Role of Urban Landscapes in Changing the Irrigation Water Requirements in Arid Climate
Abstract
:1. Introduction
- How does the land use change affect the urban irrigation water requirement?
- What is the role of urban geometry in altering the urban irrigation water requirement?
- How much does the type of landscape affect the urban irrigation water requirement?
2. Methodology
3. Results and Discussion
3.1. Land Use Change and Its Impacts on Irrigation Water Requirements
3.2. Building Geometry and Its Effects on Irrigation Water Requirements
3.3. Landscape Diversity and Its Impacts on Irrigation Water Requirements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawadi, S.; Ahmad, S. Changing climatic conditions in the Colorado River Basin: Implications for water resources management. J. Hydrol. 2012, 430–431, 127–141. [Google Scholar] [CrossRef]
- Dawadi, S.; Ahmad, S. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. J. Environ. Manag. 2013, 114, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Qaiser, K.; Ahmad, S.; Johnson, W.; Batista, J.R. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model. Environ. Manag. 2012, 51, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Qaiser, K.; Ahmad, S.; Johnson, W.; Batista, J. Evaluating the impact of water conservation on fate of outdoor water use: A study in an arid region. J. Environ. Manag. 2011, 92, 2061–2068. [Google Scholar] [CrossRef]
- Stave, K.A. A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. J. Environ. Manag. 2003, 67, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Saher, R. Kaleidoscope of Urban Evapotranspiration: Exploring the Science and Modeling Approaches. Ph.D. Thesis, University of Nevada, Reno, NV, USA, 2021. [Google Scholar]
- Mini, C.; Hogue, T.; Pincetl, S. Estimation of residential outdoor water use in Los Angeles, California. Landsc. Urban Plan. 2014, 127, 124–135. [Google Scholar] [CrossRef]
- Sovocool, K.A. Xeriscape Conversion Study Final Report By. Area, 93. 2005. Available online: http://www.allianceforwaterefficiency.org/Xeriscape_Water_Savings.aspx (accessed on 6 October 2022).
- Saher, R.; Middel, A.; Stephen, H.; Ahmad, S. Assessing the Microclimate Effects and Irrigation Water Requirements of Mesic, Oasis, and Xeric Landscapes. Hydrology 2022, 9, 104. [Google Scholar] [CrossRef]
- Saher, R.; Stephen, H.; Ahmad, S. Urban evapotranspiration of green spaces in arid regions through two established approaches: A review of key drivers, advancements, limitations, and potential opportunities. Urban Water J. 2020, 18, 115–127. [Google Scholar] [CrossRef]
- Hilaire, R.S.; Arnold, M.A.; Wilkerson, D.C.; Devitt, D.A.; Hurd, B.H.; Lesikar, B.J.; Lohr, V.I.; Martin, C.A.; McDonald, G.V.; Morris, R.L.; et al. Efficient Water Use in Residential Urban Landscapes. Hortscience 2008, 43, 2081–2092. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Beecham, S.; Hassanli, A.M.; Kazemi, F. Water requirements of urban landscape plants: A comparison of three factor-based approaches. Ecol. Eng. 2013, 57, 276–284. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; E Hoffman, M. The Green CTTC model for predicting the air temperature in small urban wooded sites. Build. Environ. 2002, 37, 1279–1288. [Google Scholar] [CrossRef]
- Giannini, M.B.; Belfiore, O.R.; Parente, C.; Santamaria, R. Land Surface Temperature from Landsat 5 TM images: Comparison of different methods using airborne thermal data. J. Eng. Sci. Technol. Rev. 2015, 8, 83–90. [Google Scholar] [CrossRef]
- Saher, R.; Stephen, H.; Ahmad, S. Effect of land use change on summertime surface temperature, albedo, and evapotranspiration in Las Vegas Valley. Urban Clim. 2021, 39, 100966. [Google Scholar] [CrossRef]
- Bernard, J.; Bocher, E.; Petit, G.; Palominos, S. Sky View Factor Calculation in Urban Context: Computational Performance and Accuracy Analysis of Two Open and Free GIS Tools. Climate 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Saher, R.; Stephen, H.; Ahmad, S. Understanding the summertime warming in canyon and non-canyon surfaces. Urban Clim. 2021, 38, 100916. [Google Scholar] [CrossRef]
- Vahmani, P.; Hogue, T.S. Urban irrigation effects on WRF-UCM summertime forecast skill over the Los Angeles metropolitan area. J. Geophys. Res. Atmos. 2015, 120, 9869–9881. [Google Scholar] [CrossRef]
- Salvador, R.; Bautista-Capetillo, C.; Playán, E. Irrigation performance in private urban landscapes: A study case in Zaragoza (Spain). Landsc. Urban Plan. 2011, 100, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Lowry, J.H.; Ramsey, R.D.; Kjelgren, R.K. Predicting urban forest growth and its impact on residential landscape water demand in a semiarid urban environment. Urban For. Urban Green. 2011, 10, 193–204. [Google Scholar] [CrossRef]
- Litvak, E.; McCarthy, H.R.; Pataki, D.E. Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation. Tree Physiol. 2012, 32, 373–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvak, E.; Bijoor, N.S.; Pataki, D.E. Adding trees to irrigated turfgrass lawns may be a water-saving measure in semi-arid environments. Ecohydrology 2013, 7, 1314–1330. [Google Scholar] [CrossRef]
- Qiu, G.; Tan, S.; Wang, Y.; Yu, X.; Yan, C. Characteristics of Evapotranspiration of Urban Lawns in a Sub-Tropical Megacity and Its Measurement by the ‘Three Temperature Model + Infrared Remote Sensing’ Method. Remote Sens. 2017, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Integrated modeling of pedestrian energy exchange and thermal comfort in urban street canyons. Build. Environ. 2007, 42, 2396–2409. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Planning-oriented assessment of street thermal comfort in arid regions. In Proceedings of the 21th Conference on Passive and Low Energy Architecture, Eindhoven, The Netherlands, 19–22 September 2004; Volume 41, pp. 19–22. [Google Scholar]
- Shishegar, N. Street Design and Urban Microclimate: Analyzing the Effects of Street Geometry and Orientation on Airflowand Solar Access in Urban Canyons. J. Clean Energy Technol. 2013, 52–56. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, Y.; Qiu, G.Y. Quantifying the Evapotranspiration Rate and Its Cooling Effects of Urban Hedges Based on Three-Temperature Model and Infrared Remote Sensing. Remote Sens. 2019, 11, 202. [Google Scholar] [CrossRef] [Green Version]
- Heilman, J.L.; Gesch, R.W. Effects of turfgrass evaporation on external temperatures of buildings. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 1991, 43, 185–194. [Google Scholar] [CrossRef]
- Hurd, B.H.; Hilaire, R.S.; White, J.M. Residential landscapes, homeowner attitudes, and water-wise choices in New Mexico. HortTechnology 2006, 16, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Al-Ajlouni, M.G.; VanLeeuwen, D.M.; Hilaire, R.S. Linking Urban Residential Landscape Types in a Desert Environment to Landscape Water Budgets. HortTechnology 2014, 24, 307–312. [Google Scholar] [CrossRef]
- Haley, M.B.; Dukes, M.D.; Miller, G.L.; Haman, D.Z. Home Irrigation and Landscape Combinations for Water Conservation in Florida. EDIS 2005, 2005. [Google Scholar] [CrossRef]
- Volo, T.J.; Vivoni, E.R.; Martin, C.A.; Earl, S.; Ruddell, B.L. Modelling soil moisture, water partitioning, and plant water stress under irrigated conditions in desert urban areas. Ecohydrology 2013, 7, 1297–1313. [Google Scholar] [CrossRef]
- Volo, T.J.; Vivoni, E.R.; Ruddell, B.L. An ecohydrological approach to conserving urban water through optimized landscape irrigation schedules. Landsc. Urban Plan. 2015, 133, 127–132. [Google Scholar] [CrossRef]
- Manea, A.; Leishman, M. Leaf Area Index Drives Soil Water Availability and Extreme Drought-Related Mortality under Elevated CO2 in a Temperate Grassland Model System. PLoS ONE 2014, 9, e91046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, X.; Llausàs, A.; Ribas, A.; Saurí, D. Watering the garden: Preferences for alternative sources in suburban areas of the Mediterranean coast. Local Environ. 2014, 20, 548–564. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Kjelgren, R.; Rupp, L.; Kilgren, D. Water conservation in urban landscapes. HortScience 2000, 35, 1037–1040. [Google Scholar] [CrossRef] [Green Version]
- Spinti, J.E.; Hilaire, R.S.; VanLeeuwen, D. Balancing Landscape Preferences and Water Conservation in a Desert Community. HortTechnology 2004, 14, 72–77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saher, R.; Stephen, H.; Ahmad, S. Role of Urban Landscapes in Changing the Irrigation Water Requirements in Arid Climate. Geosciences 2023, 13, 14. https://doi.org/10.3390/geosciences13010014
Saher R, Stephen H, Ahmad S. Role of Urban Landscapes in Changing the Irrigation Water Requirements in Arid Climate. Geosciences. 2023; 13(1):14. https://doi.org/10.3390/geosciences13010014
Chicago/Turabian StyleSaher, Rubab, Haroon Stephen, and Sajjad Ahmad. 2023. "Role of Urban Landscapes in Changing the Irrigation Water Requirements in Arid Climate" Geosciences 13, no. 1: 14. https://doi.org/10.3390/geosciences13010014
APA StyleSaher, R., Stephen, H., & Ahmad, S. (2023). Role of Urban Landscapes in Changing the Irrigation Water Requirements in Arid Climate. Geosciences, 13(1), 14. https://doi.org/10.3390/geosciences13010014