Weathering Effects on Engineering Geological Properties of Trachydacitic Volcanic Rocks from the Monte Amiata (Southern Tuscany, Italy)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Engineering Geological Characterization
4.2. Petrography
4.3. TG, DTG and DTA Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barton, N.; Choubey, V. The Shear Strength of Rock Joints in Theory and Practice. Rock Mech. Felsmech. Mécanique Roches 1977, 10, 1–54. [Google Scholar] [CrossRef]
- Barton, N. The Shear Strength of Rock and Rock Joints. Int. J. Rock Mech. Min. Sci. 1976, 13, 255–279. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical Estimates of Rock Mass Strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Okewale, I.A.; Grobler, H. Inherent Complexities in Weathered Rocks: A Case of Volcanic Rocks. Rock Mech. Rock Eng. 2021, 54, 5533–5554. [Google Scholar] [CrossRef]
- Dixon, J.L.; Heimsath, A.M.; Amundson, R. The Critical Role of Climate and Saprolite Weathering in Landscape Evolution. Earth Surf. Process. Landforms 2009, 34, 1507–1521. [Google Scholar] [CrossRef]
- Migoń, P. Mass Movement and Landscape Evolution in Weathered Granite and Gneiss Terrains. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2010, 23, 33–45. [Google Scholar] [CrossRef]
- Hack, R.; Price, D.; Rengers, N. A New Approach to Rock Slope Stability—A Probability Classification (SSPC). Bull. Eng. Geol. Environ. 2003, 167–184. [Google Scholar] [CrossRef]
- Pantelidis, L. Rock Slope Stability Assessment through Rock Mass Classification Systems. Int. J. Rock Mech. Min. Sci. 2009, 46, 315–325. [Google Scholar] [CrossRef]
- Durgin, P.B. Landslides and the Weathering of Granitic Rocks. GSA Rev. Eng. Geol. 1977, 3, 125–131. [Google Scholar] [CrossRef]
- Borrelli, L.; Greco, R.; Gullà, G. Weathering Grade of Rock Masses as a Predisposing Factor to Slope Instabilities: Reconnaissance and Control Procedures. Geomorphology 2007, 87, 158–175. [Google Scholar] [CrossRef]
- Langella, A.; Di Benedetto, C.; Calcaterra, D.; Cappelletti, P.; D’Amore, M.; Di Martire, D.; Graziano, S.F.; Papa, L.; Langella, A. The Neapolitan Yellow Tuff: An Outstanding Example of Heterogeneity. Constr. Build. Mater. 2017, 136, 361–373. [Google Scholar] [CrossRef]
- Calcaterra, D.; Parise, M. Weathering in the Crystalline Rocks of Calabria, Italy, and Relationships to Landslides. Geol. Soc. Eng. Geol. Spec. Publ. 2010, 23, 105–130. [Google Scholar] [CrossRef]
- Prodan, M.V.; Arbanas, Ž. Analysis of the Possible Reactivation of the Krbavčići Landslide in Northern Istria, Croatia. Geosciences 2020, 10, 294. [Google Scholar] [CrossRef]
- Fookes, P.G.; Gourley, C.S.; Ohikere, C. Rock Weathering in Engineering Time. Q. J. Eng. Geol. Hydrogeol. 1988, 21, 33–57. [Google Scholar] [CrossRef]
- Gupta, A.S.; Seshagiri Rao, K. Weathering Effects on the Strength and Deformational Behaviour of Crystalline Rocks under Uniaxial Compression State. Eng. Geol. 2000, 56, 257–274. [Google Scholar] [CrossRef]
- Yasir, M.; Ahmed, W.; Islam, I.; Sajid, M.; Janjuhah, H.T.; Kontakiotis, G. Composition, Texture, and Weathering Controls on the Physical and Strength Properties of Selected Intrusive Igneous Rocks from Northern Pakistan. Geosciences 2022, 12, 273. [Google Scholar] [CrossRef]
- Moye, D.G. Engineering Geology for the Snow Mountain Schema. J. Inst. Eng. Aust. 1955, 27, 281–299. [Google Scholar]
- Monticelli, J.P.; Ribeiro, R.; Futai, M. Relationship between Durability Index and Uniaxial Compressive Strength of a Gneissic Rock at Different Weathering Grades. Bull. Eng. Geol. Environ. 2020, 79, 1381–1397. [Google Scholar] [CrossRef]
- del Potro, R.; Hürlimann, M. The Decrease in the Shear Strength of Volcanic Materials with Argillic Hydrothermal Alteration, Insights from the Summit Region of Teide Stratovolcano, Tenerife. Eng. Geol. 2009, 104, 135–143. [Google Scholar] [CrossRef]
- Rodríguez-Losada, J.A.; Hernández-Gutiérrez, L.E.; Olalla, C.; Perucho, A.; Serrano, A.; Eff-Darwich, A. Geomechanical Parameters of Intact Rocks and Rock Masses from the Canary Islands: Implications on Their Flank Stability. J. Volcanol. Geotherm. Res. 2009, 182, 67–75. [Google Scholar] [CrossRef]
- Okewale, I.A.; Coop, M.R. A Study of the Effects of Weathering on Soils Derived from Decomposed Volcanic Rocks. Eng. Geol. 2017, 222, 53–71. [Google Scholar] [CrossRef]
- Rocchi, I.; Coop, M.R. The Effects of Weathering on the Physical and Mechanical Properties of a Granitic Saprolite. Geotechnique 2015, 65, 482–493. [Google Scholar] [CrossRef]
- Basu, A.; Celestino, T.B.; Bortolucci, A.A. Evaluation of Rock Mechanical Behaviors under Uniaxial Compression with Reference to Assessed Weathering Grades. Rock Mech. Rock Eng. 2009, 42, 73–93. [Google Scholar] [CrossRef]
- Pola, A.; Crosta, G.B.; Fusi, N.; Castellanza, R. General Characterization of the Mechanical Behaviour of Different Volcanic Rocks with Respect to Alteration. Eng. Geol. 2014, 169, 1–13. [Google Scholar] [CrossRef]
- Atkinson, R.H.; Bamford, W.E.; Broch, E.; Deere, D.U.; Franklin, J.A.; Nieble, C.; Rummel, F.; Tarkoy, R.J.; Van Duyse, H. Suggested Methods for Determining Hardness and Abrasiveness of Rocks. Int. J. Rock Mech. Min. Sci. 1978, 15, 89–97. [Google Scholar]
- International Society for Rock Mechanics and Rock Engineering. Rock Characterization, Testing & Monitoring: ISRM Suggested Methods; Brown, E.T., Ed.; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Momeni, A.A.; Khanlari, G.R.; Heidari, M.; Sepahi, A.A.; Bazvand, E. New Engineering Geological Weathering Classifications for Granitoid Rocks. Eng. Geol. 2015, 185, 43–51. [Google Scholar] [CrossRef]
- Pola, A.; Crosta, G.; Fusi, N.; Barberini, V.; Norini, G. Influence of Alteration on Physical Properties of Volcanic Rocks. Tectonophysics 2012, 566–567, 67–86. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G.M. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Young, G.M.; Wayne Nesbitt, H. Paleoclimatology and Provenance of the Glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A Chemostratigraphic Approach. Geol. Soc. Am. Bull. 1999, 111, 264–274. [Google Scholar] [CrossRef]
- Zhao, H.; Grasby, S.E.; Wang, X.; Zhang, L.; Liu, Y.; Chen, Z.-Q.; Hu, Z.; Huang, Y. Mercury Enrichments during the Carnian Pluvial Event (Late Triassic) in South China. Bulletin 2022, 134, 2709–2720. [Google Scholar]
- Aydin, A.; Basu, A. The Schmidt Hammer in Rock Material Characterization. Eng. Geol. 2005, 81, 1–14. [Google Scholar] [CrossRef]
- Köken, E.; Özarslan, A.; Bacak, G. Weathering Effects on Physical Properties and Material Behaviour of Granodiorite Rocks. Rock Mech. Rock Eng. Past Futur. 2016, 1, 331–336. [Google Scholar] [CrossRef]
- Ferrari, L.; Conticelli, S.; Burlamacchi, L.; Manetti, P. Volcanological Evolution of the Monte Amiata, Southern Tuscany: New Geological and Petrochemical Data. Acta Vulcanol. 1996, 8, 41–56. [Google Scholar]
- Laurenzi, M.A.; La Felice, S. Nuovi Dati Geocronologici Sulle Vulcaniti Incontrate Dal Pozzo David Lazzaretti. In Vulcano Monte Amiata Esa Ed. Firenze; Regione Toscana: Florence, Italy, 2017; pp. 233–244. [Google Scholar]
- Marroni, M.; Moratti, G.; Costantini, A.; Conticelli, S.; Benvenuti, M.G.; Pandolfi, L.; Bonini, M.; Cornamusini, G.; Laurenzi, M.A. Geology of the Monte Amiata Region, Southern Tuscany, Central Italy. Ital. J. Geosci. 2015, 134, 171–199. [Google Scholar] [CrossRef]
- Peccerillo, A. Plio-Quaternary Magmatism in Italy. Episodes 2003, 26, 222–226. [Google Scholar] [CrossRef]
- Brogi, A.; Liotta, D.; Meccheri, M.; Fabbrini, L. Transtensional Shear Zones Controlling Volcanic Eruptions: The Middle Pleistocene Mt Amiata Volcano (Inner Northern Apennines, Italy). Terra Nov. 2010, 22, 137–146. [Google Scholar] [CrossRef]
- Conticelli, S.; Boari, E.; Burlamacchi, L.; Cifelli, F.; Moscardi, F.; Laurenzi, M.A.; Pedraglio, L.F.; Francalanci, L.; Benvenuti, M.G.; Braschi, E.; et al. Geochemistry and Sr-Nd-Pb Isotopes of Monte Amiata Volcano, Central Italy: Evidence for Magma Mixing between High-K Calc-Alkaline and Leucititic Mantle-Derived Magmas. Ital. J. Geosci. 2015, 134, 266–290. [Google Scholar] [CrossRef]
- Cadoux, A.; Pinti, D.L. Hybrid Character and Pre-Eruptive Events of Mt Amiata Volcano (Italy) Inferred from Geochronological, Petro-Geochemical and Isotopic Data. J. Volcanol. Geotherm. Res. 2009, 179, 169–190. [Google Scholar] [CrossRef]
- Principe, C.; Vezzoli, L. Characteristics and Significance of Intravolcanic Saprolite Paleoweathering and Associate Paleosurface in a Silicic Effusive Volcano: The Case Study of Monte Amiata (Middle Pleistocene, Tuscany, Italy). Geomorphology 2021, 392, 107922. [Google Scholar] [CrossRef]
- Pavich, M.J. Processes and Rates of Saprolite Production and Erosion on a Foliated Granitic Rock of the Virginia Piedmont. Rates Chem. Weather. Rocks Miner. 1986, 2, 551–590. [Google Scholar]
- Deere, D.U.; Patton, F.U. Slope Stability in Residual Soils. In Proceedings of the 4th Pan-American Conference on Soil Mechanics and Foundation Engineering; American Society of Civil Engineers: Reston, VA, USA, 1971; pp. 87–170. [Google Scholar]
- Aydin, A.; Duzgoren-Aydin, N.S.; Malpas, J.G. A Review of Igneous and Metamorphic Saprolites. J. Nepal Geol. Soc. 2000, 22, 11–16. [Google Scholar] [CrossRef]
- Deere, D.U.; Miller, R.P. Engineering Classification and Index Properties for Intact Rock; Kirtland Air Force Base: Albuquerque, NM, USA; p. 1966.
- Karaman, K.; Kesimal, A. A Comparative Study of Schmidt Hammer Test Methods for Estimating the Uniaxial Compressive Strength of Rocks. Bull. Eng. Geol. Environ. 2015, 74, 507–520. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Tonnizam Mohamad, E.; Momeni, E.; Monjezi, M.; Sundaram Narayanasamy, M. Prediction of the Strength and Elasticity Modulus of Granite through an Expert Artificial Neural Network. Arab. J. Geosci. 2016, 9, 1–16. [Google Scholar] [CrossRef]
- Hebib, R.; Belhai, D.; Alloul, B. Estimation of Uniaxial Compressive Strength of North Algeria Sedimentary Rocks Using Density, Porosity, and Schmidt Hardness. Arab. J. Geosci. 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Yagiz, S. Predicting Uniaxial Compressive Strength, Modulus of Elasticity and Index Properties of Rocks Using the Schmidt Hammer. Bull. Eng. Geol. Environ. 2009, 68, 55–63. [Google Scholar] [CrossRef]
- International Society for Rock Mechanics, I. Suggested Methods for Determining Hardness and Abrasiveness of Rocks; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- ASTM. Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method; ASTM International: Conshohocken, PA, USA, 2001. [Google Scholar]
- Basu, A.; Aydin, A. A Method for Normalization of Schmidt Hammer Rebound Values. Int. J. Rock Mech. Min. Sci. 2004, 41, 1211–1214. [Google Scholar] [CrossRef]
- Aydin, A. ISRM Suggested Method for Determination of the Schmidt Hammer Rebound Hardness: Revised Version. Int. J. Rock Mech. Min. Sci. 2009, 46, 627–634. [Google Scholar] [CrossRef]
- International Society for Rock Mechanics and Rock Engineering. Suggested Methods for Determining Water Content, Porosity, Density Absorption and Related Properties and Swelling and Slake-Durability Index Properties; International Society for Rock Mechanics and Rock Engineering: Salzburg, Austria, 1977; Volume 16. [Google Scholar]
- Germaine, J.T.; Germaine, A.V. Geotechnical Laboratory Measurements for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Iscan, A.G.; Kok, M. V Porosity and Permeability Determinations in Sandstone and Limestone Rocks Using Thin Section Analysis Approach. Energy Sources Part A Recover. Util. Environ. Eff. 2009, 31, 568–575. [Google Scholar] [CrossRef]
- Pavičić, I.; Briševac, Z.; Vrbaški, A.; Grgasović, T.; Duić, Ž.; Šijak, D.; Dragičević, I. Geometric and Fractal Characterization of Pore Systems in the Upper Triassic Dolomites Based on Image Processing Techniques (Example from Žumberak Mts, NW Croatia). Sustainability 2021, 13, 7668. [Google Scholar] [CrossRef]
- Datta, D.; Thakur, N.; Ghosh, S.; Poddar, R.; Sengupta, S. Determination of Porosity of Rock Samples from Photomicrographs Using Image Analysis. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 320–325. [Google Scholar]
- Oliveira, E.R.; Disperati, L.; Cenci, L.; Pereira, L.G.; Alves, F.L. Multi-Index Image Differencing Method (MINDED) for Flood Extent Estimations. Remote Sens. 2019, 11, 1305. [Google Scholar] [CrossRef]
- Viti, C. Serpentine Minerals Discrimination by Thermal Analysis. Am. Mineral. 2010, 95, 631–638. [Google Scholar] [CrossRef]
- Smykatz-Kloss, W. Differential Thermal Analysis: Application and Results in Mineralogy; Springer: Berlin, Germany, 1974. [Google Scholar]
- Russell, M.; Parfitt, R.L.; Claridge, G.G.C. Estimation of the Amounts of Allophane and Other Materials in the Clay Fraction of an Egmont Loam Profile and Other Volcanic Ash Soils, New Zealand. Aust. J. Soil Res. 1981, 19, 185–195. [Google Scholar] [CrossRef]
- Ding, Z.; Frost, R.L. Controlled Rate Thermal Analysis of Nontronite. Thermochim. Acta 2002, 389, 185–193. [Google Scholar] [CrossRef]
- Bloise, A.; Belluso, E.; Barrese, E.; Miriello, D.; Apollaro, C. Synthesis of Fe-Doped Chrysotile and Characterization of the Resulting Chrysotile Fibers. Cryst. Res. Technol. 2009, 44, 590–596. [Google Scholar] [CrossRef]
- Viti, C.; Giacobbe, C.; Gualtieri, A.F. Quantitative Determination of Chrysotile in Massive Serpentinites Using DTA: Implications for Asbestos Determinations. Am. Mineral. 2011, 96, 1003–1011. [Google Scholar] [CrossRef]
- Kumavat, H.R.; Chandak, N.R.; Patil, I.T. Factors Influencing the Performance of Rebound Hammer Used for Non-Destructive Testing of Concrete Members: A Review. Case Stud. Constr. Mater. 2021, 14, e00491. [Google Scholar] [CrossRef]
- Sousa, L.M.O.; Suárez del Río, L.M.; Calleja, L.; Ruiz de Argandoña, V.G.; Rodríguez Rey, A. Influence of Microfractures and Porosity on the Physico-Mechanical Properties and Weathering of Ornamental Granites. Eng. Geol. 2005, 77, 153–168. [Google Scholar] [CrossRef]
Outcrop ID | Test Site ID | Lithology | Weathering Grade | (gr/cm3) | (-) | (%) | (%) | Weight Loss (%) | (-) |
---|---|---|---|---|---|---|---|---|---|
ST_1 | VIVO1 | trachyte | I | 2.41 | 2.55 | 5.5 | 1 | 1.24 | 28 |
ST_1 | VIVO2 | trachyte | I | 2.45 | - | - | 0.5 | 0.85 | 44 |
ST_2 | VIVO3 | trachyte | I | 2.34 | 2.51 | 6.8 | 10 | 1.52 | 23 |
ST_2 | VIVO4 | pumice | I | 1.60 | 2.47 | 35.2 | 35 | 2.41 | n.d. |
ST_2 | VIVO5 | pumice | I | 1.62 | - | - | 52 | 2.12 | n.d. |
ST_2 | VIVO6 | trachyte | I | 2.36 | 2.52 | 6.3 | 2 | 2.29 | 38 |
ST_2 | VIVO19 | trachyte | I | 2.32 | 2.52 | 7.6 | 4 | 1.30 | 26 |
ST_2 | VIVO21 | pumice | I | 1.87 | 2.51 | 25.5 | 20 | 1.91 | 19 |
ST_3 | VIVO7 | trachyte | I | 2.16 | 2.53 | 14.6 | 7 | 2.72 | - |
ST_3 | VIVO8 | trachyte | I | 2.45 | 2.54 | 3.5 | 2 | 1.16 | 36 |
ST_3 | VIVO9 | trachyte | I | 2.33 | 2.51 | 11.9 | 3 | 1.61 | - |
ST_3 | VIVO22 | trachyte | I | 2.10 | 2.53 | 16.7 | 18 | 1.85 | 23 |
ST_4 | VIVO10 | trachyte | I | 2.35 | 2.52 | 6.6 | 3 | 1.45 | 32 |
ST_4 | VIVO11 | trachyte | I-II | 2.21 | 2.51 | 12.0 | 22 | 1.87 | - |
ST_4 | VIVO12 | trachyte | II | 2.13 | 2.49 | 14.5 | 3 | 2.79 | - |
ST_4 | VIVO18 | trachyte | II | 2.17 | 2.43 | 1.2 | 3 | 0.27 | - |
ST_5 | VIVO13 | trachyte | II | 2.31 | 2.52 | 8.2 | 5 | 1.31 | 35 |
ST_5 | VIVO14 | trachyte | II | 2.31 | - | - | 5 | 2.20 | - |
ST_6 | VIVO16 | trachyte | III | 2.22 | 2.55 | 12.6 | 2 | 2.13 | 14 |
ST_6 | VIVO17 | trachyte | III | 2.40 | - | - | 7 | 1.19 | n.d. |
ST_7 | ABB1 | trachyte | I-II | 2.27 | 2.63 | 13.7 | 13 | 1.66 | 33 |
ST_7 | ABB2 | trachyte | I-II | 2.31 | 2.59 | 10.7 | 4 | 1.13 | 35 |
ST_7 | VIVO23 | trachyte | I | 2.23 | 2.61 | 14.6 | 3 | 1.02 | 38 |
ST_7 | VIVO24 | trachyte | I | 2.27 | 2.53 | 10.3 | 3 | 1.18 | - |
ID Sample | SiO2 | Al2O3 | MgO | FeO | CaO | Na2O | K2O | Na2O + K2O | FeO + MgO |
---|---|---|---|---|---|---|---|---|---|
VIVO1 | 55.82 | 27.64 | 0.23 | 14.32 | 1.22 | 0.33 | 0.44 | 1.99 | 14.55 |
VIVO1 | 58.95 | 23.70 | 0.39 | 15.15 | 1.40 | 0.12 | 0.30 | 1.82 | 15.53 |
VIVO1 | 59.46 | 29.06 | 0.33 | 9.31 | 1.22 | 0.31 | 0.30 | 1.84 | 9.64 |
VIVO4 | 56.50 | 37.39 | 0.08 | 4.46 | 0.78 | 0.30 | 0.50 | 0.50 | 4.54 |
VIVO4 | 54.63 | 40.35 | 0.24 | 4.11 | 0.26 | 0.15 | 0.26 | 0.26 | 4.35 |
VIVO4 | 59.23 | 32.84 | 0.74 | 5.61 | 0.81 | 0.35 | 0.42 | 0.42 | 6.35 |
VIVO7 | 51.28 | 43.26 | 0.31 | 3.64 | 0.47 | 0.41 | 0.62 | 1.51 | 3.94 |
VIVO7 | 53.04 | 42.39 | 0.03 | 3.41 | 0.55 | 0.24 | 0.35 | 1.13 | 3.44 |
VIVO7 | 77.55 | 13.19 | 0.00 | 0.37 | 2.15 | 2.76 | 3.99 | 8.90 | 0.37 |
VIVO7 | 78.81 | 12.97 | 0.00 | 0.37 | 3.30 | 3.34 | 1.20 | 7.84 | 0.37 |
VIVO13 | 51.33 | 46.52 | 0.27 | 0.43 | 0.42 | 0.42 | 0.61 | 1.45 | 0.70 |
VIVO13 | 50.68 | 47.68 | 0.22 | 0.60 | 0.55 | 0.16 | 0.11 | 0.82 | 0.81 |
VIVO13 | 49.72 | 47.42 | 0.25 | 0.57 | 0.95 | 0.44 | 0.64 | 2.03 | 0.82 |
ABB1 | 83.29 | 9.06 | 0.00 | 0.11 | 0.40 | 0.70 | 6.44 | 7.54 | 0.11 |
ABB1 | 84.92 | 8.56 | 0.00 | 0.13 | 0.30 | 0.54 | 5.54 | 6.38 | 0.13 |
ABB1 | 85.74 | 7.84 | 0.00 | 0.08 | 0.20 | 0.60 | 5.54 | 6.34 | 0.08 |
VIVO16 | 52.44 | 45.87 | - | - | 1.69 | - | - | 1.69 | 0.00 |
VIVO16 | 52.08 | 46.04 | - | - | 1.88 | - | - | 1.88 | 0.00 |
VIVO16 | 59.11 | 26.62 | - | 2.91 | 1.84 | 1.12 | 7.61 | 10.57 | 2.91 |
VIVO16 | 57.98 | 31.69 | - | 1.68 | - | 0.79 | 7.87 | 8.66 | 1.68 |
VIVO1 | 55.82 | 27.64 | 0.23 | 14.32 | 1.22 | 0.33 | 0.44 | 1.99 | 14.55 |
VIVO1 | 58.95 | 23.70 | 0.39 | 15.15 | 1.40 | 0.12 | 0.30 | 1.82 | 15.53 |
VIVO1 | 59.46 | 29.06 | 0.33 | 9.31 | 1.22 | 0.31 | 0.30 | 1.84 | 9.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Addario, E.; Giorgetti, G.; Magrini, C.; Disperati, L. Weathering Effects on Engineering Geological Properties of Trachydacitic Volcanic Rocks from the Monte Amiata (Southern Tuscany, Italy). Geosciences 2023, 13, 299. https://doi.org/10.3390/geosciences13100299
D’Addario E, Giorgetti G, Magrini C, Disperati L. Weathering Effects on Engineering Geological Properties of Trachydacitic Volcanic Rocks from the Monte Amiata (Southern Tuscany, Italy). Geosciences. 2023; 13(10):299. https://doi.org/10.3390/geosciences13100299
Chicago/Turabian StyleD’Addario, Enrico, Giovanna Giorgetti, Claudia Magrini, and Leonardo Disperati. 2023. "Weathering Effects on Engineering Geological Properties of Trachydacitic Volcanic Rocks from the Monte Amiata (Southern Tuscany, Italy)" Geosciences 13, no. 10: 299. https://doi.org/10.3390/geosciences13100299
APA StyleD’Addario, E., Giorgetti, G., Magrini, C., & Disperati, L. (2023). Weathering Effects on Engineering Geological Properties of Trachydacitic Volcanic Rocks from the Monte Amiata (Southern Tuscany, Italy). Geosciences, 13(10), 299. https://doi.org/10.3390/geosciences13100299