic–Dauphinois–Provençal domain [126]. A unique case is represented by the metabasite from Vals in the Adula nappe (Penninic domain) that documents eclogite facies conditions (Figure 6a,b, [119,121]). However, the radiometric estimate of 329 ± 25 Ma suggests a possible early Carboniferous age for the metamorphism recorded with this rock.
Therefore, the late Carboniferous to early Permian metamorphic imprint developed under a moderate to high T/P ratio that indicates a Barrovian to Abukuma metamorphic field gradient (Figure 6c). Two exceptions are represented by rocks from the Adula nappe in the Penninic domain and Schobergruppe in the Austroalpine domain that point to a Franciscan metamorphic field gradient (Figure 6c).
Figure 6. (a) Late Carboniferous–early Permian metamorphic imprint and age types (geochronological and geological age). (b) PT data of Late Carboniferous–early Permian samples and relative metamorphic facies (modified after [43,204,205]). (c) PT data of Late Carboniferous–early Permian samples and relative metamorphic field gradients (modified after [35,204]). See reference coding in Appendix A and codes information in Table 1, Table 2, Table 3 and Table 4.
Figure 6. (a) Late Carboniferous–early Permian metamorphic imprint and age types (geochronological and geological age). (b) PT data of Late Carboniferous–early Permian samples and relative metamorphic facies (modified after [43,204,205]). (c) PT data of Late Carboniferous–early Permian samples and relative metamorphic field gradients (modified after [35,204]). See reference coding in Appendix A and codes information in Table 1, Table 2, Table 3 and Table 4.
Geosciences 13 00300 g006

4.4. Metamorphic Field Gradients

The Franciscan field gradient is the typical gradient that characterizes the subduction zones (e.g., [36,205,207]). The PT conditions of Variscan rocks documenting a Franciscan field gradient indicate a thermal gradient lower than 20 °C/km (blue area in Figure 7) and plot over the PT estimates from worldwide exhumed blueschists and eclogites of subduction complexes (Figure 8). This field gradient characterizes the Devonian evolution of Variscan rocks in the majority of the Alpine domains. The Barrovian field gradient (yellow in Figure 7), which is traditionally interpreted as the effect of crustal thickening during continental collision (e.g., [41,205,208,209,210,211,212]), is recorded in all domains of the Alps since the late Devonian period. The Abukuma field gradient (red in Figure 7) testifies to an abnormally high thermal regime typical of arc systems, ridge settings [42,205,213,214], or thinned lithosphere [205,215] and preferentially developed during the late Carboniferous–early Permian period.
In particular, during the Devonian time, rocks from the eastern Austroalpine and Penninic domains developed under Franciscan-type conditions (Figure 9a), whereas rocks from the Helvetic–Dauphinois–Provençal and Southalpine domains fell along the upper Barrovian field gradient (Figure 9b). However, in the case of the Helvetic–Dauphinois–Provençal domain, the radiometric estimates are rather old and obtained with obsolete methods [203], and they may represent a mixing of different ages [139], whereas in the Southalpine domain, the ages are mainly constrained on geological criteria.
During the late Devonian–late Carboniferous time, the majority of central Austroalpine and Helvetic–Dauphinois–Provençal rocks still recorded Franciscan-type imprints that are also testified to via one rock from the Southalpine and one from the Penninic domain (Figure 9a). On the contrary, the majority of Southalpine and Penninic rocks re-equilibrated under Barrovian-type conditions that also affected a few rocks from the Austroalpine and Helvetic–Dauphinois–Provençal domains (Figure 9b).
Finally, for the late Carboniferous–early Permian time, only one rock from the eastern Austroalpine domain documents a Franciscan-type imprint, whereas a Barrovian field gradient is recorded via rocks from the Helvetic–Dauphinois–Provençal domain. Rocks from the eastern and western Austroalpine domain document metamorphic field gradients at the transition between low Barrovian and Abukuma, together with a few rocks from the Southalpine and Helvetic–Dauphinois–Provençal domains (Figure 9c).

5. Discussion

The compilation of PT data from Variscan rocks from the Alps highlights the high variability of geothermal gradients as a function of timing and location across the chain even within a single tectonic domain (Figure 9). This variability is clearly the result of transposition, deformation, translation, and metamorphic overprinting caused by successive tectonic events that characterized the Alpine area from the Permian period to the present day. In particular, Variscan rocks were restructured during the Permian–Mesozoic continental rifting and oceanization and subsequent Alpine subduction and collision. In contrast, other parts of the European Variscan orogen are either not affected or only partially affected by successive tectonometamorphic events, allowing for the preservation of tectonic domains that can be correlated though the different portions of the Variscan belt across Europe. Taking into account the tectonometamorphic fragmentation consequent to successive tectonic events, we tentatively compare the metamorphic imprints and field gradients of Variscan rocks in the different Alpine domains with those in the European domains across three main tectonic stages individuated in Variscan history: Devonian, late Devonian–late Carboniferous, and late Carboniferous–early Permian (Table 5).
During the Devonian period, eclogite and HP granulite facies conditions, developed under Franciscan and upper-Barrovian gradients, dominated the rocks in the Helvetic–Dauphinois–Provençal, Penninic, and Austroalpine domains. Similar metamorphic conditions are described in rocks from the allochthon of the European Variscan massifs, except for the Vosges–Black Forest. In the Southalpine domain, Ep-amphibolite and amphibolite facies conditions dominated during the Devonian period, indicating a general Barrovian metamorphic gradient, which is not described in the European Variscan domains for this period. However, most of the age data in the Southalpine domain are based on geological criteria, with the only geochronological data obtained more than four decades ago [76].
During the late Devonian–late Carboniferous period, HP granulite and eclogite facies conditions still dominated the rocks in the Helvetic–Dauphinois–Provençal and Austroalpine domains, and similar conditions are recorded in rocks from the allochthon of the Vosges–Black Forest and Maures–Estérel–Corsica–Sardinia massifs. For the same period, amphibolite facies conditions, developed under a Barrovian metamorphic field gradient, are recorded in rocks from the Penninic and Southalpine domains and, in the latter, an eclogite facies imprint is not described. The metamorphic outline of the Southalpine domain is similar to that recorded via rocks from the relative autochthon of the Bohemian and Vosges–Black Forest massifs and in the para-autochthon of the Maures–Estérel–Corsica–Sardinia and of the French Central massifs. It must be underlined that exclusively in the relative autochthon of the Bohemian Massif eclogite facies imprint was recorded for the Variscan evolution.
During the late Carboniferous–early Permian period, Variscan rocks in the Helvetic–Dauphinois–Provençal, Austroalpine, and Southalpine domains were characterized by the occurrence of granulite facies conditions and Barrovian to Abukuma metamorphic field gradients. Similar conditions were recorded in rocks from the allochthon of the Vosges–Black Forest and Maures–Estérel–Corsica–Sardinia Massifs, as well as in all domains of the French Central Massif. Amphibolite facies conditions and Barrovian metamorphic field gradients dominate the Variscan rocks from the Penninic domain as well as the allochthon of the Bohemian Massif.
As previously mentioned, the comparison between Variscan rocks in the Alps and European massifs is challenging due to the very different tectonic evolutions that characterized these areas from the Permian period to the present day. Based on metamorphic imprints and field gradients recorded in Variscan rocks, we note that the Helvetic–Dauphinois–Provençal, Austroalpine, and part of the Penninic domains show an evolution roughly similar to that of the mid-Variscan allochthon units, while the evolution of the Southalpine domain is more similar to that of the autochthon units of the European massifs, excluding the eclogite-bearing Bohemian Massif. The Penninic domain lacks late Carboniferous–early Permian granulite facies conditions, consistent with the relative autochthon units of the Vosges–Black Forest Massif and para-autochthon of the Maures–Estérel–Corsica–Sardinia Massif, as well as all domains of the Bohemian Massif.
An interesting output of this review includes the comparison between the Variscan tectonic evolution suggested via metamorphic imprints and field gradients of rocks from the Alps with the scenarios proposed for the evolution of the Variscan orogen in Europe. A Franciscan field gradient (Figure 7; 5–15 °C/km), suggesting the evolution of rocks within a subduction zone, developed during the Devonian period preferentially in the eastern Alps. In the central-western Alps, this gradient mainly developed during the late Devonian to late Carboniferous period (Figure 9a). The oldest age determinations (>380 Ma) are at present considered outdated, given recent estimates in the Helvetic–Dauphinois–Provençal domain [126,138,191,196] and in the other European Variscan massifs (e.g., [139,217,218,219]).
Table 5. Dominant metamorphic facies and field gradients for the Variscan rocks in Alpine and main European Variscan domains. The > symbol indicates a decrease in the relative abundance of rocks recording the indicated metamorphic conditions.
Table 5. Dominant metamorphic facies and field gradients for the Variscan rocks in Alpine and main European Variscan domains. The > symbol indicates a decrease in the relative abundance of rocks recording the indicated metamorphic conditions.
ALPINE TECTONIC DOMAINSVARISCAN TECTONIC DOMAINS
ALPSBOHEMIAN MASSIFVOSGES–BLACK FORESTFRENCH CENTRAL MASSIFMAURES–ESTÉREL–CORSICA–SARDINIA
HDPPASMid-VariscanRelativeMid-VariscanRelativeMid-VariscanPara-Autochton/Mid-VariscanPara-Autochton/
AllochtonAutochtonAllochtonAutochtonAllochtonAutochtonAllochtonAutochton
DevonianFaciesHPG>EA-AE>EA-AEEA>AE>G>AE>A>EA>Gs E>HPG>A E?
(420–365)Field gradientuB>FF>uBFuB-BF-uBF-B F-uB F?
Late Devonian–late CarboniferousFaciesHPG-E>A>EAA>EE>A>G>HPGA>EA>Gs-LG-UnMHPG>A>EAA>EA>GsA>HPG>E>EA>GsA>EA>GsA>HPG>G>GsGsA>HPG>E>EAA>EA>Gs
(365–330)Field gradientF>uB>B>AB>uB>FF>uB-B>AuB-B>FB-uBBF-uB-BBB>uBBF-uB-BB
Late Carboniferous–Early PermianFaciesA>G>EA>HPGA>EA>G>HPG>EA-Gs>GA>EAGsA>EA>GGsA>EA>G>GsGs>EA>G>EA>EA>GGs
(330–290)Field gradientB>AB>FB-uB>A>FB-ABBA-BBB>AB>A>uBA-BB
References See references in Table 1, Table 2, Table 3 and Table 4 of this work [9,220,221,222,223,224,225,226,227] [220,224,228,229,230,231] [232,233,234,235,236,237,238] [9,11,16,220,239,240,241,242,243,244] [9,11,16,217,240,244] [9,11,245,246,247,248] [249,250,251,252,253,254,255] [253,256,257,258,259,260]
 [18,19,63,244,261,262,263,264,265,266] [18,19,63,244,267] [18,19,20,241,243,244,268] [18,19,20,35,217,218,269,270,271] [9,11,16,217,240,244] [16,18,19,20,219,244,272] [19,273,274,275,276,277,278] [19,274,279,280,281,282]
Symbols legend. Alpine tectonic domains: HDP = Helvetic–Dauphinois–Provençal; P = Penninic; A = Austroalpine; S = Southalpine. Metamorphic facies: EA = Ep-amphibolite; A = amphibolite; G = granulite; HPG = HP granulite; E = Eclogite + Ep eclogite + Lws eclogite; GS = greenschist; LG = low grade; UnM = nonmetamorphic. Metamorphic field gradients: F = Franciscan; B = Barrovian; uB = upper Barrovian; A = Abukuma-Buchan.
The preservation of a Variscan subduction zone in the Alpine area is also supported by the age (333–364 Ma; [283,284]) and magmatic arc signature [285] of the gabbroic body of the Ivozio Complex in the Austroalpine domain of the western Alps and by the coeval spinel–garnet transition in Ulten lherzolites. Moreover, the contamination of the subcontinental mantle caused by the Variscan subduction is still identifiable in the distinctive geochemical signature of the Triassic magmatism in the Southalpine domain [286,287]. The coexistence of HP granulite and amphibolite facies assemblages with the eclogite facies assemblage of Franciscan type does not contradict the occurrence of a Carboniferous subduction.
In fact, recent thermomechanical simulations indicate that contrasting metamorphic conditions can simultaneously be observed in different regions of the subduction system [20,205]. The Barrovian field gradient (15–35 °C/km), which is typical for rocks evolving within collisional contexts, developed from Carboniferous to Permian times after the Franciscan gradients or as the re-equilibration of older lower-T relicts (Figure 9b) and is recorded via rocks from all parts of the Alps (Figure 9b). Therefore, all the data indicate a diachronous subduction-related metamorphism, followed by continental collision re-equilibration.
Considering the geodynamic evolution of the Variscan orogeny, there is a general agreement on the closure of an oceanic domain, so called Rheic, and located north of the peri-Gondwanian microblocks (or continental ribbons) during Devonian times [19,288,289]. However, two scenarios are still debated: (i) a single oceanic closure or (ii) several and successive oceanic closures (e.g., the closures of the Rheic, the Saxothuringian, and the Rhenohercynian oceans) [16,17,18,35,63,224,290].
The Devonian to Carboniferous Franciscan-type assemblages recorded in the Variscan rocks of the Alps may agree with a single oceanic closure characterized by an oceanic subduction with a diachronous burial and exhumation starting from the east, where the oldest Franciscan records occur, and moving westward, where Franciscan records are Carboniferous in age (Figure 9a). This agrees also with the older age of the Barrovian field gradient (i.e., collision) in the central Alps (mainly early Carboniferous) with respect to the western Alps (mainly late Carboniferous; Figure 9b). The monocyclic scenario as proposed for the Bohemian and French massifs accounts for the occurrence of an arc and back-arc system located at present to the north of the Alpine front [271] that would not agree with the records of subduction-type metamorphism in the Variscan rocks of the Alps. Therefore, a more complex subduction geometry has to be considered and tested.
On the other hand, the distribution in age of the Franciscan-type imprints may agree even with a scenario involving several oceanic closures, in which the subduction of an older ocean is testified to in the Penninic and eastern Austroalpine domains of the Alps and the successive subduction of the Saxothuringian ocean is testified to in the central Austroalpine and Helvetic–Dauphinois–Provençal domains (Figure 9a). However, a comparison between P-T-t data and numerical models of mono- and polycyclic scenarios indicates that the latter is the preferred scenario for describing the Variscan orogeny in the Alps [35]. The polycyclic scenario implies that during the Variscan time, the Austroalpine domain was separated into different portions that occupied different palaeogeographic positions. In particular, the eastern Austroalpine domain would have derived from Gondwana or southern Armorica, while the central Austroalpine domain would have belonged to northern Armorica or possibly to Saxothuringian terrains. In the Pelvoux Massif, the Carboniferous age (337 Ma) of HP granulites and the relatively warm thermal gradient estimated for their thermal peak conditions (12–13 °C/km) are interpreted as the thickening of a relatively hot continental crust, presumably caused by the inversion of a Devonian back-arc during the collision [191], rather than a subduction context. However, the obtained PT conditions cannot rule out the possible role of subduction, as PT estimates from worldwide exhumed blueschists and eclogites indicating geothermal gradients from 6 to 20 °C/km for subduction zones (Figure 8). Furthermore, the young U/Pb ages of high-pressure rocks may be subject to uncertainties due to the resetting of the U–Pb system of eclogite facies zircon grains, particularly when they are enclosed within high-temperature country rocks [219]. A similar geothermal gradient has been inferred for Variscan eclogites in the southern Argentera–Mercantour Massif that derives from MORB-type protoliths [138]. This eclogite re-equilibrated under amphibolite facies conditions resulting from the oceanic subduction-related metamorphism developed in this portion of the Helvetic–Dauphinois–Provençal domain [138].
In Figure 10, the geothermal gradients obtained from the PT conditions of Variscan remnants in the Alps, extended up to Triassic times, are reported. From 420 to 370 Ma, the distribution of thermal gradients with age is rather constant around the average value of 15 °C/km. The geothermal gradients almost linearly increase from 370 Ma to reaching the maximum value at ca. 250 Ma and then remain almost constant over the whole Triassic period. This distribution clearly agrees with a sequence of events that starts with subduction (420–370 Ma), continues with continental collision (370–290 Ma), and ends with the continental thinning that resulted in Pangea rifting and the successive drifting of the Alpine Tethys ocean at ca. 160 Ma [61,62,291].
During convergent tectonics, after continental collision and thickening, a phase of gravitational collapse is usually predicted with a thermal balance between deformation-induced and radioactive heat production and heat advection related to continental subduction, orogenic deformation, and magma transfer [215] that results in a decrease, or a reduction of the increase, in geothermal gradients [292]. Interestingly, between 370 and 250 Ma, a significant change in the slope of the interpolation curve is not observed (Figure 10), suggesting the absence of a clear phase of gravitational collapse from the geothermal gradients. This observation leads to different interpretations of the Variscan and post-Variscan evolution in the Alps. One possibility is that it was characterized by a gradual switch from convergence to extension as a result of continental redistribution triggered by the opening of the southern Atlantic ocean [293]. Alternatively, the thermal signature of the gravitational collapse is not recorded in the Alpine rocks, or it is indistinguishable from the thermal signature of the collision.

6. Conclusions

The compilation of quantitative PT conditions and ages of Variscan rocks from the Alps documents a variable metamorphic evolution across the Alpine domains, spanning from the Devonian to early Permian times. Eclogite and HP granulite facies conditions characterized by geothermal gradients typical of subduction zones occurred in the Penninic and eastern Austroalpine domains during the Devonian period and in the Helvetic–Dauphinois–Provençal and central Austroalpine domains during late Devonian–late Carboniferous time. From the Carboniferous to Permian periods, Barrovian metamorphic field gradients, typical of continental collision, were established in all the Alpine domains.
This metamorphic distribution suggests a pre-Alpine burial of oceanic and continental crust at convergent plate margins, during one or successive oceanic closures. In the single subduction scenario, a diachronic oceanic subduction started from the east and moved westward. In the other scenario, the Devonian subduction of the older ocean was recorded via rocks in the Penninic and eastern Austroalpine domains of the Alps, and the successive Carboniferous subduction of the Saxothuringian ocean was recorded via rocks in the central Austroalpine and Helvetic–Dauphinois–Provençal domains. In either case, the distribution of geothermal gradients from Devonian to Triassic times agree with a sequence of events that starts with subduction, continues with continental collision, and ends with the continental extension that resulted in the Pangea breakup. Whatever the preferred scenario, this review shows that subduction-related metamorphic relicts indicate the occurrence of a Variscan suture in the Alpine domain, and this cannot be neglected in the definition of the tectonic evolution of the European Variscides.

Author Contributions

Conceptualization, M.R. and M.I.S.; methodology, M.R. and M.I.S.; validation, M.R., M.I.S., M.F., J.-M.L., G.R., A.R., D.Z., M.Z. and G.G.; formal analysis, M.R. and M.I.S.; investigation, M.R., M.I.S., M.F., J.-M.L., G.R., A.R., D.Z., M.Z. and G.G.; resources, M.R., M.I.S., M.F., J.-M.L., G.R., A.R., D.Z., M.Z. and G.G.; data curation, M.R., M.I.S. and A.R.; writing—original draft preparation, M.R. and M.I.S.; visualization, M.R.; supervision, M.R., M.I.S., M.F., J.-M.L., G.R., A.R., D.Z., M.Z. and G.G.; funding acquisition, M.R., M.I.S., D.Z. and M.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Piano di sostegno alla ricerca: linea 2, azione A, anno 2021, grant number MRODA-PSR2021.

Data Availability Statement

All data used for this article are present in the tables, figures, and Appendix A of the manuscript.

Acknowledgments

The editor and two anonymous reviewers are gratefully acknowledged for their highly constructive criticism of the text.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Figure A1. (A) Alpine domains, tectonic units and zone, and (B) reference coding of collected samples of Table 1, Table 2, Table 3 and Table 4.
Figure A1. (A) Alpine domains, tectonic units and zone, and (B) reference coding of collected samples of Table 1, Table 2, Table 3 and Table 4.
Geosciences 13 00300 g0a1

References

  1. Matte, P. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 1986, 126, 329–374. [Google Scholar] [CrossRef]
  2. Ledru, P.; Lardeaux, J.M.; Santallier, D.; Autran, A.; Quenardel, J.M.; Floc’h, J.P.; Lerouge, G.; Maillet, N.; Marchand, J.; Ploquin, A. Ou sont les nappes dans le massif central francais? Bull. Soc. Geol. Fr. 1989, V, 605–618. [Google Scholar] [CrossRef]
  3. Oliver, G.J.H.; Corfu, F.; Krogh, T.E. U-Pb ages from SW Poland: Evidence for a Caledonian suture zone between Baltica and Gondwana. J. Geol. Soc. 1993, 150, 355–369. [Google Scholar] [CrossRef]
  4. Finger, F.; von Quadt, A. U-Pb ages of zircons from a plagiogranite-gneiss in the southeastern Bohemian massif, Austria: Further evidence for an important early Paleozoic rifting episode in the eastern Variscides. Schweiz. Mineral. Und Petrogr. Mitteilungen 1995, 75, 265–270. [Google Scholar]
  5. Faure, M.; Leloix, C.; Roig, J.Y. Polycyclic evolution of the Hercynian belt; [L’évolution polycyclique de la chaîne hercynienne]. Bull. Soc. Geol. Fr. 1997, 168, 695–705. [Google Scholar]
  6. Michard, A.; Goffé, B.; Bouybaouene, M.; Saddiqi, O. Late Hercynian–Mesozoic thinning in the Alboran domain: Metamorphic data from the northern Rif, Morocco. Terra Nova 1997, 9, 171–174. [Google Scholar] [CrossRef]
  7. Tait, J.A.; Bachtadse, V.; Franke, W.; Soffel, H.C. Geodynamic evolution of the European Variscan fold belt: Palaeomagnetic and geological constraints. Geol. Rundsch. 1997, 86, 585. [Google Scholar] [CrossRef]
  8. Torsvik, T.H. Palaeozoic palaeogeography: A North Atlantic viewpoint. GFF 1998, 120, 109–118. [Google Scholar] [CrossRef]
  9. Matte, P. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 2001, 13, 122–128. [Google Scholar] [CrossRef]
  10. von Raumer, J.; Stampfli, G.; Borel, G.; Bussy, F. Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int. J. Earth Sci. 2002, 91, 35–52. [Google Scholar] [CrossRef]
  11. Faure, M.; Lardeaux, J.M.; Ledru, P. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geosci. 2009, 341, 202–213. [Google Scholar] [CrossRef]
  12. Martín-Algarra, A.; Mazzoli, S.; Perrone, V.; Rodríguez-Cañero, R.; Navas-Parejo, P. Variscan Tectonics in the Malaguide Complex (Betic Cordillera, Southern Spain): Stratigraphic and Structural Alpine versus Pre-Alpine Constraints from the Ardales Area (Province of Malaga). I. Stratigraphy. J. Geol. 2009, 117, 241–262. [Google Scholar] [CrossRef]
  13. Kroner, U.; Romer, R. Two plates—Many subduction zones: The Variscan orogeny reconsidered. Gondwana Res. 2013, 24, 298–329. [Google Scholar] [CrossRef]
  14. Stampfli, G.; Hochard, C.; Vérard, C.; Wilhem, C.; von Raumer, J.F. The formation of Pangea. Tectonophysics 2013, 593, 1–19. [Google Scholar] [CrossRef]
  15. Ballèvre, M.; Martínez Catalán, J.R.; ópez-Carmona, A.; Pitra, P.; Abati, J.; Fernández, R.D.; Ducassou, C.; Arenas, R.; Bosse, V.; Castiñeiras, P.; et al. Correlation of the Nappe Stack in the Ibero-Armorican Arc across the Bay of Biscay: A Joint French–Spanish Project; Geological Society, Special Publications: London, UK, 2014; Volume 405, pp. 77–113. [Google Scholar] [CrossRef]
  16. Lardeaux, J.M. Deciphering orogeny: A metamorphic perspective Examples from European Alpine and Variscan belts: Part II: Variscan metamorphism in the French Massif Centra—A review. Bull. Soc. Geol. Fr. 2014, 185, 281–310. [Google Scholar] [CrossRef]
  17. Franke, W.; Cocks, L.R.M.; Torsvik, T.H. The Palaeozoic Variscan oceans revisited. Gondwana Res. 2017, 48, 257–284. [Google Scholar] [CrossRef]
  18. Martínez Catalán, J.R.; Schulmann, K.; Ghienne, J.F. The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth-Sci. Rev. 2021, 220, 103700. [Google Scholar] [CrossRef]
  19. Schulmann, K.; Edel, J.B.; Martínez Catalán, J.R.; Mazur, S.; Guy, A.; Lardeaux, J.M.; Ayarza, P.; Palomeras, I. Tectonic evolution and global crustal architecture of the European Variscan belt constrained by geophysical data. Earth-Sci. Rev. 2022, 234, 104195. [Google Scholar] [CrossRef]
  20. Lardeaux, J.M. Metamorphism and linked deformation in understanding tectonic processes at varied scales. Comptes Rendus. Geosci. 2023, 356, 1–25. [Google Scholar] [CrossRef]
  21. von Raumer, J.F.; Neubauer, F. Late Precambrian and Palaeozoic Evolution of the Alpine Basement—An Overview. In Pre-Mesozoic Geology in the Alps; von Raumer, J.F., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 625–639. [Google Scholar] [CrossRef]
  22. von Raumer, J.F.; Stampfli, G.M.; Bussy, F. Gondwana-derived microcontinents—The constituents of the Variscan and Alpine collisional orogens. Tectonophysics 2003, 365, 7–22. [Google Scholar] [CrossRef]
  23. Guillot, S.; di Paola, S.; Ménot, R.P.; Ledru, P.; Spalla, M.I.; Gosso, G.; Schwartz, S. Suture zones and importance of strike-slip faulting for Variscan geodynamic reconstructions of the External Crystalline Massifs of the western Alps. Bull. Soc. Geol. Fr. 2009, 180, 483–500. [Google Scholar] [CrossRef]
  24. Compagnoni, R.; Ferrando, S.; Lombardo, B.; Radulesco, N.; Rubatto, D. Paleo-European crust of the Italian Western Alps: Geological history of the Argentera Massif and comparison with Mont Blanc-Aiguilles Rouges and Maures-Tanneron Massifs. J. Virtual Explor. 2010, 36, 228. [Google Scholar] [CrossRef]
  25. Spiess, R.; Cesare, B.; Mazzoli, C.; Sassi, R.; Sassi, F.P. The crystalline basement of the Adria microplate in the eastern Alps: A review of the palaeostructural evolution from the Neoproterozoic to the Cenozoic. Rend. Lincei 2010, 21, 31–50. [Google Scholar] [CrossRef]
  26. von Raumer, J.F.; Bussy, F.; Schaltegger, U.; Schulz, B.; Stampfli, G.M. Pre-Mesozoic Alpine basements-Their place in the European Paleozoic framework. Geol. Soc. Am. Bull. 2013, 125, 89–108. [Google Scholar] [CrossRef]
  27. Faure, M.; Ferrière, J. Reconstructing the Variscan Terranes in the Alpine Basement: Facts and Arguments for an Alpidic Orocline. Geosciences 2022, 12, 65. [Google Scholar] [CrossRef]
  28. Neubauer, F.; Liu, Y.; Dong, Y.; Chang, R.; Genser, J.; Yuan, S. Pre-Alpine tectonic evolution of the Eastern Alps: From Prototethys to Paleotethys. Earth-Sci. Rev. 2022, 226, 103923. [Google Scholar] [CrossRef]
  29. Rutland, R.W.R. Andean orogeny and ocean floor spreading. Nature 1971, 233, 252–255. [Google Scholar] [CrossRef]
  30. von Huene, R.; Scholl, D.W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 1991, 29, 279–316. [Google Scholar] [CrossRef]
  31. Stern, C.R. The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Res. 2020, 88, 220–249. [Google Scholar] [CrossRef]
  32. Roda, M.; Zucali, M.; Regorda, A.; Spalla, M.I. Formation and evolution of a subduction-related mélange: The example of the Rocca Canavese Thrust Sheets (Western Alps). GSA Bull. 2020, 132, 884–896. [Google Scholar] [CrossRef]
  33. Termier, P. A la Gloire de la Terre, 8th ed.; Desclée De Brouwer et Cie: Paris, France, 1922; p. 425. [Google Scholar]
  34. Spalla, M.I.; Marotta, A.M. P-T evolutions vs. numerical modelling: A key to unravel the Paleozoic to early-Mesozoic tectonic evolution of the Alpine area. Period. Mineral. 2007, 76, 267–308. [Google Scholar] [CrossRef]
  35. Regorda, A.; Lardeaux, J.M.; Roda, M.; Marotta, A.M.; Spalla, M.I. How many subductions in the Variscan orogeny? Insights from numerical models. Geosci. Front. 2020, 11, 1025–1052. [Google Scholar] [CrossRef]
  36. Miyashiro, A. Evolution of Metamorphic Belts. J. Petrol. 1961, 2, 277–311. [Google Scholar] [CrossRef]
  37. Ernst, W.G. Metamorphic zonations on presumably subducted lithospheric plates from Japan, California and the Alps. Contrib. Mineral. Petrol. 1971, 34, 43–59. [Google Scholar] [CrossRef]
  38. Ernst, W.G. Metamorphism and Ancient Continental Margins. In The Geology of Continental Margins; Burk, C.A., Drake, C.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1974; pp. 907–919. [Google Scholar] [CrossRef]
  39. Ernst, W.G. Petrologic Phase Equilibria; W.H. Freeman and Co. Ltd.: San Francisco, CA, USA, 1976; p. 333. [Google Scholar]
  40. Ernst, W.G. Tectonics and prograde versus retrograde P-T trajectories of High-pressure metamorphic belts. Rend. Della Soc. Ital. Mineral. Petrol. 1977, 33, 191–220. [Google Scholar]
  41. England, P.C.; Richardson, S.W. The influence of erosion upon the mineral fades of rocks from different metamorphic environments. J. Geol. Soc. 1977, 134, 201–213. [Google Scholar] [CrossRef]
  42. Cloos, M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 1993, 105, 715. [Google Scholar] [CrossRef]
  43. Spear, F.S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths; Mineralogical Society of America: Washington, DC, USA, 1993; p. 799. [Google Scholar]
  44. Kornprobst, J. Metamorphic Rocks and Their Geodynamic Significance. Petrology and Structural Geology, 1st ed.; Springer: Dordrecht, The Netherlands, 2002; Volume 12, p. 206. [Google Scholar] [CrossRef]
  45. Royden, L.; Horváth, F.; Nagymarosy, A.; Stegena, L. Evolution of the Pannonian Basin System: 2. Subsidence and thermal history. Tectonics 1983, 2, 91–137. [Google Scholar] [CrossRef]
  46. Cavazza, W.; Wezel, F.C. The Mediterranean region—A geological primer. Episodes 2003, 26, 160–168. [Google Scholar] [CrossRef]
  47. Dal Piaz, G.V. The Italian Alps: A journey across two centuries of Alpine geology. J. Virtual Explor. 2010, 36, 8. [Google Scholar] [CrossRef]
  48. Gosso, G.; Lardeaux, J.M.; Zanoni, D.; Volante, S.; Corsini, M.; Bersezio, R.; Mascle, J.; Spaggiari, L.; Spalla, M.I.; Zucali, M.; et al. Mapping the progressive geologic history at the junction of the Alpine Mountain Belt and the Western Mediterranean Ocean. Ofioliti 2019, 44, 97–110. [Google Scholar]
  49. Polino, R.; Dal Piaz, G.V.; Gosso, G. Tectonic erosion at the Adria margin and accretionary processes for the Cretaceous orogeny of the Alps. Mem. Soc. Geol. Fr. 1990, 156, 345–367. [Google Scholar]
  50. Pfiffner, A.; Lehner, P.; Heitzman, P.; Mueller, S.; Steck, A. Deep Structure of the Swiss Alps—Results from NFP 20; Birkhäuser: Basel, Switzerland, 1997; p. 330. [Google Scholar]
  51. Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
  52. Brack, P. Structures in the southwestern border of the Adamello intrusion (Alpi Bresciane, Italy). Schweiz. Mineral. Und Petrogr. Mitteilungen 1981, 61, 37–50. [Google Scholar] [CrossRef]
  53. Crespi, R.; Liborio, G.; Mottana, A. Metamorfismo tardo-alpino di grado bassissimo nel basamento a sud della Linea Insubrica. Rend. Della Soc. Ital. Mineral. Petrol. 1981, 37, 813–824. [Google Scholar]
  54. Filippi, M.; Zanoni, D.; Rebay, G.; Roda, M.; Regorda, A.; Lardeaux, J.M.; Spalla, M.I. Quantification of Alpine Metamorphism in the Edolo Diabase, Central Southern Alps. Geosciences 2022, 12, 312. [Google Scholar] [CrossRef]
  55. Roure, F.; Heitzman, P.; Polino, R. Deep Structure of the Alps; Volume speciale della Società Geologica Italiana: Roma, Italy, 1990; p. 367. [Google Scholar]
  56. Spalla, M.I.; Lardeaux, J.M.; Dal Piaz, G.V.; Gosso, G.; Messiga, B. Tectonic significance of Alpine eclogites. J. Geodyn. 1996, 21, 257–285. [Google Scholar] [CrossRef]
  57. Handy, M.R.; Oberhänsli, R. Explanatory notes to the map: Metamorphic structure of the Alps age map of the metamorphic structure of the Alps—Tectonic interpretation and outstanding problem. Mitt. Österr. Miner. Ges. 2004, 149, 201–225. [Google Scholar]
  58. Berger, A.; Bousquet, R. Subduction-Related Metamorphism in the Alps: Review of Isotopic Ages Based on Petrology and their Geodynamic Consequences; Geological Society Special Publications: London, UK, 2008; Volume 298, pp. 117–144. [Google Scholar] [CrossRef]
  59. Platt, J.P. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol. Soc. Am. Bull. 1986, 97, 1037. [Google Scholar] [CrossRef]
  60. Roda, M.; Spalla, M.I.; Marotta, A.M. Integration of natural data within a numerical model of ablative subduction: A possible interpretation for the Alpine dynamics of the Austroalpine crust. J. Metamorph. Geol. 2012, 30, 973–996. [Google Scholar] [CrossRef]
  61. Spalla, M.I.; Zanoni, D.; Marotta, A.M.; Rebay, G.; Roda, M.; Zucali, M.; Gosso, G. The Transition from Variscan Collision to Continental Break-Up in the Alps: Insights from the Comparison between Natural Data and Numerical Model Predictions; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 363–400. [Google Scholar] [CrossRef]
  62. Roda, M.; Regorda, A.; Spalla, M.I.; Marotta, A.M. What drives Alpine Tethys opening? Clues from the review of geological data and model predictions. Geol. J. 2019, 54, 2646–2664. [Google Scholar] [CrossRef]
  63. Schulmann, K.; Catalán, J.R.M.; Lardeaux, J.M.; Janoušek, V.; Oggiano, G. The Variscan orogeny: Extent, timescale and the formation of the European crust. Geol. Soc. Spec. Publ. 2014, 405, 1–6. [Google Scholar] [CrossRef]
  64. Wennekers, J. The structure of the Bergamo Alps compared with that of the North-West Highlands of Scotland. Leidse Geol. Meded. 1931, 4, 83–93. [Google Scholar]
  65. de Sitter, L.U.; de Sitter-Koomans, C. The Geology of the Bergamasc Alps Lombardia Italy. Leidse Geol. Meded. 1949, 14, 1–257. [Google Scholar]
  66. Gaetani, M.; Jadoul, F. The structure of Bergamasc Alps. Atti dell’Accademia Naz. Dei Lincei 1979, 66, 411–416. [Google Scholar]
  67. Laubscher, H.P. Large-scale, thin-skinned thrusting in the southern Alps: Kinematic models. Geol. Soc. Am. Bull. 1985, 96, 710. [Google Scholar] [CrossRef]
  68. Cassinis, G.; Dal Piaz, G.; Eusebio, A.; Gosso, G.; Martinotti, G.; Massari, F.; Milano, P.; Pennacchioni, G.; Perello, M.; Pessina, C.; et al. Report on a structural and sedimentological analysis in the Uranium Province of the Orobic Alps. Uranium 1986, 2, 241–260. [Google Scholar]
  69. Milano, P.F.; Pennacchioni, G.; Spalla, M.I. Alpine and pre-Alpine tectonics in the Central Orobic Alps (Southern Alps). Eclogae Geol. Helv. 1988, 81, 273–293. [Google Scholar]
  70. Carminati, E.; Siletto, G.B.; Battaglia, D. Thrust kinematics and internal deformation in basement-involved fold and thrust belts: The eastern Orobic Alps case (Central Southern Alps, northern Italy). Tectonics 1997, 16, 259–271. [Google Scholar] [CrossRef]
  71. Spalla, M.I.; Gosso, G. Pre-Alpine tectonometamorphic units in the Central Southern Alps: Structural and metamorphic memory. Mem. Sci. Geol. 1999, 51, 221–229. [Google Scholar]
  72. Rebay, G.; Maroni, M.; Siletto, G.B.; Spalla, M.I. Superposed syn-metamorphic structures of the Alpine and pre-Alpine convergent cycles in the Southalpine basement of the Orobic Alps (Northern Italy). J. Maps 2015, 11, 168–180. [Google Scholar] [CrossRef]
  73. Zanchetta, S.; Malusà, M.G.; Zanchi, A.M. Precollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps). Lithosphere 2015, 7, L466.1. [Google Scholar] [CrossRef]
  74. Ewing, T.; Hermann, J.; Rubatto, D. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib. Mineral. Petrol. 2013, 165, 757–779. [Google Scholar] [CrossRef]
  75. Real, C.; Fassmer, K.; Carosi, R.; Froitzheim, N.; Rubatto, D.; Groppo, C.; Münker, C.; Ferrando, S. Carboniferous-Triassic tectonic and thermal evolution of the middle crust section of the Dervio-Olgiasca Zone (Southern Alps). J. Metamorph. Geol. 2023, 41, 685–718. [Google Scholar] [CrossRef]
  76. McDowell, F.W. Potassium-Argon Ages from the Ceneri Zone, Southern Swiss Alps. Contrib. Mineral. Petrol. 1970, 28, 165–182. [Google Scholar] [CrossRef]
  77. di Paola, S.; Spalla, M.I.; Gosso, G. New structural mapping and metamorphic evolution of the Domaso-Cortafò Zone (Southern Alps—Lake Como). Mem. Sci. Geol. 2001, 53, 1–4. [Google Scholar]
  78. Origoni Giobbi, E.; Gregnanin, A. The crystalline basement of the “Massiccio delle Tre Valli Bresciane”: New petrographic and chemical data. Mem. Della Soc. Geol. Ital. 1983, 26, 133–144. [Google Scholar]
  79. Riklin, K. Kontaktmetamorphose Permischer Sandsteine im Adamello-Massiv. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 1983. [Google Scholar]
  80. Spalla, M.I.; Zanoni, D.; Gosso, G.; Zucali, M. Deciphering the geologic memory of a Permian conglomerate of the Southern Alps by pebble P–T estimates. Int. J. Earth Sci. 2009, 98, 203–226. [Google Scholar] [CrossRef]
  81. Filippi, M.; Spalla, M.I.; Pigazzini, N.; Diella, V.; Lardeaux, J.M.; Zanoni, D. Cld-St-And-Bearing Assemblages in the Central Southalpine Basement: Markers of an Evolving Thermal Regime during Variscan Convergence. Minerals 2021, 11, 1124. [Google Scholar] [CrossRef]
  82. Zanoni, D.; Spalla, M.I.; Gosso, G. Vestiges of lost tectonic units in conglomerate pebbles? A test in Permian sequences of the Southalpine Orobic Alps. Geol. Mag. 2010, 147, 98–122. [Google Scholar] [CrossRef]
  83. Zanoni, D.; Spalla, M.I. The Variscan evolution in the basement cobbles of the Permian Ponteranica Formation by microstructural and petrologic analysis. Ital. J. Geosci. 2018, 137, 254–271. [Google Scholar] [CrossRef]
  84. Boriani, A.C.; Villa, I.M. Geochronology of regional metamorphism in the Ivrea-Verbano Zone and Serie dei Laghi, Italian Alps. Schweiz. Mineral. Und Petrogr. Mitteilungen 1997, 77, 381–401. [Google Scholar] [CrossRef]
  85. Boriani, A.; Giobbi Origoni, E. Does the basement of western souther Alps display a tilted section through the continental crust? A review and discussion. Period. Mineral. 2004, 73, 5–22. [Google Scholar]
  86. Boriani, A.; Burlini, L.; Sacchi, R. The Cossato-Mergozzo-Brissago Line and the Pogallo Line (Southern Alps, Northern Italy) and their relationships with the late-Hercynian magmatic and metamorphic events. Tectonophysics 1990, 182, 91–102. [Google Scholar] [CrossRef]
  87. Borghi, A. Structural evolution of the north-eastern sector of the Serie dei Laghi (Southern Alps). Boll. Della Soc. Geol. Ital. 1991, 110, 639–647. [Google Scholar]
  88. Sassi, F.; Cesare, B.; Mazzoli, C.; Peruzzo, L.; Sassi, R.; Spiess, R. The crystalline basements of the Italian Eastern Alps: A review of the metamorphic features. Period. Mineral. 2004, 73, 23–42. [Google Scholar]
  89. Sassi, R.; Venturini, C.; Akrai, P. The boundary between the metamorphic and non- to anchi-metamorphic domains in the Southalpine basement s.l. of the eastern southern Alps: A review. Period. Mineral. 2004, 73, 131–143. [Google Scholar]
  90. von Raumer, J. The Palaeozoic evolution in the Alps: From Gondwana to Pangea. Geol. Rundsch. 1998, 87, 407–435. [Google Scholar] [CrossRef]
  91. Desmons, J.; Compagnoni, R.; Cortesogno, L.; Frey, M.; Gaggero, L. Pre-Alpine metamorphism of the internal zone of the Western Alps. Schweiz. Mineral. Und Petrogr. Mitteilungen 1999, 79, 23–39. [Google Scholar]
  92. Miller, C.; Thöni, M. Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): Geochemistry and Sm-Nd vs. Rb-Sr isotope systematics. Chem. Geol. 1995, 122, 199–225. [Google Scholar] [CrossRef]
  93. Gosso, G.; Spalla, M.I.; Messiga, B. Dumorterite-Kyanite relicts within the HT-LP country rocks of the Sondalo gabbro: A record of extension related to uplift of HP-rocks. In Proceedings of the IOS International Ophiolite Symposium, Pavia, Italy, 18–23 September 1995; p. 55. [Google Scholar]
  94. Godard, G.; Martin, S.; Prosser, G.; Kienast, J.; Morten, L. Variscan migmatites, eclogites and garnet-peridotites of the Ulten zone, Eastern Austroalpine system. Tectonophysics 1996, 259, 313–341. [Google Scholar] [CrossRef]
  95. Zucali, M. La Correlazione nei Terreni Metamorfici: Due Esempi dall’Austroalpino Occidentale (Zona Sesia-Lanzo) e Centrale (Falda Languard-Campo/Serie del Tonale). Ph.D. Thesis, Università degli Studi di Milano, Milano, Italy, 2001. [Google Scholar]
  96. Morten, L.; Nimis, P.; Rampone, E. Records of mantle–crust exchange processes during continental subduction–exhumation in the Nonsberg–Ultental garnet peridotites (eastern Alps). A review. Period. Mineral. 2004, 73, 119–129. [Google Scholar]
  97. Konzett, J.; Miller, C.; Armstrong, R.; Thöni, M. Metamorphic Evolution of Iron-rich Mafic Cumulates from the Oeztal-Stubai Crystalline Complex, Eastern Alps, Austria. J. Petrol. 2004, 46, 717–747. [Google Scholar] [CrossRef]
  98. Roda, M.; Zucali, M.; Li, Z.X.; Spalla, M.I.; Yao, W. Pre-Alpine contrasting tectono-metamorphic evolutions within the Southern Steep Belt, Central Alps. Lithos 2018, 310–311, 31–49. [Google Scholar] [CrossRef]
  99. Schweinehage, R.; Massone, H.J. Geochemistry and metamorphic evolution of metabasites from Silvretta nappe, Eastern Alps. Mem. Sci. Geol. 1999, 51, 191–203. [Google Scholar]
  100. Andreatta, C. La formazione gneissico-kinzigitica e le oliviniti di Val d’Ultimo (Alto Adige). Mem. Mus. Stor. Natturale Venezia Tridentina 1935, 3, 1–160. [Google Scholar]
  101. Herzberg, C.; Riccio, L.; Chiesa, S.; Fornoni, A.; Gatto, G.O.; Gregnanin, A.; Piccrillo, E.M.; Scolari. Petrogenetic evolution of a spinel-garnet-lherzolite in the Austridic crystalline basement from Val di Clapa. Cons. Naz. Delle Ric. Mem. dell’Instituto Geol. Mineral. Padova 1977, 30, 3–28. [Google Scholar]
  102. Tumiati, S.; Thöni, M.; Nimis, P.; Martin, S.; Mair, V. Mantle–crust interactions during Variscan subduction in the Eastern Alps (Nonsberg–Ulten zone): Geochronology and new petrological constraints. Earth Planet. Sci. Lett. 2003, 210, 509–526. [Google Scholar] [CrossRef]
  103. Thélin, P.; Sartori, M.; Burri, M.; Gouffon, Y.; Chessex, R. The Pre-Alpine Basement of the Briançonnais (Wallis, Switzerland). In Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 297–315. [Google Scholar] [CrossRef]
  104. Desmons, J.; Mercier, D. Passing through the Briançon zone. In Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 279–296. [Google Scholar]
  105. Boriani, A.; Dal Piaz, G.; Hunziker, J.; von Raumer, J.F.; Sassi, F. Caratteri, distribuzione ed età del metamorfismo pre-Alpino nelle Alpi. Mem. Della Soc. Geol. Ital. 1974, 13, 165–225. [Google Scholar]
  106. Frisch, W.; Ménot, R.P.; Neubauer, F.; von Raumer, J. Correlation and evolution of the Alpine basement. Schweiz. Mineral. Und Petrogr. Mitteilungen 1990, 70, 265–285. [Google Scholar]
  107. Dal Piaz, G. Evolution of Austro-Alpine and Upper Penninic Basement in the Northwestern Alps from Variscan Convergence to Post-Variscan Extension. In Pre-Mesozoic Geology in the Alps; Raumer, J.F., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 327–344. [Google Scholar] [CrossRef]
  108. Bergomi, M.A.; Dal Piaz, G.; Malusà, M.G.; Monopoli, B.; Tunesi, A. The Grand St Bernard-Briançonnais Nappe System and the Paleozoic Inheritance of the Western Alps Unraveled by Zircon U-Pb Dating. Tectonics 2017, 36, 2950–2972. [Google Scholar] [CrossRef]
  109. Thélin, P.; Sartori, M.; Lengeler, R.; Schaerer, J.P. Eclogites of Paleozoic or early Alpine age in the basement of the Penninic Siviez-Mischabel nappe, Wallis, Switzerland. Lithos 1990, 25, 71–88. [Google Scholar] [CrossRef]
  110. Bussy, F.; Sartori, M.; Thélin, P. U-Pb zircon dating in the middle Penninic basement of the Western Alps (Valais, Switzerland). Schweiz. Mineral. Und Petrogr. Mitteilungen 1996, 76, 81–84. [Google Scholar] [CrossRef]
  111. Borghi, A.; Gattiglio, M.; Mondino, F.; Zaccone, G. Structural and metamorphic evidence of pre-Alpine basement in the Ambin nappe (Cottian Alps, Italy). Mem. Della Soc. Geol. Ital. 1999, 51, 205–220. [Google Scholar]
  112. Giorgis, D.; Thélin, P.; Stampfli, G.M.; Bussy, F. The Mont-Mort metapelites: Variscan metamorphism and geodynamic context (Briançonnais basement, Western Alps, Swizerland). Schweiz. Mineral. Und Petrogr. Mitteilungen 1999, 79, 381–398. [Google Scholar] [CrossRef]
  113. Droop, G.T.R. Pre-Alpine eclogites in the Pennine Basement Complex of the Eastern Alps. J. Metamorph. Geol. 1983, 1, 3–12. [Google Scholar] [CrossRef]
  114. Zimmermann, V.R.; Franz, G. Die eklogite der Unteren schieferhülle; Frosnitztal/Südvenediger (Tauern, Oesterreich). Mittelungen Der Oestereichischen Geol. Ges. 1989, 81, 167–188. [Google Scholar]
  115. Droop, G.T.R.; Lombardo, B.; Pognante, U. Formation and distribution of eclogite facies rocks in the Alps. In Eclogite Facies Rocks; Carswell, D.A., Ed.; Blackie: Glasgow, UK, 1990; pp. 225–259. [Google Scholar]
  116. Messiga, B.; Tribuzio, R.; Caucia, F. Amphibole evolution in Variscan eclogite-amphibolites from the Savona crystalline massif (Western Ligurian Alps, Italy): Controls on the decompressional P-T-t path. Lithos 1991, 27, 215–230. [Google Scholar]
  117. von Quadt, A.; Günther, D.; Frischknecht, R. The evolution of pre-Variscan ecloogites of the Tauern Window (Eastern Alps): A Sm/Nd-, conventional and Laser ICP-MS zircon U-Pb study. Schweiz. Mineral. Und Petrogr. Mitteilungen 1997, 77, 265–279. [Google Scholar] [CrossRef]
  118. Nussbaum, C.; Marquer, D.; Biino, G.G. Two subduction events in a polycyclic basement: Alpine and pre-Alpine high-pressure metamorphism in the Suretta nappe, Swiss Eastern Alps. J. Metamorph. Geol. 1998, 16, 591–605. [Google Scholar] [CrossRef]
  119. Dale, J.; Holland, T.J.B. Geothermobarometry, P-T paths and metamorphic field gradients of high-pressure rocks from the Adula Nappe, Central Alps. J. Metamorph. Geol. 2003, 21, 813–829. [Google Scholar] [CrossRef]
  120. Giacomini, F.; Braga, R.; Tiepolo, M.; Tribuzio, R. New constraints on the origin and age of Variscan eclogitic rocks (Ligurian Alps, Italy). Contrib. Mineral. Petrol. 2007, 153, 29–53. [Google Scholar] [CrossRef]
  121. Liati, A.; Gebauer, D.; Fanning, C. Geochronological evolution of HP metamorphic rocks of the Adula nappe, Central Alps, in pre-Alpine and Alpine subduction cycles. J. Geol. Soc. 2009, 166, 797–810. [Google Scholar] [CrossRef]
  122. Maino, M.; Dallagiovanna, G.; Gaggero, L.; Seno, S.; Tiepolo, M. U-Pb zircon geochronological and petrographic constraints on late to post-collisional Variscan magmatism and metamorphism in the Ligurian Alps, Italy. Geol. J. 2012, 47, 632–652. [Google Scholar] [CrossRef]
  123. Schaltegger, U. Unravelling the pre-Mesozoic history of Aar and Gotthard massifs (Central Alps) by isotopic dating: A review. Schweiz. Mineral. Petrogr. Mitteilungen 1994, 74, 41–51. [Google Scholar] [CrossRef]
  124. von Raumer, J.; Abrecht, J.; Bussy, F.; Lombardo, B.; Ménot, R.; Schaltegger, U. The Paleozoic metamorphic evolution of the Alpine External Massifs. Schweiz. Mineral. Petrogr. Mitteilungen 1999, 79, 5–22. [Google Scholar]
  125. von Raumer, J.; Bussy, F. Mont Blanc and Aiguilles-Rouges: Geology of their polymetamorphic basement (External massifs, France- Switzerland). Mem. Geol. Lausanne 2004, 42, 1–203. [Google Scholar]
  126. Jacob, J.; Guillot, S.; Rubatto, D.; Janots, E.; Melleton, J.; Faure, M. Carboniferous high-P metamorphism and deformation in the Belledonne Massif (Western Alps). J. Metamorph. Geol. 2021, 39, 1009–1044. [Google Scholar] [CrossRef]
  127. Vanardois, J.; Roger, F.; Trap, P.; Goncalves, P.; Lanari, P.; Paquette, J.; Marquer, D.; Cagnard, F.; Le Bayon, B.; Melleton, J.; et al. Exhumation of deep continental crust in a transpressive regime: The example of Variscan eclogites from the Aiguilles-Rouges massif (Western Alps). J. Metamorph. Geol. 2022, 40, 1087–1120. [Google Scholar] [CrossRef]
  128. Corsini, M.; Ruffet, G.; Caby, R. Alpine and late-hercynian geochronological constraints in the Argentera Massif (Western Alps). Eclogae Geol. Helv. 2004, 97, 3–15. [Google Scholar] [CrossRef]
  129. Sanchez, G.; Rolland, Y.; Schneider, J.; Corsini, M.; Oliot, E.; Goncalves, P.; Verati, C.; Lardeaux, J.M.; Marquer, D. Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour Massif (SW Alps). Lithos 2011, 125, 521–536. [Google Scholar] [CrossRef]
  130. Filippi, M.; Zanoni, D.; Gosso, G.; Lardeaux, J.M.; Verati, C.; Spalla, M.I. Structure of lamprophyres: A discriminant marker for Variscan and Alpine tectonics in the Argentera-Mercantour Massif, Maritime Alps. BSGF—Earth Sci. Bull. 2019, 190, 12. [Google Scholar] [CrossRef]
  131. Filippi, M.; Zanoni, D.; Lardeaux, J.M.; Spalla, M.I.; Gosso, G. Evidence of Tethyan continental break-up and Alpine collision in the Argentera-Mercantour Massif, Western Alps. Lithos 2020, 372–373, 105653. [Google Scholar] [CrossRef]
  132. von Raumer, J.F. Zur Metamorphose amphibolitischer Gesteine im Altkristallin des Mont-Blanc- und Aguilles-Rouges-Massivs. Schweiz. Mineral. Und Petrogr. Mitteilungen 1974, 54, 471–488. [Google Scholar]
  133. Liégeois, J.P.; Duchesne, J.C. The Lac Cornu retrograded eclogites (Aiguilles Rouges massif, Western Alps, France): Evidence of crustal origin and metasomatic alteration. Lithos 1981, 14, 35–48. [Google Scholar] [CrossRef]
  134. Latouche, L.; Bogdanoff, S. Evolution précoce du massif de l’Argentera: Apport des eclogites et des granulites; Les massifs cristallins externs. Geol. Alp. 1987, 63, 151–164. [Google Scholar]
  135. Bogdanoff, S.; Ménot, R.; Vivier, G. Les massif cristallins externes des Alpes occidentales françaises, un fragment de la zone interne varisque. Sci. Geol. Bull. 1991, 44, 237–285. [Google Scholar] [CrossRef]
  136. Colombo, F.; Compagnoni, R.; Lombardo, B. Le rocce eclogitiche dei Laghi del Frisson (Argentera sud-orientale, Alpi Marittime). Atti Ticinesi Sci. Della Terra Ser. Spec. 1994, 1, 75–82. [Google Scholar]
  137. Ferrando, S.; Lombardo, B.; Compagnoni, R. Metamorphic history of HP mafic granulites from the Gesso-Stura Terrain (Argentera Massif, Western Alps, Italy). Eur. J. Mineral. 2008, 20, 777–790. [Google Scholar] [CrossRef]
  138. Jouffray, F.; Spalla, M.I.; Lardeaux, J.M.; Filippi, M.; Rebay, G.; Corsini, M.; Zanoni, D.; Zucali, M.; Gosso, G. Variscan eclogites from the Argentera-Mercantour Massif (External Crystalline Massifs, SW Alps): A dismembered cryptic suture zone. Int. J. Earth Sci. 2020, 109, 1273–1294. [Google Scholar] [CrossRef]
  139. Paquette, J.L.; Ballèvre, M.; Peucat, J.J.; Cornen, G. From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France). Lithos 2017, 294–295, 418–437. [Google Scholar] [CrossRef]
  140. Zucali, M.; Corti, L.; Roda, M.; Ortolano, G.; Visalli, R.; Zanoni, D. Quantitative X-ray Maps Analaysis of Composition and Microstructure of Permian High-Temperature Relicts in Acidic Rocks from the Sesia-Lanzo Zone Eclogitic Continental Crust, Western Alps. Minerals 2021, 11, 1421. [Google Scholar] [CrossRef]
  141. Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
  142. Boriani, A.; Giobbi Mancini, E.; Villa, I. Pre-Alpine ophiolites in the basement of Southern Alps: The presence of a bimodal association (LAG- Leptyno-Amphibolitic Group) in the Serie del Laghi (N-Italy, Ticino-CH). Rend. Lincei 2003, 14, 79–101. [Google Scholar] [CrossRef]
  143. Fumasoli, M. Geologie des Gebietes Nördlich und Südlich der Jorio-Tonale-Linie im Westen von Gravedona (Como, Italia). Ph.D. Thesis, ETH—Zurich, Zurich, Switzerland, 1974. [Google Scholar]
  144. di Paola, S.; Spalla, M.I. Contrasting tectonic records in pre-Alpine metabasites of the Southern Alps (lake Como, Italy). J. Geodyn. 2000, 30, 167–189. [Google Scholar] [CrossRef]
  145. Bocchio, R.; De Capitani, L.; Liborio, G.; Mottana, A.; Nicoletti, M.; Petrucciani, C. K-Ar radiometric age determinations of the South-Alpine metamorphic complex, western Orobic Alps (Italy). Neues Jahrb. Fur Mineral.—Monatshefte 1981, 7, 289–307. [Google Scholar]
  146. Mottana, A.; Nicoletti, M.; Petrucciani, C.; Liborio, G.; De Capitani, L.; Bocchio, R. Pre-alpine and alpine evolution of the South-alpine basement of the Orobic Alps. Geol. Rundsch. 1985, 74, 353–366. [Google Scholar] [CrossRef]
  147. Bertotti, G.; Siletto, G.; Spalla, M. Deformation and metamorphism associated with crustal rifting: The Permian to Liassic evolution of the Lake Lugano-Lake Como area (Southern Alps). Tectonophysics 1993, 226, 271–284. [Google Scholar] [CrossRef]
  148. Siletto, G.B.; Spalla, M.I.; Tunesi, A.; Lardeaux, J.M.; Colombo, A. Pre-Alpine Structural and Metamorphic Histories in the Orobic Southern Alps, Italy. In Pre-Mesozoic Geology in the Alps; Springer: Berlin/Heidelberg, Germany, 1993; pp. 585–598. [Google Scholar]
  149. Diella, V.; Spalla, M.I.; Tunesi, A. Contrasting thermomechanical evolutions in the Southalpine metamorphic basement of the Orobic Alps (Central Alps, Italy). J. Metamorph. Geol. 1992, 10, 203–219. [Google Scholar] [CrossRef]
  150. Spalla, M.I.; Carminati, E.; Ceriani, S.; Oliva, A.; Battaglia, D. Influence of deformation partitioning and metamorphic re-equilibration on P-T path reconstruction in the pre-Alpine basement of central Southern Alps (Northern Italy). J. Metamorph. Geol. 2001, 17, 319–336. [Google Scholar] [CrossRef]
  151. Benciolini, L.; Poli, M.E.; Visonà, D.; Zanferrari, A. Looking inside Late Variscan tectonics: Structural and metamorphic heterogeneity of the Eastern Southalpine Basement (NE Italy). Geodin. Acta 2006, 19, 17–32. [Google Scholar] [CrossRef]
  152. Zucali, M.; Manzotti, P.; Diella, V.; Pesenti, C.; Risplendente, A.; Darling, J.; Engi, M. Permian tectonometamorphic evolution of the Dent-Blanche Unit (Austroalpine domain, Western Italian Alps). Rend. Online Della Soc. Geol. Ital. 2011, 15, 133–136. [Google Scholar]
  153. Manzotti, P.; Zucali, M. The pre-Alpine tectonic history of the Austroalpine continental basement in the Valpelline unit (Western Italian Alps). Geol. Mag. 2013, 150, 153–172. [Google Scholar] [CrossRef]
  154. Kunz, B.E.; Manzotti, P.; von Niederhäusern, B.; Engi, M.; Darling, J.R.; Giuntoli, F.; Lanari, P. Permian high-temperature metamorphism in the Western Alps (NW Italy). Int. J. Earth Sci. 2018, 107, 203–229. [Google Scholar] [CrossRef]
  155. Gardien, V.; Reusser, E.; Marquer, D. Pre-Alpine metamorphic evolution of the gneisses from the Valpelline series (Western Alps, Italy). Schweiz. Mineral. Und Petrogr. Mitteilungen 1994, 74, 489–502. [Google Scholar] [CrossRef]
  156. Maggetti, M.; Galetti, G. Evolution of the Silvretta eclogites: Metamorphic and magmatic events. Schweiz. Mineral. Petrogr. Mitteilungen 1988, 68, 467–484. [Google Scholar] [CrossRef]
  157. Maggetti, M.; Flisch, M. Evolution of the Silvretta Nappe. In Pre-Mesozoic Geology in the Alps; von Raumer, J.F., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 469–484. [Google Scholar] [CrossRef]
  158. Melcher, F.; Meisel, T.; Puhl, J.; Koller, F. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: Constraints from geochemistry. Lithos 2002, 65, 69–112. [Google Scholar] [CrossRef]
  159. Ladenhauf, C.; Armstrong, R.; Konzett, J.; Miller, C. The timing of pre-Alpine high-pressure metamorphism in the Eastern Alps: Constraints from U–Pb SHRIMP dating of eclogite zircons from the Austroalpine Silvretta nappe. J. Conf. Abstr. 2001, 6, 600. [Google Scholar]
  160. Brugger, J. Les veines à andalousite du Pischahorn (Grisons, Suisse) = Andalusite veins from the Pischahorn (Grisons, Switzerland). Schweiz. Mineral. Und Petrogr. Mitteilungen 1994, 74, 191–202. [Google Scholar] [CrossRef]
  161. Giacomini, F.; Messiga, B.; Tribuzio, R.; Braga, R. The Sondalo gabbroic complex and its country rocks: New geological and petrological data. In Tuebinger Geowissenschaftliche Arbeiten. Reihe A: Geologie, Palaeontologie, Stratigraphie; Institut für Geowissenschaften: Kiel, Germany, 1999; p. 156. [Google Scholar]
  162. Tribuzio, R.; Thirwall, M.F.; Messiga, B. Petrology, mineral and isotope geochemistry of the Sondalo gabbroic complex (Central Alps, Northern Italy): Implications for the origin of post-Variscan magmatism. Contrib. Mineral. Petrol. 1999, 136, 48–62. [Google Scholar] [CrossRef]
  163. Petri, B.; Mohn, G.; Štípská, P.; Schulmann, K.; Manatschal, G. The Sondalo gabbro contact aureole (Campo unit, Eastern Alps): Implications for mid-crustal mafic magma emplacement. Contrib. Mineral. Petrol. 2016, 171, 52. [Google Scholar] [CrossRef]
  164. Gregnanin, A. Metamorphism and magmatism in the western italian Tyrol. Riv. Ital. Mineral. Petrol. 1980, 36, 49–64. [Google Scholar]
  165. Haas, R. Zur Metamorphose des Suedlichen Oetz—Talkristallins unter Besonderer Beruecksichtigung der Matscher Einheit (Vintschgau/Suedtirol). Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 1985. [Google Scholar]
  166. Thöni, M. Sm–Nd isotope systematics in garnet from different lithologies (Eastern Alps): Age results, and an evaluation of potential problems for garnet Sm–Nd chronometry. Chem. Geol. 2002, 185, 255–281. [Google Scholar] [CrossRef]
  167. Rode, S.; Rösel, D.; Schulz, B. Constraints on the Variscan P-T evolution by EMP Th-U-Pb monazite dating in the polymetamorphic Austroalpine Oetztal-Stubai basement (Eastern Alps). Z. Der Dtsch. Ges. Fur Geowiss. 2012, 163, 43–67. [Google Scholar] [CrossRef]
  168. Thöny, W.F.; Tropper, P.; Schennach, F.; Krenn, E.; Finger, F.; Kaindl, R.; Bernhard, F.; Hoinkes, G. The metamorphic evolution of migmatites from the Ötztal Complex (Tyrol, Austria) and constraints on the timing of the pre-Variscan high-T event in the Eastern Alps. Swiss J. Geosci. 2008, 101, 111–126. [Google Scholar] [CrossRef]
  169. Hoinkes, G.; Thöni, M.; Lichem, C. Metagranitoids and associated metasediments as indicators for the pre-Alpine magmatic and metamorphic evolution of the western Austroalpine Ötztal Basement (Kaunertal, Tirol). Schweiz. Mineral. Und Petrogr. Mitteilungen 1997, 77, 299–314. [Google Scholar]
  170. Schulz, B.; Krause, J.; Zimmermann, R. Electron microprobe petrochronology of monazite-bearing garnet micaschists in the Oetztal-Stubai Complex (Alpeiner Valley, Stubai). Swiss J. Geosci. 2019, 112, 597–617. [Google Scholar] [CrossRef]
  171. Hauzenberger, C.; Höller, W.; Hoinkes, G.; Kloetzli, U.; Thöni, M. Metamorphic evolution of the Austroalpine basement in the Nonsberg area, Ultental (Val d’Ultimo), Southern Tyrol. Terra Nova 1993, 5, 13. [Google Scholar]
  172. Hauzenberger, C.A.; Höller, W.; Hoinkes, G. Transition from eclogite to amphibolite-facies metamorphism in the Austroalpine Ulten Zone. Mineral. Petrol. 1996, 58, 111–130. [Google Scholar] [CrossRef]
  173. Braga, R.; Massonne, H.J.; Morten, L. An early metamorphic stage for the Variscan Ulten Zone gneiss (NE Italy): Evidence from mineral inclusions in kyanite. Mineral. Mag. 2007, 71, 691–702. [Google Scholar] [CrossRef]
  174. Langone, A.; Braga, R.; Massonne, H.J.; Tiepolo, M. Preservation of old (prograde metamorphic) U-Th-Pb ages in unshielded monazite from the high-pressure paragneisses of the Variscan Ulten Zone (Italy). Lithos 2011, 127, 68–85. [Google Scholar] [CrossRef]
  175. Tumiati, S.; Godard, G.; Martin, S.; Klötzli, U.; Monticelli, D. Fluid-controlled crustal metasomatism within a high-pressure subducted mélange (Mt. Hochwart, Eastern Italian Alps). Lithos 2007, 94, 148–167. [Google Scholar] [CrossRef]
  176. Krenn, E.; Schulz, B.; Finger, F. Three generations of monazite in Austroalpine basement rocks to the south of the Tauern Window: Evidence for Variscan, Permian and Eo-Alpine metamorphic events. Swiss J. Geosci. 2012, 105, 343–360. [Google Scholar] [CrossRef]
  177. Hauke, M.; Froitzheim, N.; Nagel, T.J.; Miladinova, I.; Fassmer, K.; Fonseca, R.O.C.; Sprung, P.; Münker, C. Two high-pressure metamorphic events, Variscan and Alpine, dated by Lu–Hf in an eclogite complex of the Austroalpine nappes (Schobergruppe, Austria). Int. J. Earth Sci. 2019, 108, 1317–1331. [Google Scholar] [CrossRef]
  178. Faryad, S.W.; Melcher, F.; Hoinkes, G.; Puhl, J.; Meisel, T.; Frank, W. Relics of eclogite facies metamorphism in the Austroalpine basement, Hochgroessen (Speik complex), Austria. Mineral. Petrol. 2002, 74, 49–73. [Google Scholar]
  179. Faryad, S.W.; Hoinkes, G. P-T gradient of Eo-Alpine metamorphism within the Austroalpine basement units east of the Tauern Window (Austria). Mineral. Petrol. 2003, 77, 129–159. [Google Scholar] [CrossRef]
  180. Schermaier, A.; Haunschmid, B.; Finger, F. Distribution of Variscan I- and S-type granites in the Eastern Alps: A possible clue to unravel pre-Alpine basement structures. Tectonophysics 1997, 272, 315–333. [Google Scholar] [CrossRef]
  181. Schulz, B. Polymetamorphism in garnet micaschists of the Saualpe Eclogite Unit (Eastern Alps, Austria), resolved by automated SEM methods and EMP-Th-U-Pb monazite dating. J. Metamorph. Geol. 2017, 35, 141–163. [Google Scholar] [CrossRef]
  182. Nagy, G.; Draganits, E.; Demény, A.; Pantó, G.; Árkai, P. Genesis and transformations of monazite, florencite and rhabdophane during medium grade metamorphism: Examples from the Sopron Hills, Eastern Alps. Chem. Geol. 2002, 191, 25–46. [Google Scholar] [CrossRef]
  183. Monié, P. Preservation of Hercynian 40Ar/39Ar ages through high-pressure low-temperature Alpine metamorphism in the Western Alps. Eur. J. Mineral. 1990, 2, 343–361. [Google Scholar] [CrossRef]
  184. Nosenzo, F.; Manzotti, P.; Poujol, M.; Ballèvre, M.; Langlade, J. A window into an older orogenic cycle: P-T conditions and timing of the pre-Alpine history of the Dora-Maira Massif (Western Alps). J. Metamorph. Geol. 2022, 40, 789–821. [Google Scholar] [CrossRef]
  185. Le Bayon, B.; Pitra, P.; Ballèvre, M.; Bohn, M. Reconstructing P-T paths during continental collision using multi-stage garnet (Gran Paradiso nappe, Western Alps). J. Metamorph. Geol. 2006, 24, 477–496. [Google Scholar] [CrossRef]
  186. Gasco, I.; Gattiglio, M. Geological map of the middle Orco Valley, Western Italian Alps. J. Maps 2011, 7, 463–477. [Google Scholar] [CrossRef]
  187. Rubatto, D.; Ferrando, S.; Compagnoni, R.; Lombardo, B. Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy), Southern European Variscan belt. Lithos 2010, 116, 65–76. [Google Scholar] [CrossRef]
  188. Le Fort, P. Geologie du Haut-Dauphine Cristallin (Alpes Française): Etudes Petrologique et Structurale de la Partie Occidentale. Ph.D. Thesis, Université Nancy, Nancy, France, 1973. [Google Scholar]
  189. Guillot, S.; Ménot, R.P.; Fernandez, A. Paleozoic evolution of the external crystalline massifs along the Belledonne-Oisans transect (Western Alps). Acta Univ. Carol. Geol. 1998, 42, 257–258. [Google Scholar]
  190. Grandjean, V.; Guillot, S.; Pecher, A. A new record of the LP-HT late-Variscan metamorphism: The Peyre-Arguet unit (Haut-Dauphiné). Comptes Rendus L’Academie Des Science Serie 2, Fascicule Sciences Terre Des Planetes: Earth Planet 1996, 322, 189–195. [Google Scholar]
  191. Jacob, J.B.; Janots, E.; Guillot, S.; Rubatto, D.; Fréville, K.; Melleton, J.; Faure, M. HT overprint of HP granulites in the Oisans–Pelvoux massif: Implications for the dynamics of the Variscan collision in the external western Alps. Lithos 2022, 416–417, 106650. [Google Scholar] [CrossRef]
  192. Jacob, J.B.; Janots, E.; Cordier, C.; Guillot, S. Discovery of Variscan orogenic peridotites in the Pelvoux Massif (Western Alps, France). BSGF—Earth Sci. Bull. 2023, 194, 2. [Google Scholar] [CrossRef]
  193. di Paola, S. Eredità Litostratigrafica, Strutturale e Metamorfica Paleozoica nel Margine Interno Europeo (Grandes Rousses e Argentera), Ristrutturato Durante l’Orogenesi Alpina. Ph.D. Thesis, Università degli Studi di Milano, Milano, Italy, 2001. [Google Scholar]
  194. Guillot, S.; Ménot, R.P. Nappe stacking and first evidence of Late Variscan extension in the Belledonne Massif (External Crystalline Massifs, French Alps). Geodin. Acta 1999, 12, 97–111. [Google Scholar] [CrossRef]
  195. Ménot, R.P.; Bonhomme, M.G.; Vivier, G. Structuration tectono-métamorphique carbonifère dans le massif de Belledonne (Alpes occidentales françaises): Apport de la géochronologie K/Ar des amphiboles. Schweiz. Mineral. Und Petrogr. Mitteilungen 1987, 67, 273–284. [Google Scholar] [CrossRef]
  196. Fréville, K.; Trap, P.; Faure, M.; Melleton, J.; Li, X.H.; Lin, W.; Blein, O.; Bruguier, O.; Poujol, M. Structural, metamorphic and geochronological insights on the Variscan evolution of the Alpine basement in the Belledonne Massif (France). Tectonophysics 2018, 726, 14–42. [Google Scholar] [CrossRef]
  197. Schulz, B.; von Raumer, J.F. Discovery of Ordovician–Silurian metamorphic monazite in garnet metapelites of the Alpine External Aiguilles Rouges Massif. Swiss J. Geosci. 2011, 104, 67–79. [Google Scholar] [CrossRef]
  198. Genier, F.; Bussy, F.; Epard, J.L.; Baumgartner, L. Water-assisted migmatization of metagraywackes in a Variscan shear zone, Aiguilles-Rouges massif, western Alps. Lithos 2008, 102, 575–597. [Google Scholar] [CrossRef]
  199. Bussy, F.; Hernandez, J.; von Raumer, J.F. Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened variscan continental lithosphere (Aiguilles Rouges/Mont-Blanc massifs, western Alps). Trans. R. Soc. Edinb. 2000, 91, 221–233. [Google Scholar]
  200. Dobmeier, C. Variscan P-T deformation paths from the southwestern Aiguilles Rouges massif (External massif, western Alps) and their implication for its tectonic evolution. Geologische Rundschau 1998, 87, 107–123. [Google Scholar] [CrossRef]
  201. Marshall, D.; Kirschner, D.; Bussy, F. A Variscan pressure-temperature-time path for the N-E Mont Blanc massif. Contrib. Mineral. Petrol. 1997, 126, 416–428. [Google Scholar] [CrossRef]
  202. Schaltegger, U. The evolution of the polymetamorphic basement in the Central Alps unravelled by precise U-Pb zircon dating. Contrib. Mineral. Petrol. 1993, 113, 466–478. [Google Scholar] [CrossRef]
  203. Paquette, J.L.; Ménot, R.P.; Peucat, J.J. REE, SmNd and UPb zircon study of eclogites from the Alpine External Massifs (Western Alps): Evidence for crustal contamination. Earth Planet. Sci. Lett. 1989, 96, 181–198. [Google Scholar] [CrossRef]
  204. Ernst, W.G.; Liou, J.G. High- and ultrahigh-pressure metamorphism: Past results and future prospects. Am. Mineral. 2008, 93, 1771–1786. [Google Scholar] [CrossRef]
  205. Regorda, A.; Spalla, M.I.; Roda, M.; Lardeaux, J.; Marotta, A.M. Metamorphic Facies and Deformation Fabrics Diagnostic of Subduction: Insights From 2D Numerical Models. Geochem. Geophys. Geosyst. 2021, 22, e2021GC009899. [Google Scholar] [CrossRef]
  206. Gasco, I.; Borghi, A.; Gattiglio, M. Metamorphic evolution of the Gran Paradiso Massif: A case study of an eclogitic metagabbro and a polymetamorphic glaucophane–garnet micaschist. Lithos 2010, 115, 101–120. [Google Scholar] [CrossRef]
  207. Ernst, W.G. Interpretative Synthesis of Metamorphism in the Alps. Geol. Soc. Am. Bull. 1973, 84, 2053. [Google Scholar] [CrossRef]
  208. England, P.C.; Thompson, A.B. Pressure–Temperature–Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. J. Petrol. 1984, 25, 894–928. [Google Scholar] [CrossRef]
  209. Thompson, A.B.; England, P.C. Pressure–Temperature–Time Paths of Regional Metamorphism II. Their Inference and Interpretation using Mineral Assemblages in Metamorphic Rocks. J. Petrol. 1984, 25, 929–955. [Google Scholar] [CrossRef]
  210. Jamieson, R.A.; Beaumont, C.; Fullsack, P.; Lee, B. Barrovian Regional Metamorphism: Where’s the Heat? Geological Society Special Publication: London, UK, 1998; Volume 138, pp. 23–51. [Google Scholar] [CrossRef]
  211. Sandiford, M.; Powell, R. Some remarks on high-temperature-low-pressure metamorphism in convergent orogens. J. Metamorph. Geol. 1991, 9, 333–340. [Google Scholar] [CrossRef]
  212. Ryan, P.D.; Dewey, J.F. The sources of metamorphic heat during collisional orogeny: The Barrovian enigma. Can. J. Earth Sci. 2019, 56, 1309–1317. [Google Scholar] [CrossRef]
  213. Mevel, C.; Caby, R.; Kienast, J.R. Amphibolite facies conditions in the oceanic crust: Example of amphibolitized flaser-gabbro and amphibolites from the Chenaillet ophiolite massif (Hautes Alpes, France). Earth Planet. Sci. Lett. 1978, 39, 98–108. [Google Scholar] [CrossRef]
  214. Verati, C.; Lardeaux, J.M.; Favier, A.; Corsini, M.; Philippon, M.; Legendre, L. Arc-related metamorphism in the Guadeloupe archipelago (Lesser Antilles active island arc): First report and consequences. Lithos 2018, 320–321, 592–598. [Google Scholar] [CrossRef]
  215. Vanderhaeghe, O. The thermal–mechanical evolution of crustal orogenic belts at convergent plate boundaries: A reappraisal of the orogenic cycle. J. Geodyn. 2012, 56–57, 124–145. [Google Scholar] [CrossRef]
  216. Penniston-Dorland, S.C.; Kohn, M.J.; Manning, C.E. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet. Sci. Lett. 2015, 428, 243–254. [Google Scholar] [CrossRef]
  217. Lotout, C.; Pitra, P.; Poujol, M.; Anczkiewicz, R.; Van Den Driessche, J. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif. Lithos 2018, 308–309, 381–394. [Google Scholar] [CrossRef]
  218. Lotout, C.; Poujol, M.; Pitra, P.; Anczkiewicz, R.; Van Den Driessche, J. From Burial to Exhumation: Emplacement and Metamorphism of Mafic Eclogitic Terranes Constrained Through Multimethod Petrochronology, Case Study from theévézou Massif (French Massif Central, Variscan Belt). J. Petrol. 2020, 61, egaa046. [Google Scholar] [CrossRef]
  219. Pitra, P.; Poujol, M.; Van Den Driessche, J.; Bretagne, E.; Lotout, C.; Cogné, N. Late Variscan (315 Ma) subduction or deceptive zircon REE patterns and U-Pb dates from migmatite-hosted eclogites? (Montagne Noire, France). J. Metamorph. Geol. 2022, 40, 39–65. [Google Scholar] [CrossRef]
  220. Franke, W. The Mid-European Segment of the Variscides: Tectonostratigraphic Units, Terrane Boundaries and Plate Tectonic Evolution; Geological Society Special Publications: London, UK, 2000; Volume 179, pp. 35–61. [Google Scholar] [CrossRef]
  221. Medaris, L.G.; Beard, B.L.; Jelínek, E. Mantle-Derived, UHP Garnet Pyroxenite and Eclogite in the Moldanubian Gföhl Nappe, Bohemian Massif: A Geochemical Review, New P-T Determinations, and Tectonic Interpretation. Int. Geol. Rev. 2006, 48, 765–777. [Google Scholar] [CrossRef]
  222. Kotková, J. High-pressure granulites of the Bohemian Massif: Recent advances and open questions. J. Geosci. 2007, 52, 45–71. [Google Scholar] [CrossRef]
  223. Schulmann, K.; Lexa, O.; Štípská, P.; Racek, M.; Tajčmanová, L.; Konopásek, J.; Edel, J.B.; Peschler, A.; Lehmann, J. Vertical extrusion and horizontal channel flow of orogenic lower crust: Key exhumation mechanisms in large hot orogens? J. Metamorph. Geol. 2008, 26, 273–297. [Google Scholar] [CrossRef]
  224. Schulmann, K.; Konopásek, J.; Janoušek, V.; Lexa, O.; Lardeaux, J.M.; Edel, J.B.; Štípská, P.; Ulrich, S. An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geosci. 2009, 341, 266–286. [Google Scholar] [CrossRef]
  225. Lexa, O.; Schulmann, K.; Janoušek, V.; Štípská, P.; Guy, A.; Racek, M. Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J. Metamorph. Geol. 2011, 29, 79–102. [Google Scholar] [CrossRef]
  226. Chopin, F.; Schulmann, K.; Štípská, P.; Martelat, J.; Pitra, P.; Lexa, O.; Petri, B. Microstructural and metamorphic evolution of a high-pressure granitic orthogneiss during continental subduction (Orlica-Śnieżnik dome, Bohemian Massif). J. Metamorph. Geol. 2012, 30, 347–376. [Google Scholar] [CrossRef]
  227. Faryad, S.W.; Jedlicka, R.; Ettinger, K. Subduction of lithospheric upper mantle recorded by solid phase inclusions and compositional zoning in garnet: Example from the Bohemian Massif. Gondwana Res. 2013, 23, 944–955. [Google Scholar] [CrossRef]
  228. Timmermann, H.; Stedrá, V.; Gerdes, A.; Noble, S.R.; Parrish, R.R.; Dörr, W. The Problem of Dating High-pressure Metamorphism: A U-Pb Isotope and Geochemical Study on Eclogites and Related Rocks of the Marianske Lazne Complex, Czech Republic. J. Petrol. 2004, 45, 1311–1338. [Google Scholar] [CrossRef]
  229. Konopásek, J.; Schulmann, K. Contrasting Early Carboniferous field geotherms: Evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides). J. Geol. Soc. 2005, 162, 463–470. [Google Scholar] [CrossRef]
  230. Linnemann, U.; Romer, R.L. Pre-Mesozoic Geology of Saxo-Thuringia; Schweizerbart Science Publishers: Stuttgart, Germany, 2010. [Google Scholar]
  231. Faryad, S.W. High-pressure polymetamorphic garnet growth in eclogites from the Mariánskéázně Complex (Bohemian Massif). Eur. J. Mineral. 2012, 24, 483–497. [Google Scholar] [CrossRef]
  232. Schaltegger, U.; Fanning, C.M.; Günther, D.; Maurin, J.C.; Schulmann, K.; Gebauer, D. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: Conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib. Mineral. Petrol. 1999, 134, 186–201. [Google Scholar] [CrossRef]
  233. Gayk, T.; Kleinschrodt, R. Hot contacts of garnet peridotites in middle/upper crustal levels: New constraints on the nature of the late Variscan high-T/low-P event in the Moldanubian (Central Vosges/NE France). J. Metamorph. Geol. 2000, 18, 293–305. [Google Scholar] [CrossRef]
  234. Kalt, A.; Altherr, R.; Hanel, M. The Variscan basement of the Schwarzwald. Eur. J. Mineral. 2000, 12, 1–43. [Google Scholar]
  235. Chen, F.; Todt, W.; Hann, H.P. Zircon and Garnet Geochronology of Eclogites from the Moldanubian Zone of the Black Forest, Germany. J. Geol. 2003, 111, 207–222. [Google Scholar] [CrossRef]
  236. Marschall, H.R.; Kalt, A.; Hanel, M. P-T Evolution of a Variscan Lower-Crustal Segment: A Study of Granulites from the Schwarzwald, Germany. J. Petrol. 2003, 44, 227–253. [Google Scholar] [CrossRef]
  237. Kober, B.; Kalt, A.; Hanel, M.; Pidgeon, R.T. SHRIMP dating of zircons from high-grade metasediments of the Schwarzwald/SW-Germany and implications for the evolution of the Moldanubian basement. Contrib. Mineral. Petrol. 2004, 147, 330–345. [Google Scholar] [CrossRef]
  238. Edel, J.B.; Schulmann, K. Geophysical constraints and model of the “Saxothuringian and Rhenohercynian subductions—Magmatic arc system” in NE France and SW Germany. Bull. Soc. Geol. Fr. 2009, 180, 545–558. [Google Scholar] [CrossRef]
  239. Altherr, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzer, H. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
  240. Faure, M.; Monié, P.; Pin, C.; Maluski, H.; Leloix, C. Late Visean thermal event in the northern part of the French Massif Central: New 40Ar/39Ar and Rb-Sr isotopic constraints on the Hercynian syn-orogenic extension. Int. J. Earth Sci. 2002, 91, 53–75. [Google Scholar] [CrossRef]
  241. Edel, J.B.; Schulmann, K.; Skrzypek, E.; Cocherie, A. Tectonic evolution of the European Variscan belt constrained by palaeomagnetic, structural and anisotropy of magnetic susceptibility data from the Northern Vosges magmatic arc (eastern France). J. Geol. Soc. 2013, 170, 785–804. [Google Scholar] [CrossRef]
  242. Skrzypek, E.; Tabaud, A.S.; Edel, J.B.; Schulmann, K.; Cocherie, A.; Guerrot, C.; Rossi, P. The significance of Late Devonian ophiolites in the Variscan orogen: A record from the Vosges Klippen Belt. Int. J. Earth Sci. 2012, 101, 951–972. [Google Scholar] [CrossRef]
  243. Skrzypek, E.; Schulmann, K.; Tabaud, A.S.; Edel, J.B. Palaeozoic Evolution of the Variscan Vosges Mountains; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 45–75. [Google Scholar] [CrossRef]
  244. Lardeaux, J.M.; Schulmann, K.; Faure, M.; Janoušek, V.; Lexa, O.; Skrzypek, E.; Edel, J.B.; Štípská, P. The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif Revisited: Differences and Similarities; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 7–44. [Google Scholar] [CrossRef]
  245. Ledru, P.; Courrioux, G.; Dallain, C.; Lardeaux, J.; Montel, J.; Vanderhaeghe, O.; Vitel, G. The Velay dome (French Massif Central): Melt generation and granite emplacement during orogenic evolution. Tectonophysics 2001, 342, 207–237. [Google Scholar] [CrossRef]
  246. Faure, M.; Cocherie, A.; Mézème, E.B.; Charles, N.; Rossi, P. Middle Carboniferous crustal melting in the Variscan Belt: New insights from U-Th-Pbtot. monazite and U-Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res. 2010, 18, 653–673. [Google Scholar] [CrossRef]
  247. Franke, W.; Doublier, M.P.; Klama, K.; Potel, S.; Wemmer, K. Hot metamorphic core complex in a cold foreland. Int. J. Earth Sci. 2011, 100, 753–785. [Google Scholar] [CrossRef]
  248. Faure, M.; Cocherie, A.; Gaché, J.; Esnault, C.; Guerrot, C.; Rossi, P.; Wei, L.; Qiuli, L. Middle Carboniferous Intracontinental Subduction in the Outer Zone of the Variscan Belt (Montagne Noire Axial Zone, French Massif Central): Multimethod Geochronological Approach of Polyphase Metamorphism; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 289–311. [Google Scholar] [CrossRef]
  249. Bellot, J.P.; Triboulet, C.; Laverne, C.; Bronner, G. Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P-T-t-d paths of metabasites in distinct allochthonous units of the Maures massif (SE France). Int. J. Earth Sci. 2003, 92, 7–26. [Google Scholar] [CrossRef]
  250. Palmeri, R.; Fanning, M.; Franceschelli, M.; Memmi, I.; Ricci, C.A. SHRIMP dating of zircons in eclogite from the Variscan basement in north-eastern Sardinia (Italy). Neues Jahrb. Mineral.—Monatshefte 2004, 2004, 275–288. [Google Scholar] [CrossRef]
  251. Giacomini, F.; Bomparola, R.M.; Ghezzo, C. Petrology and geochronology of metabasites with eclogite facies relics from NE Sardinia: Constraints for the Palaeozoic evolution of Southern Europe. Lithos 2005, 82, 221–248. [Google Scholar] [CrossRef]
  252. Giacomini, F.; Dallai, L.; Carminati, E.; Tiepolo, M.; Ghezzo, C. Exhumation of a Variscan orogenic complex: Insights into the composite granulitic–Amphibolitic metamorphic basement of south-east Corsica (France). J. Metamorph. Geol. 2008, 26, 403–436. [Google Scholar] [CrossRef]
  253. Franceschelli, M.; Puxeddu, M.; Cruciani, G.; Utzeri, D. Metabasites with eclogite facies relics from Variscides in Sardinia, Italy: A review. Int. J. Earth Sci. 2007, 96, 795–815. [Google Scholar] [CrossRef]
  254. Corsini, M.; Rolland, Y. Late evolution of the southern European Variscan belt: Exhumation of the lower crust in a context of oblique convergence. Comptes Rendus Geosci. 2009, 341, 214–223. [Google Scholar] [CrossRef]
  255. Rossi, P.; Oggiano, G.; Cocherie, A. A restored section of the “southern Variscan realm” across the Corsica–Sardinia microcontinent. Comptes Rendus Geosci. 2009, 341, 224–238. [Google Scholar] [CrossRef]
  256. Morillon, A.C.; Féraud, G.; Sosson, M.; Ruffet, G.; Crevola, G.; Lerouge, G. Diachronous cooling on both sides of a major strike slip fault in the Variscan Maures Massif (south-east France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 2000, 321, 103–126. [Google Scholar] [CrossRef]
  257. Conti, P.; Carmignani, L.; Funedda, A. Change of nappe transport direction during the Variscan collisional evolution of central-southern Sardinia (Italy). Tectonophysics 2001, 332, 255–273. [Google Scholar] [CrossRef]
  258. Bellot, J.P. The Palaeozoic evolution of the Maures massif (France) and its potential correlation with others areas of the Variscan belt: A review. J. Virtual Explor. 2005, 19, 4. [Google Scholar] [CrossRef]
  259. Elter, F.M.; Pandeli, E. Structural-Metamorphic Correlations Between Three Variscan Segments In Southern Europe: Maures Massif (France), Corsica(France)-Sardinia(Italy), And Northern Appennines (Italy). J. Virtual Explor. 2005, 19, 1. [Google Scholar] [CrossRef]
  260. Carosi, R.; Montomoli, C.; Tiepolo, M.; Frassi, C. Geochronological constraints on post-collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova 2012, 24, 42–51. [Google Scholar] [CrossRef]
  261. Medaris, G.; Jelínek, E.; Beard, B.; Valley, J.; Spicuzza, M.; Strnad, L. Garnet pyroxenite in the Biskupice peridotite, Bohemian Massif: Anatomy of a Variscan high-pressure cumulate. J. Geosci. 2013, 58, 3–19. [Google Scholar] [CrossRef]
  262. Maierová, P.; Lexa, O.; Schulmann, K.; Štípská, P. Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model. Gondwana Res. 2014, 25, 509–521. [Google Scholar] [CrossRef]
  263. Štípská, P.; Powell, R.; Hacker, B.R.; Holder, R.; Kylander-Clark, A.R.C. Uncoupled U/Pb and REE response in zircon during the transformation of eclogite to mafic and intermediate granulite (Blanský les, Bohemian Massif). J. Metamorph. Geol. 2016, 34, 551–572. [Google Scholar] [CrossRef]
  264. Collett, S.; Štípská, P.; Schulmann, K.; Peřestý, V.; Soldner, J.; Anczkiewicz, R.; Lexa, O.; Kylander-Clark, A. Combined Lu-Hf and Sm-Nd geochronology of the Mariánské ázně Complex: New constraints on the timing of eclogite- and granulite-facies metamorphism. Lithos 2018, 304–307, 74–94. [Google Scholar] [CrossRef]
  265. Maierová, P.; Schulmann, K.; Štípská, P.; Gerya, T.; Lexa, O. Trans-lithospheric diapirism explains the presence of ultra-high pressure rocks in the European Variscides. Commun. Earth Environ. 2021, 2, 56. [Google Scholar] [CrossRef]
  266. Collett, S.; Schulmann, K.; Deiller, P.; Štípská, P.; Peřestý, V.; Ulrich, M.; Jiang, Y.; de Hoÿm de Marien, L.; Míková, J. Reconstruction of the mid-Devonian HP-HT metamorphic event in the Bohemian Massif (European Variscan belt). Geosci. Front. 2022, 13, 101374. [Google Scholar] [CrossRef]
  267. Collett, S.; Schulmann, K.; Štípská, P.; Míková, J. Chronological and geochemical constraints on the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondwana Res. 2020, 79, 27–48. [Google Scholar] [CrossRef]
  268. Altherr, R. Retrograded garnet peridotites from Col des Bagenelles and Crébimont in the Variscan Vosges Mountains (NE France). Contrib. Mineral. Petrol. 2021, 176, 53. [Google Scholar] [CrossRef]
  269. Tabaud, A.S.; Janoušek, V.; Skrzypek, E.; Schulmann, K.; Rossi, P.; Whitechurch, H.; Guerrot, C.; Paquette, J.L. Chronology, petrogenesis and heat sources for successive Carboniferous magmatic events in the Southern–Central Variscan Vosges Mts (NE France). J. Geol. Soc. 2014, 172, 87–102. [Google Scholar] [CrossRef]
  270. Benmammar, A.; Berger, J.; Triantafyllou, A.; Duchene, S.; Bendaoud, A.; Baele, J.M.; Bruguier, O.; Diot, H. Pressure-temperature conditions and significance of Upper Devonian eclogite and amphibolite facies metamorphisms in southern French Massif central. BSGF—Earth Sci. Bull. 2020, 191, 28. [Google Scholar] [CrossRef]
  271. de Hoÿm de Marien, L.; Pitra, P.; Poujol, M.; Cogné, N.; Cagnard, F.; Le Bayon, B. Complex geochronological record of an emblematic Variscan eclogite (Haut-Allier, French Massif Central). J. Metamorph. Geol. 2023, 41, 1–29. [Google Scholar] [CrossRef]
  272. Whitney, D.L.; Hamelin, C.; Teyssier, C.; Raia, N.H.; Korchinski, M.S.; Seaton, N.C.A.; Bagley, B.C.; von der Handt, A.; Roger, F.; Rey, P.F. Deep crustal source of gneiss dome revealed by eclogite in migmatite (Montagne Noire, French Massif Central). J. Metamorph. Geol. 2020, 38, 297–327. [Google Scholar] [CrossRef]
  273. Cruciani, G.; Franceschelli, M.; Groppo, C. P-T evolution of eclogite-facies metabasite from NE Sardinia, Italy: Insights into the prograde evolution of Variscan eclogites. Lithos 2011, 121, 135–150. [Google Scholar] [CrossRef]
  274. Schneider, J.; Corsini, M.; Reverso-Peila, A.; Lardeaux, J.M. Thermal and Mechanical Evolution of an Orogenic Wedge During Variscan Collision: An Example in the Maures–Tanneron Massif (SE France); Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 313–331. [Google Scholar] [CrossRef]
  275. Cruciani, G.; Franceschelli, M.; Groppo, C.; Oggiano, G.; Spano, M.E. Re-equilibration history and P-T path of eclogites from Variscan Sardinia, Italy: A case study from the medium-grade metamorphic complex. Int. J. Earth Sci. 2015, 104, 797–814. [Google Scholar] [CrossRef]
  276. Cruciani, G.; Franceschelli, M.; Carosi, R.; Montomoli, C. P-T path from garnet zoning in pelitic schist from NE Sardinia, Italy: Further constraints on the metamorphic and tectonic evolution of the north Sardinia Variscan belt. Lithos 2022, 428–429, 106836. [Google Scholar] [CrossRef]
  277. Cruciani, G.; Dulcetta, L.; Franceschelli, M.; Frassi, C.; Musumeci, G. Hot metamorphic complex in the Foreland Zone of the Variscan chain: Insights from the Monte Filau orthogneiss (SW Sardinia), Italy. Ital. J. Geosci. 2022, 141, 385–399. [Google Scholar] [CrossRef]
  278. Jouffray, F.; Lardeaux, J.M.; Tabaud, A.S.; Corsini, M.; Schneider, J. Deciphering the nature and age of the protoliths and peak P-T conditions in retrogressed mafic eclogites from the Maures-Tannneron Massif (SE France) and implications for the southern European Variscides. BSGF—Earth Sci. Bull. 2023, 194, 10. [Google Scholar] [CrossRef]
  279. Edel, J.B.; Casini, L.; Oggiano, G.; Rossi, P.; Schulmann, K. Early Permian 90° Clockwise Rotation of the Maures-Estérel-Corsica-Sardinia Block Confirmed by New Palaeomagnetic Data and Followed by a Triassic 60° Clockwise Rotation; Geological Society Special Publications: London, UK, 2014; Volume 405, pp. 333–361. [Google Scholar] [CrossRef]
  280. Edel, J.B.; Schulmann, K.; Lexa, O.; Lardeaux, J.M. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Sci. Rev. 2018, 177, 589–612. [Google Scholar] [CrossRef]
  281. Oliot, E.; Melleton, J.; Schneider, J.; Corsini, M.; Gardien, V.; Rolland, Y. Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): New in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bull. Soc. Fr. 2015, 186, 145–169. [Google Scholar] [CrossRef]
  282. Gerbault, M.; Schneider, J.; Reverso-Peila, A.; Corsini, M. Crustal exhumation during ongoing compression in the Variscan Maures-Tanneron Massif, France-Geological and thermo-mechanical aspects. Tectonophysics 2018, 746, 439–458. [Google Scholar] [CrossRef]
  283. Rubatto, D. Dating of Pre-Alpine magmatism, Jurassic Ophiolites and Alpine Subductions in the Western Alps. Ph.D. Thesis, ETH—Zurich, Zurich, Switzerland, 1998. [Google Scholar]
  284. Vho, A.; Rubatto, D.; Lanari, P.; Regis, D. The evolution of the Sesia Zone (Western Alps) from Carboniferous to Cretaceous: Insights from zircon and allanite geochronology. Swiss J. Geosci. 2020, 113, 24. [Google Scholar] [CrossRef]
  285. Delleani, F.; Rebay, G.; Zucali, M.; Tiepolo, M.; Spalla, M.I. Insights on Variscan geodynamics from the structural and geochemical characterization of a Devonian-Carboniferous gabbro from the Austroalpine Domain (Western Alps). Ofioliti 2018, 43, 23–29. [Google Scholar] [CrossRef]
  286. Sloman, L.E. Triassic shoshonites from the Dolo- mites, Northern Italy: Alkaline arc rocks in a strike- slip setting. J. Geophys. Res. 1989, 94, 4655–4666. [Google Scholar] [CrossRef]
  287. Lustrino, M.; Abbas, H.; Agostini, S.; Caggiati, M.; Carminati, E.; Gianolla, P. Origin of Triassic magmatism of the Southern Alps (Italy): Constraints from geochemistry and Sr-Nd-Pb isotopic ratios. Gondwana Res. 2019, 75, 218–238. [Google Scholar] [CrossRef]
  288. Cocks, L.; Torsvik, T. Earth geography from 500 to 400 million years ago: A faunal and palaeomagnetic review. J. Geol. Soc. 2002, 159, 631–644. [Google Scholar] [CrossRef]
  289. Nance, R.D.; Gutiérrez-Alonso, G.; Keppie, J.D.; Linnemann, U.; Murphy, J.B.; Quesada, C.; Strachan, R.A.; Woodcock, N.H. Evolution of the Rheic Ocean. Gondwana Res. 2010, 17, 194–222. [Google Scholar] [CrossRef]
  290. Linnemann, U.; Gerdes, A.; Drost, K.; Buschmann, B. The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision; Geological Society of America: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
  291. Marotta, A.M.; Roda, M.; Conte, K.; Spalla, M.I. Thermo-mechanical numerical model of the transition from continental rifting to oceanic spreading: The case study of the Alpine Tethys. Geol. Mag. 2018, 155, 250–279. [Google Scholar] [CrossRef]
  292. Furlong, K.P.; Chapman, D.S. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annu. Rev. Earth Planet. Sci. 2013, 41, 385–410. [Google Scholar] [CrossRef]
  293. Doré, A.G.; Stewart, I.C. Similarities and differences in the tectonics of two passive margins: The Northeast Atlantic Margin and the Australian North West Shelf. In The Sedimentary Basins of Western Australia 3; Keep, M., Moss, S.J., Eds.; Petroleum Exploration Society of Australia (PESA): Beaumaris, VIC, Australia, 2002; pp. 89–117. [Google Scholar]
Figure 1. Simplified tectonic sketch of the Variscan belt (modified after [15,35]). Grey areas contour the Variscan massifs and green areas contour the Pyrenees, Betic Cordillera, and the Alps. Grey and black lines show Variscan and Alpine fronts, respectively. Blue lines show Variscan sutures and red lines show main Variscan faults. A—Alps; Arm—Armorican Massif; BC—Betic Cordillera; BCBF—Bristol Channel–Bray Fault; BF—Black Forest; BM—Bohemian Massif; CZ—Cantabrian Zone; CIZ—Central Iberian Zone; Co—Corsica; FCM—French Central Massif; GTMZ—Galicia-Trás-os-Montes Zone; MT—Maures-Tanneron Massif; OMZ—Ossa Morena Zone; Py—Pyrenees; Sa—Sardinia; RM—Rhenish Massif; Si—Sicilian-Apulian basements; SPZ—South Portuguese Zone; VM—Vosges Massif. Coordinate system WGS 84, UTM Zone 32N.
Figure 1. Simplified tectonic sketch of the Variscan belt (modified after [15,35]). Grey areas contour the Variscan massifs and green areas contour the Pyrenees, Betic Cordillera, and the Alps. Grey and black lines show Variscan and Alpine fronts, respectively. Blue lines show Variscan sutures and red lines show main Variscan faults. A—Alps; Arm—Armorican Massif; BC—Betic Cordillera; BCBF—Bristol Channel–Bray Fault; BF—Black Forest; BM—Bohemian Massif; CZ—Cantabrian Zone; CIZ—Central Iberian Zone; Co—Corsica; FCM—French Central Massif; GTMZ—Galicia-Trás-os-Montes Zone; MT—Maures-Tanneron Massif; OMZ—Ossa Morena Zone; Py—Pyrenees; Sa—Sardinia; RM—Rhenish Massif; Si—Sicilian-Apulian basements; SPZ—South Portuguese Zone; VM—Vosges Massif. Coordinate system WGS 84, UTM Zone 32N.
Geosciences 13 00300 g001
Figure 2. (a) Variscan protolith and rock types. (b) Variscan metamorphic imprints. See tectonic unit, location, and reference coding in Appendix A.
Figure 2. (a) Variscan protolith and rock types. (b) Variscan metamorphic imprints. See tectonic unit, location, and reference coding in Appendix A.
Geosciences 13 00300 g002
Figure 3. Examples of Variscan rocks from the different Alpine domains. (a) Chloritoid, biotite, white mica, and garnet-bearing metapelites from Southalpine basement (eastern Orobic Alps, Upper Val Camonica) indicating an epidote-amphibolite facies metamorphic imprint. SPO of chloritoid marks S1 foliation. Plane-polarized light; long side of the photograph = 1 cm. (b) Garnet, white mica, kyanite, staurolite, and biotite-bearing metapelites from upper Como Lake, Southalpine basement, indicating amphibolite facies conditions during S2 development. Plane-polarized light; long side of photograph = 3.5 mm. (c) Garnet, scapolite, diopside, and plagioclase syn-D1 granulitic assemblage in metabasites from Austroalpine domain of central Alps (Languard-Campo nappe). Alpine garnet coronas rim granulitic Variscan minerals. Crossed polars; long side of photograph = 0.1 mm. (d) Olivine, garnet, and biotite in garnet peridotites of Nonsberg–Ulten Zone. Plane-polarized light; long side of photograph = 2.2 mm. (e) Garnet, omphacite, and amphibole in eclogite lenses enclosed in the paragneisses of the Savona Massif. (f) Partly re-equilibrated garnet, omphacite, zoisite, and rutile eclogite facies assemblage from Savona Massif. Late kelyphitic amphibole developed at garnet rims. Plane-polarized light; long side of photograph = 1.7 mm (g) Eclogite boudin in migmatitic paragneisses of the Argentera Massif with cm sized garnets. (h) Retrogressed eclogites with garnet, zoned amphibole, and relict omphacite replaced by diopside–plagioclase symplectite, from the Argetera Massif. Plane-polarized light; long side of photograph = 5 mm.
Figure 3. Examples of Variscan rocks from the different Alpine domains. (a) Chloritoid, biotite, white mica, and garnet-bearing metapelites from Southalpine basement (eastern Orobic Alps, Upper Val Camonica) indicating an epidote-amphibolite facies metamorphic imprint. SPO of chloritoid marks S1 foliation. Plane-polarized light; long side of the photograph = 1 cm. (b) Garnet, white mica, kyanite, staurolite, and biotite-bearing metapelites from upper Como Lake, Southalpine basement, indicating amphibolite facies conditions during S2 development. Plane-polarized light; long side of photograph = 3.5 mm. (c) Garnet, scapolite, diopside, and plagioclase syn-D1 granulitic assemblage in metabasites from Austroalpine domain of central Alps (Languard-Campo nappe). Alpine garnet coronas rim granulitic Variscan minerals. Crossed polars; long side of photograph = 0.1 mm. (d) Olivine, garnet, and biotite in garnet peridotites of Nonsberg–Ulten Zone. Plane-polarized light; long side of photograph = 2.2 mm. (e) Garnet, omphacite, and amphibole in eclogite lenses enclosed in the paragneisses of the Savona Massif. (f) Partly re-equilibrated garnet, omphacite, zoisite, and rutile eclogite facies assemblage from Savona Massif. Late kelyphitic amphibole developed at garnet rims. Plane-polarized light; long side of photograph = 1.7 mm (g) Eclogite boudin in migmatitic paragneisses of the Argentera Massif with cm sized garnets. (h) Retrogressed eclogites with garnet, zoned amphibole, and relict omphacite replaced by diopside–plagioclase symplectite, from the Argetera Massif. Plane-polarized light; long side of photograph = 5 mm.
Geosciences 13 00300 g003
Figure 7. Age vs. geothermal gradient of Variscan rocks in the different domains of the Alps extrapolated from PT conditions, using a reference density of 2900 kg/m 3 (see Table 1). Blue, yellow, and red areas refer to Franciscan, Barrovian, and Abukuma field gradients, respectively.
Figure 7. Age vs. geothermal gradient of Variscan rocks in the different domains of the Alps extrapolated from PT conditions, using a reference density of 2900 kg/m 3 (see Table 1). Blue, yellow, and red areas refer to Franciscan, Barrovian, and Abukuma field gradients, respectively.
Geosciences 13 00300 g007
Figure 8. PT estimates of Variscan rocks characterized by Franciscan field gradients. The blue area is the interpolation of PT estimates from worldwide exhumed blueschists and eclogites after [216].
Figure 8. PT estimates of Variscan rocks characterized by Franciscan field gradients. The blue area is the interpolation of PT estimates from worldwide exhumed blueschists and eclogites after [216].
Geosciences 13 00300 g008
Figure 9. Franciscan (a), Barrovian (b), and Abukuma (c) field gradients calculated for the collected samples as a function of age (blue: Devonian; green: late Devonian–late Carboniferous; yellow: late Carboniferous–early Permian) and location along the Alpine chain.
Figure 9. Franciscan (a), Barrovian (b), and Abukuma (c) field gradients calculated for the collected samples as a function of age (blue: Devonian; green: late Devonian–late Carboniferous; yellow: late Carboniferous–early Permian) and location along the Alpine chain.
Geosciences 13 00300 g009
Figure 10. Geothermal gradients obtained from Devonian to Triassic PT conditions of Variscan rocks in the Alps, using a reference density of 2900 kg/m 3 . Blue and red lines represent the best interpolation curve for all data and radiometric data only excluding outliers, respectively.
Figure 10. Geothermal gradients obtained from Devonian to Triassic PT conditions of Variscan rocks in the Alps, using a reference density of 2900 kg/m 3 . Blue and red lines represent the best interpolation curve for all data and radiometric data only excluding outliers, respectively.
Geosciences 13 00300 g010
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Roda, M.; Spalla, M.I.; Filippi, M.; Lardeaux, J.-M.; Rebay, G.; Regorda, A.; Zanoni, D.; Zucali, M.; Gosso, G. Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance. Geosciences 2023, 13, 300. https://doi.org/10.3390/geosciences13100300

AMA Style

Roda M, Spalla MI, Filippi M, Lardeaux J-M, Rebay G, Regorda A, Zanoni D, Zucali M, Gosso G. Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance. Geosciences. 2023; 13(10):300. https://doi.org/10.3390/geosciences13100300

Chicago/Turabian Style

Roda, Manuel, Maria Iole Spalla, Marco Filippi, Jean-Marc Lardeaux, Gisella Rebay, Alessandro Regorda, Davide Zanoni, Michele Zucali, and Guido Gosso. 2023. "Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance" Geosciences 13, no. 10: 300. https://doi.org/10.3390/geosciences13100300

APA Style

Roda, M., Spalla, M. I., Filippi, M., Lardeaux, J. -M., Rebay, G., Regorda, A., Zanoni, D., Zucali, M., & Gosso, G. (2023). Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance. Geosciences, 13(10), 300. https://doi.org/10.3390/geosciences13100300

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop