Establishing Provenance from Highly Impoverished Heavy Mineral Suites: Detrital Apatite and Zircon Geochronology of Central North Sea Triassic Sandstones
Abstract
:1. Introduction
2. Geological Background
2.1. Structure
2.2. Stratigraphy
2.3. Depositional Setting
2.4. Hinterland Uplift
3. Previous Provenance Studies
4. Analytical Methods
5. Results
5.1. Zircon Geochronology
5.2. Apatite Geochronology
5.3. Apatite Trace Elements
6. Interpretation
6.1. Zircon
6.2. Apatite
6.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pooler, J.; Amory, M. A subsurface perspective on ETAP-an integrated development of seven North Sea fields. In Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference; Fleet, A.J., Boldy, S.A.R., Eds.; Geological Society: London, UK, 1999; pp. 993–1006. [Google Scholar]
- Archer, S.; Ward, S.; Menad, S.; Shahim, I.; Grant, N.; Sloan, H.; Cole, A. The Jasmine discovery, Central North Sea, UKCS. In Petroleum Geology: From Mature Basins to New Frontiers: Proceedings of the 7th Petroleum Geology Conference; Vining, B.A., Pickering, S.C., Eds.; Geological Society: London, UK, 2010; pp. 225–243. [Google Scholar]
- Hodgson, N.A.; Farnsworth, J.; Fraser, A.J. Salt-related tectonics, sedimentation and hydrocarbon plays in the Central Graben, North Sea, UKCS. In Geological Insights for the Next Decade; Hardman, R.F.P., Ed.; Geological Society: London, UK, 1992; Special Publications; Volume 67, pp. 31–63. [Google Scholar]
- Smith, R.I.; Hodgson, N.; Fulton, M. Salt control on Triassic reservoir distribution, UKCS Central North Sea. In Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference; Parker, J.R., Ed.; Geological Society: London, UK, 1993; pp. 547–557. [Google Scholar]
- McKie, T. Climatic and tectonic controls on Triassic dryland terminal fluvial system architecture, Central North Sea. In Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin; Martinius, A.W., Ravnås, R., Howell, J.A., Steel, R.J., Wonham, J.P., Eds.; Wiley: Blackwell, UK, 2014; pp. 19–57. [Google Scholar]
- Stricker, S.; Jones, S.J.; Sathar, S.; Bowen, L.; Oxtoby, N. Exceptional reservoir quality in HPHT reservoir settings: Examples from the Skagerrak Formation of the Heron Cluster, North Sea, UK. Mar. Pet. Geol. 2016, 77, 198–215. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Jones, S.J.; Saville, C.; Stricker, S.; Wang, G.; Tang, L.; Fan, X.; Chen, J. The role played by carbonate cementation in controlling reservoir quality of the Triassic Skagerrak Formation, Norway. Mar. Pet. Geol. 2017, 85, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Akpokodje, M.; Melvin, A.; Churchill, J.; Burns, S.; Morris, J.; Kape, S.; Wakefield, M.; Ameerali, R. Regional study of controls on reservoir quality in the Triassic Skagerrak Formation of the Central North Sea. In Petroleum Geology of NW Europe: 50 Years of Learning: Proceedings of the 8th Petroleum Geology Conference; Bowman, M., Levell, B., Eds.; Geological Society: London, UK, 2018; pp. 125–146. [Google Scholar]
- Gray, E.; Hartley, A.; Howell, J. The influence of stratigraphy and facies distribution on reservoir quality and production performance in the Triassic Skagerrak Formation of the UK and Norwegian Central North Sea. In Cross-Border Themes in Petroleum Geology I: The North Sea; Patruno, S., Archer, S.G., Chiarella, D., Howell, J.A., Jackson, C.A.L., Kombrink, H., Eds.; Geological Society: London, UK, 2020; Special Publications; Volume 494. [Google Scholar]
- Smyth, H.R.; Morton, A.C.; Richardson, N.; Scott, R.A. Sediment provenance studies in hydrocarbon exploration and production: An introduction. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N., Eds.; Geological Society: London, UK, 2015; Special Publication; Volume 386, pp. 1–6. [Google Scholar]
- McKie, T. and Audretsch, P. Depositional and structural controls on Triassic reservoir performance in the Heron Cluster, ETAP, Central North Sea. In Petroleum Geology: North-West Europe and Global Perspectives: Proceedings of the 6th Petroleum Geology Conference; Doré, A.G., Vining, B.A., Eds.; Geological Society: London, UK, 2005; pp. 285–298. [Google Scholar]
- McKie, T.; Jolley, S.J.; Kristensen, M.B. Stratigraphic and structural compartmentalization of dryland fluvial reservoirs: Triassic Heron Cluster, Central North Sea. In Reservoir Compartmentalization; Jolley, S.J., Fisher, Q.J., Ainsworth, R.B., Vrolijk, P.J., Delisle, S., Eds.; Geological Society: London, UK, 2010; Special Publications; Volume 347, pp. 165–198. [Google Scholar]
- Jarsve, E.M.; Maast, T.; Gabrielsen, R.H.; Faleide, J.I.; Nystuen, J.P.; Sassier, C. Seismic stratigraphic subdivision of the Triassic succession in the Central North Sea, integrating seismic reflection and well data. J. Geol. Soc. 2014, 171, 353–374. [Google Scholar] [CrossRef] [Green Version]
- Jeans, C.V.; Reed, S.J.B.; Xing, M. Heavy mineral stratigraphy in the UK Trias: Western Approaches, onshore England and the Central North Sea. In Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference; Parker, J.R., Ed.; Geological Society: London, UK, 1993; pp. 609–624. [Google Scholar]
- Mange-Rajetzky, M.A. Subdivision and correlation of monotonous sandstone sequences using high-resolution heavy mineral analysis, a case study: The Triassic of the Central Graben. In Dating and Correlating Biostratigraphically-Barren Strata; Dunay, R.E., Hailwood, E., Eds.; Geological Society: London, UK, 1995; Special Publications; Volume 89, pp. 23–30. [Google Scholar]
- Mouritzen, C.; Farris, M.A.; Morton, A.; Matthews, S. Integrated Triassic stratigraphy of the greater Culzean area, UK central North Sea. Pet. Geosci. 2017, 24, 197–207. [Google Scholar] [CrossRef]
- Goldsmith, P.J.; Rich, B.; Standring, J. Triassic correlation and stratigraphy in the South Central Graben, UK North Sea. In Permian and Triassic Rifting in Northwest Europe; Boldy, S.A.R., Ed.; Geological Society: London, UK, 1995; Special Publications; Volume 91, pp. 123–143. [Google Scholar]
- Burgess, R.; Jolley, D.; Hartley, A. Stratigraphical palynology of the Middle to Late Triassic successions of the Central North Sea. Pet. Geosci. 2021, 128. [Google Scholar] [CrossRef]
- Hurst, A.; Morton, A. Provenance models: The role of sandstone mineral-chemical stratigraphy. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Scott, R.A., Smyth, H., Morton, A., Richardson, N., Eds.; Geological Society of London: London, UK, 2014; Special Publications; Volume 386, pp. 7–26. [Google Scholar]
- Ziegler, P.A. Evolution of the Arctic-North Atlantic and the Western Tethys. Mem. Am. Assoc. Pet. Geol. 1988, 43, 164–196. [Google Scholar]
- McKie, T.; Williams, B. Triassic palaeogeography and fluvial dispersal across the northwest European basins. Geol. J. 2009, 44, 711–741. [Google Scholar] [CrossRef]
- Ziegler, P.A.; Van Hoorn, B. Evolution of the North Sea rift system. In Extensional Tectonics and Stratigraphy of the North Atlantic Margins; Tankard, A.J., Balkwill, H.R., Eds.; Memoir of the American Association of Petroleum Geologists: Tulsa, OK, USA, 1989; Volume 46, pp. 471–500. [Google Scholar]
- Penge, J.; Munns, J.W.; Taylor, B.; Windle, T.M.F. Rift-raft tectonics: Examples of gravitational tectonics from the Zechstein basins of northwest Europe. In Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference; Fleet, A.J., Boldy, S.A.R., Eds.; Geological Society: London, UK, 1999; pp. 201–213. [Google Scholar]
- Cartwright, J.; Stewart, S.; Clark, J. Salt dissolution and salt-related deformation of the Forth Approaches Basin, UK North Sea. Mar. Pet. Geol. 2001, 18, 757–778. [Google Scholar] [CrossRef]
- Jackson, C.A.L.; Kane, K.E.; Larsen, E. Structural evolution of minibasins on the Utsira High, northern North Sea; implications for Jurassic sediment dispersal and reservoir distribution. Pet. Geosci. 2010, 16, 105–120. [Google Scholar] [CrossRef]
- Glennie, K.W. Permian and Triassic rifting in northwest Europe. In Permian and Triassic Rifting in Northwest Europe; Boldy, S.A.R., Ed.; Geological Society: London, UK, 1995; Special Publications; Volume 91, pp. 1–5. [Google Scholar]
- Karlo, J.F.; Van Buchem, F.S.P.; Moen, J.; Milroy, K. Triassic-age salt tectonics of the Central North Sea. Interpretation. Interpretation 2014, 2, SM19–SM28. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.M.; Badley, M.E.; Price, J.D.; Huck, I.W. The structural history of a transtensional basin: Inner Moray Firth, NE Scotland. J. Geol. Soc. 1990, 147, 87–103. [Google Scholar] [CrossRef]
- Badley, M.E.; Price, J.D.; Dahl, C.R.; Agdestein, T. The structural evolution of the north Viking Graben and its bearing upon extensional modes of basin formation (North Sea). J. Geol. Soc. 1988, 145, 455–472. [Google Scholar] [CrossRef]
- Steel, R.; Ryseth, A. The Triassic—Early Jurassic succession in the northern North Sea: Megasequence stratigraphy and intra-Triassic tectonics. In Tectonic Events Responsible for Britain’s Oil and Gas Reserves; Hardman, R.F.P., Brooks, J., Eds.; Geological Society: London, UK, 1990; Special Publications; Volume 55, pp. 139–168. [Google Scholar]
- Kuznir, N.J.; Park, R.G. The extensional strength of the continental lithosphere: Its dependence on geothermal gradient, crustal composition and thickness. In Continental Extensional Tectonics; Coward, M.P., Dewey, J.F., Hancock, P.L., Eds.; Geological Society: London, UK, 1987; Special Publications; Volume 28, pp. 35–52. [Google Scholar]
- Fisher, M.J.; Mudge, D.C. Triassic. In Introduction to the Petroleum Geology of the North Sea; Glennie, K.W., Ed.; Blackwell Scientific Publications: Oxford, UK, 1990; pp. 191–218. [Google Scholar]
- Goldsmith, P.J.; Hudson, G.; van Veen, P. Triassic. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea; Evans, D., Graham, C., Armour, A., Bathurst, P., Eds.; Geological Society: London, UK, 2003; pp. 123–143. [Google Scholar]
- Cameron, T.D.J. Triassic, Permian and Pre-Permian of the Central and Northern North Sea. In Lithostratigraphic Nomenclature of the UK North Sea; Knox, R.W.O’B., Cordey, W.G., Eds.; British Geological Survey: Nottingham, UK, 1993; pp. 25–41. [Google Scholar]
- Archer, S.G.; McKie, T.; Andrews, S.D.; Wilkins, A.D.; Hutchison, M.; Young-Ziolkowski, N.; Osunde, C.; Matheson, J.; Thackrey, S.; Lang, M.; et al. Triassic mudstones of the Central North Sea: Cross-border characterization, correlation and their palaeoclimatic significance. In Cross-Border Themes in Petroleum Geology I: The North Sea; Patruno, S., Archer, S.G., Chiarella, D., Howell, J.A., Jackson, C.A.L., Kombrink, H., Eds.; Geological Society: London, UK, 2020; Special Publications; Volume 494, pp. 333–378. [Google Scholar]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Epis. J. Int. Geosci. 2013, 36, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellwood, B.W.; Valdes, P.J. Mesozoic climates: General circulation models and the rock record. Sediment. Geol. 2006, 190, 269–287. [Google Scholar] [CrossRef]
- Ruffell, A.; Simms, M.J.; Wignall, P.B. The Carnian humid episode of the late Triassic: A review. Geol. Mag. 2016, 153, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, A.D.; Hurst, A.; Wilson, M.J.; Archer, S. Palaeo-environment in an ancient low-latitude, arid lacustrine basin with loessite: The Smith Bank Formation (Early Triassic) in the Central North Sea, UK Continental Shelf. Sedimentology 2017, 65, 335–359. [Google Scholar] [CrossRef] [Green Version]
- Burgess, R.; Jolley, D.; Hartley, A. Palaeoenvironmental reconstruction of Triassic floras from the Central North Sea. J. Geol. Soc. 2022, 179. [Google Scholar] [CrossRef]
- Hendriks, B.W.H.; Andriessen, P.A.M.; Huigen, Y.D.; Leighton, C.; Redfield, T.F.; Murrell, G.R.; Gallagher, K.; Nielsen, S.B. A fission track data compilation for Fennoscandia. Nor. Geol. Tidsskr. 2007, 87, 143–155. [Google Scholar]
- Holford, S.P.; Green, P.F.; Hillis, R.R.; Underhill, J.R.; Stoker, M.S.; Duddy, I.R. Multiple post-Caledonian exhumation episodes across NW Scotland revealed by apatite fission-track analysis. J. Geol. Soc. 2010, 167, 675–694. [Google Scholar] [CrossRef] [Green Version]
- Johannessen, K.C.; Kohlmann, F.; Ksienzyk, A.K.; Dunkl, I.; Jacobs, J. Tectonic evolution of the SW Norwegian passive margin based on low-temperature thermochronology from the innermost Hardangerfjord area. Nor. Geol. Tidsskr. 2013, 93, 243–260. [Google Scholar]
- Ksienzyk, A.K.; Dunkl, I.; Jacobs, J.; Fossen, H.; Kohlmann, F. From orogen to passive margin: Constraints from fission track and (U-Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Corfu, F., Gasser, D., Chew, D.M., Eds.; Geological Society: London, UK, 2014; Special Publications; Volume 390, pp. 679–702. [Google Scholar]
- Thomson, K.; Underhill, J.R.; Green, P.F.; Bray, R.J.; Gibson, H.J. Evidence from apatite fission track analysis for the post-Devonian burial and exhumation history of the northern Highlands, Scotland. Mar. Pet. Geol. 1999, 16, 27–39. [Google Scholar] [CrossRef]
- Japsen, P.; Green, P.F.; Chalmers, J.A.; Bonow, J.M. Mountains of southernmost Norway: Uplifted Miocene peneplains and re-exposed Mesozoic surfaces. J. Geol. Soc. 2018, 175, 721–741. [Google Scholar] [CrossRef]
- Fredin, O.; Viola, G.; Zwingmann, H.; Sørlie, R.; Brönner, M.; Lie, J.; Grandal, E.M.; Müller, A.; Margreth, A.; Vogt, C.; et al. The inheritance of a Mesozoic landscape in western Scandinavia. Nat. Commun. 2017, 8, 14879. [Google Scholar] [CrossRef] [PubMed]
- Stricker, S.; Jones, S.J.; Meadows, N.; Bowen, L. Reservoir quality of fluvial sandstone reservoirs in salt-walled mini-basins: An example from the Seagull field, Central Graben, North Sea, UK. Pet. Sci. 2018, 15, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Racey, A.; Love, M.A.; Bobolecki, R.M.; Walsh, J.N. The use of chemical element analyses in the study of biostratigraphically barren sequences: An example from the Triassic of the central North Sea (UKCS). In Dating and Correlating Biostratigraphically-Barren Strata; Dunay, R.E., Hailwood, E., Eds.; Geological Society: London, UK, 1995; Special Publications; Volume 89, pp. 69–105. [Google Scholar]
- Rubey, W.W. The size distribution of heavy minerals within a water-lain sandstone. J. Sediment. Petrol. 1933, 3, 3–29. [Google Scholar]
- Baba, J.; Komar, P.D. Settling velocities of irregular grains at low Reynolds numbers. J. Sediment. Petrol. 1981, 51, 121–128. [Google Scholar]
- Garzanti, E.; Andò, S.; Vezzoli, G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth Planet. Sci. Lett. 2008, 273, 138–151. [Google Scholar] [CrossRef]
- Pedersen, R.B.; Furnes, H.; Dunning, G.R. Some Norwegian ophiolites reconsidered. Norges Geologiske Undersøgelse 1988, 3, 80–85. [Google Scholar]
- Bluck, B.J. The Highland Boundary Fault and the Highland Border Complex. Scott. J. Geol. 2010, 46, 113–124. [Google Scholar] [CrossRef]
- Crowley, Q.G.; Strachan, R.A. U–Pb zircon constraints on obduction initiation of the Unst Ophiolite: An oceanic core complex in the Scottish Caledonides? J. Geol. Soc. 2015, 172, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Breitfeld, H.T.; Hall, R. The eastern Sundaland margin in the latest Cretaceous to Late Eocene: Sediment provenance and depositional setting of the Kuching and Sibu zones of Borneo. Gondwana Res. 2018, 63, 34–64. [Google Scholar] [CrossRef]
- Martin, J.R.; Redfern, J.; Horstwood, M.S.A.; Mory, A.J.; Williams, B.P.J. Detrital zircon age and provenance constraints on late Paleozoic ice-sheet growth and dynamics in Western and Central Australia. Aust. J. Earth Sci. 2019, 66, 183–207. [Google Scholar] [CrossRef]
- Meinhold, G.; Bassis, A.; Hinderer, M.; Lewin, A.; Berndt, J. Detrital zircon provenance of north Gondwana Palaeozoic sandstones from Saudi Arabia. Geol. Mag. 2021, 158, 442–458. [Google Scholar] [CrossRef]
- Sláma, J.; Walderhaug, O.; Fonneland, H.; Kosler, J.; Pedersen, R.B. Provenance of Neoproterozoic to upper Cretaceous sedimentary rocks, eastern Greenland: Implications for recognizing the sources of sediments in the Norwegian Sea. Sediment. Geol. 2011, 238, 254–267. [Google Scholar] [CrossRef]
- Sharman, G.R.; Graham, S.A.; Grove, M.; Kimbrough, D.L.; Wright, J.E. Detrital zircon provenance of the Late Cretaceous–Eocene California forearc: Influence of Laramide low-angle subduction on sediment dispersal and palaeogeography. Bull. Geol. Soc. Am. 2015, 127, 38–60. [Google Scholar] [CrossRef]
- Morton, A.C.; Claoué-Long, J.C.; Hallsworth, C.R. Zircon age and heavy mineral constraints on provenance of North Sea Carboniferous sandstones. Mar. Pet. Geol. 2001, 18, 319–337. [Google Scholar] [CrossRef]
- Lundmark, A.M.; Bue, E.P.; Gabrielsen, R.H.; Flaat, K.; Strand, T.; Ohm, S.E. Provenance of late Palaeozoic terrestrial sediments on the northern flank of the Mid North Sea High: Detrital zircon geochronology and rutile geochemical constraints. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N., Eds.; Geological Society: London, UK, 2014; Special Publications; Volume 386, pp. 243–259. [Google Scholar]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth-Sci. Rev. 2020, 201, 103044. [Google Scholar] [CrossRef]
- Cherniak, D.J. Diffusion in accessory minerals: Zircon, titanite, apatite, monazite and xenotime. Rev. Mineral. Geochem. 2010, 72, 827–869. [Google Scholar] [CrossRef]
- Harlov, D.E. Apatite: A fingerprint for metasomatic processes. Elements 2015, 11, 171–176. [Google Scholar] [CrossRef]
- Greig, I.P. Heavy Mineral Stratigraphy and Provenance of Triassic Sediments of the Central North Sea and Moray Firth. Ph.D. Thesis, University of Aberdeen, Aberdeen, UK, 2021. [Google Scholar]
- Morton, A.C.; Hallsworth, C.R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R.; Kunka, J.; Laws, E.; Payne, S.; Walder, D. Heavy mineral stratigraphy of the Clair Group (Devonian) in the Clair Field, west of Shetland, UK. In Application of Modern Stratigraphic Techniques: Theory and Case Histories; Ratcliffe, K.T., Zaitlin, B.A., Eds.; SEPM: Tulsa, OK, USA, 2010; Special Publications; Volume 94, pp. 183–199. [Google Scholar]
- Gerdes, A.; Zeh, A. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 2006, 249, 47–61. [Google Scholar] [CrossRef]
- Frei, D.; Gerdes, A. Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem. Geol. 2009, 261, 261–270. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Nasdala, L.; Hofmeister, W.; Norberg, N.; Martinson, J.M.; Corfu, F.; Dörr, W.; Kamo, S.L.; Kennedy, A.K.; Kronz, A.; Reiners, P.W.; et al. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand. Geoanal. Res. 2008, 32, 247–265. [Google Scholar] [CrossRef]
- Mattinson, J.M. Analysis of the relative decay constants of 235 U and 238 U by multistep CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 2010, 275, 186–198. [Google Scholar] [CrossRef]
- Ludwig, K. Isoplot/Ex Version 3: A Geochronological Toolkit for Microsoft Excel; Geochronology Centre: Berkeley, UK, 2003. [Google Scholar]
- Sircombe, K.N. AgeDisplay: An EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput. Geosci. 2004, 30, 21–31. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pbm Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Thomson, S.N.; Gehrels, G.E.; Ruiz, J.; Buchwaldt, R. Routine low-damage U-Pb dating using laser ablation-multicollector-ICPMS. Geochem. Geophys. Geosyst. 2012, 13, Q0AA21. [Google Scholar] [CrossRef]
- Cochrane, R.; Spikings, R.A.; Chew, D.; Wotzlaw, J.F.; Chiaradia, M.; Tyrrell, S.; Schaltegger, U.; Van der Lelij, R. High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Cosmochim. Acta 2014, 127, 39–56. [Google Scholar] [CrossRef]
- Chew, D.M.; Sylvester, P.J.; Tubrett, M.N. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chem. Geol. 2011, 280, 200–216. [Google Scholar] [CrossRef]
- Jochum, K.P.; Nehring, F. BCR-2: GeoRem Preferred Values. GeoRem, 2006; 11/2006. Available online: http://georem.mpch-mainz.gwdg.de (accessed on 4 November 2019).
- Jochum, K.P.; Nehring, F. BHVO: GeoRem Preferred Values. GeoRem; 2006; 11/2006. Available online: http://georem.mpch-mainz.gwdg.de (accessed on 4 November 2019).
- Jochum, K.P.; Nehring, F. NIST610: GeoRem Preferred Values. GeoRem; 2006; 11/2006. Available online: http://georem.mpch-mainz.gwdg.de (accessed on 4 November 2019).
- Fleischer, M.; Altschuler, Z.S. The lanthanides and yttrium in minerals of the apatite group-an analysis of the available data. Neues Jahrb. Mineral. Mon. 1986, 10, 467–480. [Google Scholar]
- Morton, A.C.; Yaxley, G. Detrital apatite geochemistry and its application in provenance studies. In Sediment Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry; Arribas, J., Critelli, S., Johnsson, M.J., Eds.; Special Paper 420; Geological Society of America: Boulder, CO, USA, 2007; pp. 319–344. [Google Scholar]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. J. Geochem. Explor. 2002, 76, 45–69. [Google Scholar] [CrossRef]
- O’Sullivan, G.; Chew, D.; Morton, A.; Mark, C.; Henrichs, I. Integrated apatite geochronology and geochemistry in sedimentary provenance analysis. Geochem. Geophys. Geosyst. 2018, 19, 1309–1326. [Google Scholar] [CrossRef]
- Friend, C.R.L.; Kinny, P.D. New evidence for protolith ages of Lewisian granulites, northwest Scotland. Geology 1995, 23, 1027–1030. [Google Scholar] [CrossRef]
- Cawood, P.A.; Nemchin, A.A.; Smith, M.; Loewy, S. Source of the Dalradian Supergroup constrained by U-Pb dating of detrital zircon and implications for the East Laurentian margin. J. Geol. Soc. 2003, 160, 231–246. [Google Scholar] [CrossRef]
- Bingen, B.; Solli, A. Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: Synopsis for detrital zircon provenance studies. Nor. Geol. Tidsskr. 2009, 89, 267–290. [Google Scholar]
- Cartwright, T.; Fitches, W.R.; O’Hara, M.J.; Barnicoat, A.C.; O’Hara, S. Archaean supracrustal rocks from the Lewisian near Stoer, Sutherland. Scott. J. Geol. 1985, 21, 187–196. [Google Scholar] [CrossRef]
- Park, R.G.; Stewart, A.D.; Wright, D.T. The Hebridean Terrane. In The Geology of Scotland; Trewin, N.H., Ed.; Geological Society: London, UK, 2003; pp. 45–61. [Google Scholar]
- Ramsay, J.G. Moine-Lewisian relations at Glenelg, Inverness-shire. Q. J. Geol. Soc. Lond. 1957, 113, 487–524. [Google Scholar] [CrossRef]
- Mendum, J.R.; Noble, S.R. Mid-Devonian sinistral transpressional movements on the Great Glen Fault: The rise of the Rosemarkie Inlier and the Acadian event in Scotland. In Continental Tectonics and Mountain Building: The Legacy of Peach and Horne; Law, R.D., Butler, R.W.H., Holdsworth, R.E., Krabbendam, M., Strachan, R.E., Eds.; Geological Society: London, UK, 2010; Special Publications; Volume 335, pp. 161–187. [Google Scholar]
- Kinny, P.D.; Strachan, R.A.; Fowler, M.; Clark, C.; Davis, S.; Jahn, I.; Taylor, R.J.M.; Holdsworth, R.E.; Dempsey, E. The Neoarchean Uyea Gneiss Complex, Shetland: An onshore fragment of the Rae Craton on the European plate. J. Geol. Soc. 2019, 164, 541–551. [Google Scholar] [CrossRef]
- Holdsworth, R.E.; Morton, A.C.; Frei, D.; Gerdes, A.; Strachan, R.A.; Dempsey, E.; Warren, C.; Whitham, A. The nature and significance of the Faroe-Shetland Terrane: Linking Archaean basement blocks across the North Atlantic. Precambrian Res. 2019, 321, 154–171. [Google Scholar] [CrossRef] [Green Version]
- Kolb, J. Structure of the Palaeoproterozoic Nagssugtoqidian Orogen, South-East Greenland: Model for the tectonic evolution. Precambrian Res. 2014, 255, 809–822. [Google Scholar] [CrossRef]
- Lebrun, E.; Árting, T.B.; Kolb, J.; Fiorentini, M.; Kokfelt, T.; Johannesen, A.B.; Maas, R.; Thébaud, N.; Martin, L.A.J.; Murphy, R.C. Genesis of the Paleoproterozoic Ammassalik Intrusive Complex, south-east Greenland. Precambrian Res. 2018, 315, 19–44. [Google Scholar] [CrossRef]
- Love, G.J.; Kinny, P.D.; Friend, C.R.L. Timing of magmatism and metamorphism in the Gruinard Bay area of the Lewisian Gneiss Complex: Comparisons with the Assynt Terrane and implications for terrane accretion. Contrib. Mineral. Petrol. 2004, 146, 620–636. [Google Scholar] [CrossRef]
- Friend, C.R.L.; Nutman, A.P.; McGregor, V.R. Late-Archaean tectonics in the Faeringehavn-Tre Brødre area, south of Buksefjorden, southern West Greenland. J. Geol. Soc. 1987, 144, 369–376. [Google Scholar] [CrossRef]
- Schmidt, A.S.; Morton, A.C.; Nichols, G.J.; Fanning, C.M. Interplay of proximal and distal sources in Devonian-Carboniferous sandstones of the Clair Basin, West of Shetland, revealed by detrital zircon U-Pb ages. J. Geol. Soc. 2012, 169, 691–702. [Google Scholar] [CrossRef]
- Saßnowski, A.S. Palaeogeographic Implications of Heavy Mineral and Detrital Zircon Provenance of Devonian-Carboniferous Sedimentary Rocks in the North Atlantic Region. Ph.D. Thesis, Royal Holloway, University of London, London, UK, 2014. [Google Scholar]
- Cawood, P.A.; Nemchin, A.A.; Strachan, R.; Prave, A.; Krabbendam, M. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. J. Geol. Soc. 2007, 164, 257–275. [Google Scholar] [CrossRef]
- Johnson, T.E.; Kirkland, C.L.; Reddy, S.M.; Evans, N.J.; McDonald, B.J. The source of Dalradian detritus in the Buchan Block, NE Scotland: Application of new tools to detrital datasets. J. Geol. Soc. 2016, 173, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Kinnaird, T.C.; Prave, A.R.; Kirkland, C.L.; Horstwood, M.; Parrish, R.; Batchelor, R.A. The late Mesoproterozoic-early Neoproterozoic tectonostratigraphic evolution of NW Scotland: The Torridonian revisited. J. Geol. Soc. 2007, 173, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Dawes, P.R. The bedrock geology under the Inland Ice: The next major challenge for Greenland mapping. Geol. Surv. Den. Greenl. Bull. 2009, 17, 57–60. [Google Scholar] [CrossRef]
- Bergh, S.G.; Kullerud, K.; Corfu, F.; Armitage, P.E.B.; Davidsen, B.; Johansen, H.W.; Pettersen, T.; Knudsen, S. Low-grade sedimentary rocks on Vanna, North Norway: A new occurrence of a Palaeoproterozoic (2.4-2.2 Ga) cover succession in northern Fennoscandia. Nor. Geol. Tidsskr. 2007, 87, 301–318. [Google Scholar]
- Beyer, E.E.; Brueckner, H.K.; Griffin, W.L.; O’Reilly, S.Y. Laurentian provenance of Archean mantle fragments in the Proterozoic Baltic crust of the Norwegian Caledonides. J. Petrol. 2012, 53, 1357–1383. [Google Scholar] [CrossRef] [Green Version]
- Sláma, J.; Pedersen, R.B. Zircon provenance of SW Caledonian phyllites reveals a distant Timanian sediment source. J. Geol. Soc. 2015, 172, 465–478. [Google Scholar] [CrossRef]
- Slagstad, T.; Kirkland, C.L. The use of detrital zircon data in terrane analysis: A non-unique answer to provenance and tectonostratigraphic position in the Scandinavian Caledonides. Lithosphere 2017, 9, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Lamminen, J. Provenance and correlation of sediments in Telemark, South Norway: Status of the Lifjell Group and implications for early Sveconorwegian fault tectonics. Nor. Geol. Tidsskr. 2011, 91, 57–75. [Google Scholar]
- Lundmark, A.M.; Lamminen, J. The provenance and setting of the Mesoproterozoic Dala Sandstone, western Sweden, and paleogeographic implications for southwestern Fennoscandia. Precambrian Res. 2016, 275, 197–208. [Google Scholar] [CrossRef]
- Åhäll, K.; Gower, C.F. The Gothian and Labradorian orogens: Variations in accretionary tectonism along a late Paleoproterozoic Laurentia-Baltica margin. GFF 1997, 119, 181–191. [Google Scholar] [CrossRef]
- Gower, C.F.; Kamo, S.L.; Kwok, K.; Krogh, T.E. Proterozoic southward accretion and Grenvillian orogenesis in the interior Grenville Province in eastern Labrador: Evidence from U-Pb geochronological investigations. Precambr. Res. 2008, 165, 61–95. [Google Scholar] [CrossRef]
- Connelly, J.N.; Åhall, K. The Mesoproterozoic cratonization of Baltica-new age constraints from SW Sweden. In Precambrian Crustal Evolution in the North Atlantic Region; Brewer, T.S., Ed.; Geological Society: London, UK, 1996; Special Publications; Volume 112, pp. 261–273. [Google Scholar]
- Kirkland, C.L.; Daly, J.S.; Whitehouse, M.J. Provenance and terrane evolution of the Kalak Nappe Complex, Norwegian Caledonides: Implications for Neoproterozoic paleogeography and tectonics. J. Geol. 2007, 115, 21–41. [Google Scholar] [CrossRef]
- Krabbendam, M.; Prave, T.; Cheer, D. A fluvial origin for the Neoproterozoic Morar Group, NW Scotland; implications for Torridon-Morar Group correlation and the Grenville Orogen foreland basin. J. Geol. Soc. 2008, 165, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Cawood, P.A.; Strachan, R.A.; Merle, R.E.; Millar, I.L.; Loewy, S.L.; Dalziel, I.W.D.; Kinny, P.D.; Jourdan, F.; Nemchin, A.A.; Connelly, J.N. Neoproterozoic to early Paleozoic extensional and compressional history of East Laurentian margin sequences: The Moine Supergroup, Scottish Caledonides. Bull. Geol. Soc. Am. 2015, 127, 349–371. [Google Scholar] [CrossRef] [Green Version]
- Strachan, R.A.; Nutman, A.P.; Friderichsen, J.D. SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. J. Geol. Soc. 1995, 152, 779–784. [Google Scholar] [CrossRef]
- Watt, G.R.; Kinny, P.D.; Friderichsen, J.D. U-Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. J. Geol. Soc. 2000, 157, 1031–1048. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Slagstad, T. Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86-0.9 Ga accretionary orogeny in southwest Fennoscandia. Int. Geol. Rev. 2015, 57, 1582–1606. [Google Scholar] [CrossRef]
- Bingen, B.; Skår, Ø.; Marker, M.; Sigmond, E.M.O.; Nordgulen, Ø.; Ragnhildstveit, J.; Mansfeld, J.; Tucker, R.D.; Liégeois, J. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Nor. Geol. Tidsskr. 2005, 85, 87–105. [Google Scholar]
- Banks, C.J.; Smith, M.; Winchester, J.A.; Horstwood, M.S.A.; Noble, S.R. Ottley Provenance of intra-Rodinian basin-fills: The lower Dalradian Supergroup, Scotland. Precambr. Res. 2007, 153, 46–64. [Google Scholar] [CrossRef]
- Slagstad, T.; Roberts, N.M.W.; Kulakov, E. Linking orogenesis across a supercontinent; the Grenvillian and Sveconorwegian margins on Rodinia. Gondwana Res. 2017, 44, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Moecher, D.P.; Samson, S.D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth Planet. Sci. Lett. 2006, 247, 252–266. [Google Scholar] [CrossRef]
- Strachan, R.A.; Prave, A.R.; Kirkland, C.L.; Storey, C.D. U-Pb detrital zircon geochronology of the Dalradian Supergroup, Shetland Islands, Scotland: Implications for regional correlations and Neoproterozoic-Palaeozoic basin development. J. Geol. Soc. 2013, 170, 905–916. [Google Scholar] [CrossRef]
- Dhuime, B.; Bosch, D.; Bruguier, O.; Caby, R.; Pourtales, S. Age, provenance and post-deposition metamorphic overprint of detrital zircons from the Nathorst Land Group (NE Greenland)-a LA-ICP-MS and SIMS study. Precambr. Res. 2007, 155, 24–46. [Google Scholar] [CrossRef]
- Bingen, B.; Nordgulen, Ø.; Viola, G. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Nor. Geol. Tidsskr. 2008, 88, 43–72. [Google Scholar]
- Chew, D.M. and Strachan, R.A. The Laurentian Caledonides of Scotland and Ireland. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Corfu, F., Gasser, D., Chew, D.M., Eds.; Geological Society: London, UK, 2014; Special Publications; Volume 390, pp. 45–91. [Google Scholar]
- Roberts, D.; Sturt, B.A. Caledonian deformation in Norway. J. Geol. Soc. 1980, 137, 241–250. [Google Scholar] [CrossRef]
- Leslie, A.G.; Smith, M.; Soper, N.J. Laurentian margin evolution and the Caledonian orogeny-a template for Scotland and East Greenland. Mem. Geol. Soc. Am. 2008, 202, 307–343. [Google Scholar]
- Lundmark, A.M.; Corfu, F. Emplacement of a Silurian granitic dyke swarm during nappe translation in the Scandinavian Caledonides. J. Struct. Geol. 2008, 30, 918–928. [Google Scholar] [CrossRef]
- Oliver, G.J.H.; Wilde, S.A.; Wan, Y. Geochronology and geodynamics of Scottish granitoids from the Late Neoproterozoic break-up of Rodinia to Palaeozoic collision. J. Geol. Soc. 2008, 165, 661–674. [Google Scholar] [CrossRef]
- Slagstad, T.; Davidsen, B.; Daly, J.S. Age and composition of crystalline basement rocks on the Norwegian continental margin: Offshore extension and continuity of the Caledonian-Appalachian orogenic belt. J. Geol. Soc. 2011, 168, 1167–1185. [Google Scholar] [CrossRef]
- Pedersen, R.B.; Dunning, G.R. Evolution of arc crust and relations between contrasting sources: U-Pb (age), Nd and Sr isotope systematics of the ophiolitic terrain of SW Norway. Contrib. Mineral. Petrol. 1997, 128, 1–15. [Google Scholar] [CrossRef]
- Kühn, A.; Glodny, J.; Austrheim, H.; Råheim, A. The Caledonian tectono-metamorphic evolution of the Lindås Nappe: Constraints from U-Pb, Sm-Nd and Rb-Sr ages of granitoid dykes. Nor. Geol. Tidsskr. 2002, 82, 45–57. [Google Scholar]
- Andrews, S.D.; Morton, A.; Decou, A.; Frei, D. Reconstructing drainage pathways in the North Atlantic during the Triassic utilizing heavy minerals, mineral chemistry, and detrital zircon geochronology. Geosphere 2021, 17, 479–500. [Google Scholar] [CrossRef]
- Preston, J.; Hartley, A.J.; Mange-Rajetzky, M.; Hole, M.; May, G.; Buck, S.; Vaughan, L. The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea: Mineralogical, geochemical, and sedimentological constraints. J. Sediment. Res. 2002, 72, 18–29. [Google Scholar] [CrossRef]
- Corfu, F.; Andersen, T.B. U-Pb ages of the Dalsfjord complex, SW Norway, and their bearing on the correlation of allochthonous crystalline segments of the Scandinavian Caledonides. Int. J. Earth Sci. 2002, 91, 955–963. [Google Scholar] [CrossRef]
- Mason, A.J. The Palaeoproterozoic anatomy of the Lewisian Complex, NW Scotland: Evidence for two ‘Laxfordian’ tectonothermal cycles. J. Geol. Soc. 2015, 173, 153–169. [Google Scholar] [CrossRef]
- Kenny, G.G.; O’Sullivan, G.J.; Alexander, S.; Simms, M.J.; Chew, D.M.; Kamber, B.S. On the track of a Scottish impact structure: A detrital zircon and apatite provenance study of the Stac Fada Member and wider Stoer Group, NW Scotland. Geol. Mag. 2019, 156, 1863–1876. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Hollis, J.; Danišík, M.; Petersen, J.; Evans, N.J.; McDonald, B.J. Apatite and titanite from the Karrat Group, Greenland; implications for charting the thermal evolution of crust from the U-Pb geochronology of common Pb bearing phases. Precambr. Res. 2017, 300, 107–120. [Google Scholar] [CrossRef]
- Ziegler, P.A. North Sea rift system. Tectonophysics 1992, 208, 55–75. [Google Scholar] [CrossRef]
- McKie, T. Paleogeographic evolution of latest Permian and Triassic salt basins in northwest Europe. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins; Soto, J.I., Flinch, J.F., Tari, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 159–173. [Google Scholar]
Laboratory & Sample Preparation | |
---|---|
Laboratory name | Central Analytical Facility, Stellenbosch University |
Sample type/mineral | Detrital zircons |
Sample preparation | Conventional mineral separation, 1 inch resin mount, 1 µm polish to finish |
Imaging | CL, Zeiss Merlin, 10 nA, 15 mm working distance |
Laser ablation system | |
Make, Model & type | Resonetics Resolution S155, ArF Excimer |
Ablation cell & volume | Laurin Technology S155 double Helix large volume cell |
Laser wavelength | 193 nm |
Pulse width | 20 ns |
Fluence | Approx. 2 J/cm−2 |
Repetition rate | 5.5 Hz |
Spot size | 30 µm |
Sampling mode/pattern | 30 µm single spot analyses |
Carrier gas | 100% He, Ar make-up gas combined using a T-connector close to double Helix sampling funnel |
Pre-ablation laser warm-up (background collection) | 3 cleaning shots followed by 20 s background collection |
Ablation duration | 15 s |
Wash-out delay | 15 s |
Cell carrier gas flow | 300 mL/min He & 0.06 mL/min N2 |
ICP-MS Instrument | |
Make, Model & type | Thermo Finnigan Element2 single collector HR-SF-ICP-MS |
Sample introduction | Via conventional tubing |
RF power | 1350 W |
Make-up gas flow | 1.0 L/min Ar |
Detection system | Single collector secondary electron multiplier |
Masses measured | 202, 204, 206, 207, 208, 232, 233, 235, 238 |
Integration time per peak | 4 ms |
Total integration time per reading | 1 sec (represents the time resolution of the data) |
Sensitivity | 30,000 cps/ppm Pb |
Dead time | 6 ns |
Data Processing | |
Gas blank | 20 s on-peak |
Calibration strategy | GJ-1 used as primary reference material, M127 & 91500 used as secondary reference material (Quality Control) |
Reference Material info | M127 (Nasdala et al. [72]; Mattinson [73]), 91500 (Wiedenbeck et al. [76]), GJ-1 (Jackson et al. [77]) |
Data processing package used/Correction for LIEF | In-house spreadsheet data processing using intercept method for LIEF correction |
Mass discrimination | Standard-sample bracketing with 207Pb/206Pb and 206Pb/238U normalized to reference material GJ-1 |
Common-Pb correction, composition and uncertainty | 204-method, Stacey & Kramers [78] composition at the projected age of the mineral, 5% uncertainty assigned |
Uncertainty level & propagation | Ages are quoted at 2σ absolute, propagation is by quadratic addition. Reproducibility and age uncertainty of reference material and common-Pb composition uncertainty are propagated. |
Quality control/Validation | 91500: Concordia age = 1072.9 ± 6.2 (2σ, n = 10, MSWD = 0.28) M127: Wtd Concordia age = 528.8 ± 2.1 (2σ, n = 15, MSWD = 0.32) |
Other information | For detailed method description see Frei & Gerdes [70] |
Laboratory & Sample Preparation | |
---|---|
Laboratory name | Central Analytical Facility, Stellenbosch University |
Sample type/mineral | Detrital apatites |
Sample preparation | Conventional mineral separation, 1 inch resin mount, 1 µm polish to finish |
Imaging | CL, LEO 1430 VP, 10 nA, 15 mm working distance |
Laser ablation system | |
Make, Model & type | ASI Resolution S155, ArF Excimer Coherent CompexPro 110 |
Ablation cell & volume | Laurin Technology S155 double helix large volume cell |
Laser wavelength | 193 nm |
Pulse width | 20 ns |
Fluence | 2.8 J/cm−2 (measured with external energy meter above sample funnel) |
Repetition rate | 5.5 Hz |
Spot size | 43 µm |
Sampling mode/pattern | 20 µm single spot analyses |
Cell carrier gas | 100% He, Ar and N2 make-up gases combined using injectors into double Helix sampling funnel |
Pre-ablation laser warm-up (background collection) | 3 cleaning shots followed by 20 s background collection |
Ablation duration | 20 s |
Wash-out delay | 15 s |
Cell carrier gas flows | 290 mL/min He |
ICP-MS Instrument | |
Make, Model & type | Thermo Finnigan Element2 single collector HR-SF-ICP-MS |
Sample introduction | Via Nylon 10 tubing |
RF power | 1350 W |
Make-up gas flow | 910 mL/min Ar & 2 mL/min N2 |
Detection system | Single collector secondary electron multiplier |
Masses measured | 202, 204, 206, 207, 208, 232, 233, 235, 238 |
Integration time per peak | 4 ms |
Total integration time per reading | 1 s (represents the time resolution of the data) |
Sensitivity | 30,000 cps/ppm Pb |
Dead time | 6 ns |
Data Processing | |
Gas blank | 20 s on-peak |
Calibration strategy | Madagascar apatite used as primary reference material, Durango apatite used as secondary reference material (Quality Control) |
Reference Material info | Madagascar apatite (Thomson et al. [79], Cochrane et al. [80]), R10 (Chew et al. [81]) |
Data processing package used/Correction for LIEF | In-house spreadsheet data processing using intercept method for LIEF correction |
Mass discrimination | Standard-sample bracketing with 207Pb/206Pb and 206Pb/238U normalized to reference material SRQ36 |
Common-Pb correction, composition and uncertainty | Iterative 207Pb correction method of Chew et al. [81]. Data are filtered to exclude imprecise analyses (>20% age uncertainty, 2σ) and analyses with very high levels of non-radiogenic lead (>80% f206, which is the fraction of 206Pb that is non-radiogenic). |
Uncertainty level & propagation | Ages are quoted at 2σ absolute, propagation is by quadratic addition. Reproducibility and age uncertainty of reference material and common-Pb composition uncertainty are propagated. |
Quality control/Validation | Durango apatite: Wt mean 206Pb/238U age = 31.9 ± 2.8 Ma (2σ MSWD = 0.89) |
Other information | For detailed method description see Frei & Gerdes [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greig, I.P.; Morton, A.; Frei, D.; Hartley, A. Establishing Provenance from Highly Impoverished Heavy Mineral Suites: Detrital Apatite and Zircon Geochronology of Central North Sea Triassic Sandstones. Geosciences 2023, 13, 13. https://doi.org/10.3390/geosciences13010013
Greig IP, Morton A, Frei D, Hartley A. Establishing Provenance from Highly Impoverished Heavy Mineral Suites: Detrital Apatite and Zircon Geochronology of Central North Sea Triassic Sandstones. Geosciences. 2023; 13(1):13. https://doi.org/10.3390/geosciences13010013
Chicago/Turabian StyleGreig, Iain P., Andrew Morton, Dirk Frei, and Adrian Hartley. 2023. "Establishing Provenance from Highly Impoverished Heavy Mineral Suites: Detrital Apatite and Zircon Geochronology of Central North Sea Triassic Sandstones" Geosciences 13, no. 1: 13. https://doi.org/10.3390/geosciences13010013
APA StyleGreig, I. P., Morton, A., Frei, D., & Hartley, A. (2023). Establishing Provenance from Highly Impoverished Heavy Mineral Suites: Detrital Apatite and Zircon Geochronology of Central North Sea Triassic Sandstones. Geosciences, 13(1), 13. https://doi.org/10.3390/geosciences13010013