An Observation Related to the Pressure Dependence of Ionic Radii
Abstract
:1. Introduction
2. Method
3. Results
4. Effect of Pressure on Ionic Radii
5. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldschmidt, V.M. The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Muller Lecture, delivered before the Chemical Society on March 17th, 1937. J. Chem. Soc. 1937, 655–673. [Google Scholar] [CrossRef]
- Bukowinski, M.S.T. Quantum Geophysics. Annu. Rev. Earth Planet. Sci. 1994, 22, 167–205. [Google Scholar] [CrossRef]
- Mao, H.K.; Chen, X.J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 2018, 90, 015007. [Google Scholar] [CrossRef] [Green Version]
- Sturhahn, W.; Jackson, J.M.; Lin, J.F. The spin state of iron in minerals of Earth’s lower mantle. Geophys. Res. Lett. 2005, 32, L12307. [Google Scholar] [CrossRef] [Green Version]
- Frost, D.J.; McCammon, C.A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 2008, 36, 389–420. [Google Scholar] [CrossRef]
- Iota, V.; Klepeis, J.-H.P.; Yoo, C.-S.; Lang, J.; Haskel, D.; Srajer, G. Electronic structure and magnetism in compressed 3d transition metals. Appl. Phys. Lett. 2007, 90, 042505. [Google Scholar] [CrossRef]
- Fabbris, G.; Lim, J.; Veiga, L.; Haskel, D.; Schilling, J.S. Electronic and structural ground state of heavy alkali metals at high pressure. Phys. Rev. B 2015, 91, 085111. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, O.; Brooks, M.S.S.; Johansson, B. Orbital polarization in narrow-band systems: Application to volume collapses in light lanthanides. Phys. Rev. B 1990, 41, 7311–7314. [Google Scholar] [CrossRef]
- Royce, E.B. Stability of the Electronic Configuration and Compressibility of Electron Orbitals in Metals under Shock-Wave Compression. Phys. Rev. Ser. I 1967, 164, 929–943. [Google Scholar] [CrossRef]
- Batsanov, S.S. Cationic radii from structures of extremely compressed solids. Acta Cryst. 2013, B69, 563–569. [Google Scholar] [CrossRef]
- Cammi, R.; Rahm, M.; Hoffmann, R.; Ashcroft, N.W. Varying Electronic Configurations in Compressed Atoms: From the Role of the Spatial Extension of Atomic Orbitals to the Change of Electronic Configuration as an Isobaric Transformation. J. Chem. Theory Comput. 2020, 16, 5047–5056. [Google Scholar] [CrossRef] [PubMed]
- Rahm, M.; Ångqvist, M.; Rahm, J.M.; Erhart, P.; Cammi, R. Non-Bonded Radii of the Atoms Under Compression. ChemPhysChem 2020, 21, 2441–2453. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Du, X.; Tse, J.S. Oxygen Packing Fraction and the Structure of Silicon and Germanium Oxide Glasses. J. Phys. Chem. B 2017, 121, 10726–10732. [Google Scholar] [CrossRef]
- Jacobsen, S.D.; Holl, C.M.; Adams, K.A.; Fischer, R.A.; Martin, E.S.; Bina, C.R.; Lin, J.-F.; Prakapenka, V.B.; Kubo, A.; Dera, P. Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media. Am. Miner. 2008, 93, 1823–1828. [Google Scholar] [CrossRef]
- Weir, S.T.; Vohra, Y.K.; Ruoff, A.L. High-pressure phase transitions and the equations of state of BaS and BaO. Phys. Rev. B 1986, 33, 4221–4226. [Google Scholar] [CrossRef] [PubMed]
- Liu, L. A Dense Modification of BaO and Its Crystal Structure. J. Appl. Phys. 1971, 42, 3702–3704. [Google Scholar] [CrossRef]
- Crichton, W.A.; Merlini, M.; Hanfland, M.; Müller, H. The crystal structure of barite, BaSO4, at high pressure. Am. Miner. 2011, 96, 364–367. [Google Scholar] [CrossRef]
- Santamaría-Pérez, D.; Chulia-Jordan, R. Compression of mineral barite, BaSO4: A structural study. High Press. Res. 2012, 32, 81–88. [Google Scholar] [CrossRef]
- Errandonea, D.; Pellicer-Porres, J.; Manjón, F.J.; Segura, A.; Ferrer-Roca, C.; Kumar, R.S.; Tschauner, O.; López-Solano, J.; Rodríguez-Hernández, P.; Radescu, S.; et al. Determination of the high-presure crystal structure of BaWO4 and PbWO4. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 73, 224103. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.; Xiao, W.; Zhou, W.; Chen, M.; Zhou, W.; Li, X.; Li, Y.; Liu, J. High pressure X-ray diffraction study on BaWO4-II. High Press. Res. 2012, 32, 262–269. [Google Scholar] [CrossRef]
- Yusa, H.; Sata, N.; Ohishi, Y. Rhombohedral (9R) and hexagonal (6H) perovskites in barium silicates under high pressure. Am. Miner. 2007, 92, 648–654. [Google Scholar] [CrossRef]
- Efthimiopoulos, I.; Kunc, K.; Karmakar, S.; Syassen, K.; Hanfland, M.; Vajenine, G. Structural transformation and vibrational properties of BaO2 at high pressures. Phys. Rev. B 2010, 82, 134125. [Google Scholar] [CrossRef]
- Friese, K.; Kanke, Y.; Grzechnik, A. Characterization of the pressure-induced second-order phase transition in the mixed-valence vanadate BaV6O11. Acta Crystallogr. Sect. B Struct. Sci. 2009, 65, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Curetti, N.; Benna, P.; Bruno, E. High-pressure structural configuration and phase transition in celsian, BaAl2Si2O8. Phys. Chem. Miner. 2016, 44, 181–192. [Google Scholar] [CrossRef]
- Panchal, V.; Garg, N.; Sharma, S.M. Raman and X-ray diffraction investigations on BaMoO4 under high pressures. J. Phys. Condens. Matter 2006, 18, 3917–3929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazen, R.M.; Finger, L.W. High-pressure and high-temperature crystallographic study of the gillespite I–II phase transition. Am. Mineral. 1983, 68, 595–603. [Google Scholar]
- Andrault, D.; Angel, R.J.; Mosenfelder, J.L.; Le Bihan, T. Equation of state of stishovite to lower mantle pressures. Am. Miner. 2003, 88, 301–307. [Google Scholar] [CrossRef]
- Zhang, L.; Popov, D.; Meng, Y.; Wang, J.; Ji, C.; Li, B.; Mao, H.-K. In-situ crystal structure determination of seifertite SiO2 at 129 GPa: Studying a minor phase near Earth’s core–mantle boundary. Am. Miner. 2016, 101, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Ross, N.L.; Shu, J.-F.; Hazen, R.M.; Gasparik, T. High-pressure crystal chemistry of stishovite. Am. Mineral. 1990, 75, 739–747. [Google Scholar]
- Yamanaka, T.; Fukuda, T.; Mimaki, J. Bonding character of SiO2 stishovite under high pressures up to 30 Gpa. Phys. Chem. Miner. 2002, 29, 633–641. [Google Scholar] [CrossRef]
- Oganov, A.R.; Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 2004, 430, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Hirose, K.; Kawamura, K.; Sata, N.; Ohishi, Y. Post-Perovskite Phase Transition in MgSiO3. Science 2004, 304, 855–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugahara, M.; Yoshiasa, A.; Komatsu, Y.; Yamanaka, T.; Bolfan-Casanova, N.; Nakatsuka, A.; Sasaki, S.; Tanaka, M. Reinvestigation of the MgSiO3 perovskite structure at high pressure. Am. Miner. 2006, 91, 533–536. [Google Scholar] [CrossRef]
- Yamanaka, T.; Komatsu, Y.; Sugahara, M.; Nagai, T. Structure change of MgSiO3, MgGeO3, and MgTiO3 ilmenites under compression. Am. Miner. 2005, 90, 1301–1307. [Google Scholar] [CrossRef]
- Ross, N.; Hazen, R.M. High-pressure crystal chemistry of MgSiO3 perovskite. Phys. Chem. Miner. 1990, 17, 228–237. [Google Scholar] [CrossRef]
- Kudoh, Y.; Ito, E.; Takeda, H. Effect of pressure on the crystal structure of perovskite-type MgSiO3. Phys. Chem. Miner. 1987, 14, 350–354. [Google Scholar] [CrossRef]
- Finkelstein, G.J.; Dera, P.K.; Jahn, S.; Oganov, A.R.; Holl, C.M.; Meng, Y.; Duffy, T.S. Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. Am. Miner. 2014, 99, 35–43. [Google Scholar] [CrossRef]
- Jacobsen, S.D.; Demouchy, S.; Frost, D.J.; Ballaran, T.B.; Kung, J. A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: Oxygen sites for hydrogen storage in Earth’s interior. Am. Miner. 2005, 90, 61–70. [Google Scholar] [CrossRef]
- Clementi, E.; Raimondi, D.L.; Reinhardt, W.P. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 1967, 47, 1300–1307. [Google Scholar] [CrossRef]
- Spruch, L. Pedagogic notes on Thomas-Fermi theory (and on some improvements)—Atoms, stars and the stability of bulk matter. Rev. Mod. Phys. 1991, 63, 151–209. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Coordination and volume changes accompanying high-pressure phase trans-formations of oxides. Mater. Res. Bull. 1969, 4, 57–59. [Google Scholar] [CrossRef]
- Tschauner, O. High-pressure minerals. Am. Miner. 2019, 104, 1701–1731. [Google Scholar] [CrossRef]
- Neaton, J.B.; Ashcroft, N.W. On the Constitution of Sodium at Higher Densities. Phys. Rev. Lett. 2001, 86, 2830–2833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, M.-S.; Hoffmann, R. High Pressure Electrides: A Predictive Chemical and Physical Theory. Acc. Chem. Res. 2014, 47, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Kim, D.Y.; Yang, L.; Li, N.; Tang, L.; Amine, K.; Mao, H.K. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode. Adv. Sci. 2017, 4, 1600453. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Oganov, A.R.; Goncharov, A.F.; Zhu, Q.; Boulfelfel, S.E.; Lyakhov, A.O.; Stavrou, E.; Somayazulu, M.; Prakapenka, V.B.; Konôpková, Z. Unexpected Stable Stoichiometries of Sodium Chlorides. Science 2013, 342, 1502–1505. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Oganov, A.R.; Lyakhov, A.O. Novel stable compounds in the Mg–O system under high pressure. Phys. Chem. Chem. Phys. 2013, 15, 7696–7700. [Google Scholar] [CrossRef]
- Hirose, K.; Shimizu, N.; van Westrenen, W.; Fei, Y.W. Trace element partitioning in Earth’s lower mantle and implications for geochemical consequences of partial melting at the core-mantle boundary. Phys. Earth Planet. Inter. 2004, 146, 249–260. [Google Scholar] [CrossRef]
- Tschauner, O.; Huang, S.; Yang, S.; Humayun, M.; Liu, W.; Corder, S.N.G.; Bechtel, H.A.; Tischler, J.; Rossman, G.R. Discovery of davemaoite, CaSiO3 -perovskite, as a mineral from the lower mantle. Science 2021, 374, 891–894. [Google Scholar] [CrossRef]
- Hirose, K.; Sinmyo, R.; Hernlund, J. Perovskite in Earth’s deep interior. Science 2017, 358, 734–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
a. Barium | |||||||
Compound | Coordination | Pressure (GPa) | Ba-O(Å) | r (Å) | References | ||
BaO_III | 8 | 18.8 | 2.566 | 1.361 | [16] | ||
BaO_III | 8 | 60 | 2.50 | 1.32 | [16] | ||
BaO, NiAs-type | 6 | 13.9 | 2.654 | 1.443 | [17] | ||
Baryte | 8 | 17.5 | 2.760 | 1.5 | [18] | ||
Baryte | 6 | 17.5 | 2.688 | 1.482 | [18] | ||
Baryte | 8 | 2.15 | 2.815 | 1.479 | [18] | ||
Baryte | 6 | 2.15 | 2.739 | 1.487 | [18] | ||
Baryte | 8 | 0.22 | 2.82 | 1.563 | [18] | ||
Baryte-II | 8 | 0 | 2.85 | 1.59 | [19] | ||
Baryte-II | 8 | 40.5 | 2.63 | 1.441 | [19] | ||
Baryte-II | 12 | 40.5 | 2.653 | 1.46 | [19] | ||
BaWO4, fergusonite-type | 12 | 15.6 | 2.708 | 1.52 | [20,21] | ||
BaSiO3, BaFeO3-type | 6 | 48.5 | 2.64 | 1.455 | [22] | ||
BaSiO3, BaRuO3-type | 18 | 27.9 | 2.766 | 1.569 | [22] | ||
BaSiO3, BaTiO3-type | 6 | 141 | 2.393 | 1.23 | [22] | ||
BaO2 | 8 | 49.4 | 2.57 | 1.39 | [23] | ||
BaAlSi3O8 -II | 14 | 7.81 | 2.75 | 1.52 | [24] | ||
BaV6O11 | 12 | 5.82 | 1.52 | [25] | |||
BaMoO4 | 12 | 7.2 | 1.41 * | [26] | |||
Gillespite, BaFeSi4O10 | 8 | 4.5 | 2.784 | 1.549 | [27] | ||
BaO2_CuCl2-typ | 12 | 6.8 | 2.729 | 1.50 | [23] | ||
b. Mg-Silicates, Silica, Periclase | |||||||
Compound | P [GPa] | Mg-O | Si-O | rSi (Å) {6,7} | rMg (Å) {6,12} | ||
Periclase, MgO | 15.3 | 2.0485 | 0.839 | [15] | |||
29.9 | 2.0085 | 0.813 | [15] | ||||
49.7 | 1.962 | 0.778 | [15] | ||||
74.6 | 1.918 | 0.742 | [15] | ||||
99.6 | 1.8825 | 0.712 | [15] | ||||
111 | 1.869 | 0.701 | [15] | ||||
Stishovite, SiO2 | 7 | 1.792 | 0.566 | [28] | |||
10.5 | 1.781 | 0.564 | [28] | ||||
15 | 1.772 | 0.562 | [28] | ||||
34 | 1.728 | 0.536 | [28] | ||||
76.75 | 1.675 | 0.500 | [28] | ||||
1.7 | 1.773 | 0.516 | [29] | ||||
9 | 1.76 | 0.539 | [29] | ||||
15 | 1.749 | 0.539 | [29] | ||||
9.26 | 1.7603 | 0.540 | [30] | ||||
29.1 | 1.7287 | 0.533 | [30] | ||||
Seifertite, SiO2 | 129 | 1.652 | 0.487 | [31] | |||
Akimotoite, MgSiO3 | 19.91 | 2.033 | 1.761 | 0.557 | 0.829 | [32] | |
Bridgmanite, MgSiO3 | 10.6 | 2.31 | 1.777 | 0.560 | 1.093 | [33] | |
9.6 | 2.3075 | 1.782 | 0.563 | 1.088 | [34] | ||
15 | 2.3057 | 1.769 | 0.559 | 1.096 | [35] | ||
postperovskite, MgSiO3 | 121 | 2.035 | 1.664 | 0.498 | 0.869 | [36] | |
116 | 2.045 | 1.678 | 0.511 | 0.878 | [37] | ||
Forsterite-II, Mg2SiO4 | 45.3 | 1.949 | 1.727 | 0.541 | 0.763 | [38] | |
45.3 | 1.949 | (1.866) | (0.68) | 0.763 | [38] | ||
Forsterite-III, Mg2SiO4 | 58.2 | 2.198 | 1.815 | 0.634 | 1.017 | [38] | |
Wadsleyite, Mg2SiO4 | 16 | 2.082 | ** | ** | 0.874 | [39] |
a | ||||||||
Ion | n(4) = rB 3√(10 m)/r(4)obs | m | n(6) = rB 3√(10 m)/r(6)obs | m | n(8) = rB 3√(10 m)/r(8)obs | m | n(12) = rB 3√(10 m)/r(12)obs | M |
Li+ | 1.07547 | 1 | ||||||
Na+ | 1.00885 | 1 | 0.98276 | 1 | 1.08808 | 2 | 1.07457 | 3 |
K+ | 0.95117 | 2 | 0.94492 | 2 | 0.99642 | 3 | 1.0166 | 4 |
Rb+ | 0.99042 | 3 | 1.03403 | 4 | 0.97288 | 4 | ||
Cs+ | 0.99975 | 4 | 1.03684 | 5 | 0.96498 | 5 | ||
Be2+ | 4.01 | 3 | 3.06703 | 4 | ||||
Mg2+ | 2.02292 | 2 | 1.91174 | 3 | 1.89249 | 5 | ||
Ca2+ | 1 | 1 | 0.90476 | 1 | 0.97045 | 2 | ||
Sr2+ | 1.08808 | 2 | 1.02591 | 2 | 1.04057 | 3 | ||
Ba2+ | 0.96394 | 2 | 1.05391 | 3 | 1.03403 | 4 | ||
Al3+ | 3.10207 | 3 | ||||||
Si4+ | 4.11025 | 3 | 3.04463 | 3 | ||||
Sn4+ | 2.08155 | 2 | 1.98084 | 3 | 2.05185 | 5 | ||
Pb4+ | 2.08114 | 3 | 1.97765 | 4 | 1.05555 | 1 | ||
Ge4+ | 3.10207 | 3 | 2.90935 | 5 | ||||
C4+ | 3.93102 | 1 | 6.03183 | 4 | ||||
Sc3+ | 2.04469 | 4 | 1.92996 | 5 | ||||
Y3+ | 1.09615 | 1 | 0.9836 | 1 | ||||
La3+ | 0.97269 | 1 | 1.10482 | 2 | 0.95751 | 2 | ||
Ce3+ | 0.9913 | 1 | 1.11946 | 2 | 0.97045 | 2 | ||
Pr3+ | 1.00885 | 1 | 0.90047 | 1 | ||||
Nd3+ | 1.01513 | 1 | 0.91273 | 1 | 1.01863 | 1 | ||
Sm3+ | 1.03825 | 1 | 0.93519 | 1 | 1.04078 | 2 | ||
Eu3+ | 1.04875 | 1 | 0.94527 | 1 | ||||
Eu2+ | 1.09639 | 2 | 1.03329 | 2 | ||||
Gd3+ | 1.05751 | 1 | 0.95557 | 1 | ||||
Tb3+ | 1.07243 | 1 | 0.9661 | 1 | ||||
Dy3+ | 1.08365 | 1 | 0.97686 | 1 | ||||
Ho3+ | 1.0951 | 1 | 0.98701 | 1 | 0.90476 | 1 | ||
Er3+ | 1.10679 | 1 | 0.9965 | 1 | ||||
Tm3+ | 1.91104 | 5 | 1.00529 | 1 | ||||
Yb3+ | 1.93379 | 5 | 1.01333 | 1 | ||||
Lu3+ | 1.94731 | 5 | 1.02059 | 1 | ||||
Th4+ | 1.05555 | 1 | 0.95798 | 1 | 1.06391 | 2 | ||
U4+ | 1.10679 | 1 | 1 | 1 | 1.09639 | 2 | ||
Ti2+ | 1.94926 | 5 | ||||||
Ti3+ | 2.02975 | 3 | ||||||
Ti4+ | 2.03571 | 1 | 1.92788 | 2 | 2.0563 | 4 | ||
Zr4+ | 1.9675 | 2 | 1.91174 | 3 | 1.98904 | 5 | ||
Hf4+ | 1.99482 | 2 | 1.93423 | 3 | 2.00955 | 5 | ||
V2+ | 1.94575 | 4 | ||||||
V3+ | 2.10782 | 3 | ||||||
V4+ | 1.99482 | 2 | 1.91174 | 3 | ||||
Nb3+ | 1.91174 | 3 | ||||||
Nb5+ | 2.10782 | 3 | 2.0563 | 4 | ||||
Ta3+ | 1.91174 | 3 | ||||||
Ta5+ | 2.10782 | 3 | 2.0563 | 4 | ||||
Cr3+ | 1.90235 | 2 | ||||||
Mo3+ | 1.98084 | 3 | ||||||
Mo6+ | 1.9675 | 2 | ||||||
W6+ | 1.94091 | 2 | ||||||
Mn3+HS | 2.09439 | 3 | ||||||
Mn3+LS | 1.99482 | 2 | ||||||
Re7+ | 2.90935 | 5 | ||||||
Fe2+HS | 1.9669 | 4 | 1.07547 | 1 | ||||
Fe2+LS | 1.91503 | 2 | ||||||
Fe3+HS | 2.09439 | 3 | 1.9669 | 4 | ||||
Fe3+LS | 2.08155 | 2 | ||||||
Ru4+ | ||||||||
Os4+ | ||||||||
Co2+HS | 1.99482 | 2 | 2.04469 | 4 | 1.09615 | 1 | ||
Co2+LS | 2.08114 | 3 | ||||||
Co3+HS | 1.91503 | 2 | ||||||
Co3+LS | 2.09675 | 2 | ||||||
Rh3+ | 2.04236 | 3 | ||||||
Ir4+ | ||||||||
Ni2+ | 2.08155 | 2 | 1.98084 | 3 | ||||
Ni3+HS | 1.94091 | 2 | ||||||
Ni3+LS | 2.05182 | 2 | ||||||
Pd2+ | 1.94926 | 5 | ||||||
Pt2+ | 2.07368 | 5 | ||||||
Cu2+ | 2.02292 | 2 | 2.07994 | 4 | ||||
Ag2+ | 1.05555 | 1 | ||||||
Au3+ | 1.96895 | 5 | ||||||
Zn2+ | 1.94091 | 2 | 2.0563 | 4 | 1.09615 | 1 | ||
Cd2+ | 1.9669 | 4 | 1.04587 | 1 | 0.91935 | 1 | 0.99053 | 2 |
As3+ | 1.99482 | 2 | ||||||
Sb3+ | 2.01061 | 4 | ||||||
Bi3+ | 0.97436 | 1 | ||||||
O2− | 1.02756 | 3 | ||||||
b | ||||||||
Ion | r (4)obs (Å) | r (4)clc (Å) | r (6)obs (Å) | r (6)clc (Å) | r (8)obs (Å) | r (8)clc (Å) | r (12)obs (Å) | r (12)clc (Å) |
Li+ | 0.73 | 0.72 | 0.9 | 0.900 | 1.06 | 1.060 | ||
Na+ | 1.13 | 1.145 | 1.16 | 1.160 | 1.32 | 1.380 | 1.53 | 1.527 |
K+ | 1.51 | 1.523 | 1.52 | 1.527 | 1.65 | 1.647 | 1.78 | 1.785 |
Rb+ | 1.66 | 1.706 | 1.75 | 1.785 | 1.86 | 1.837 | ||
Cs+ | 1.81 | 1.834 | 1.88 | 1.837 | 2.02 | 2.132 | ||
Be2+ | 0.41 | 0.411 | 0.59 | 0.595 | ||||
Mg2+ | 0.71 | 0.711 | 0.86 | 0.853 | 1.03 | 1.020 | ||
Ca2+ | 1.14 | 1.145 | 1.26 | 1.219 | 1.48 | 1.482 | ||
Sr2+ | 1.32 | 1.377 | 1.4 | 1.378 | 1.58 | 1.527 | ||
Ba2+ | 1.49 | 1.485 | 1.56 | 1.482 | 1.75 | 1.785 | ||
Al3+ | 0.53 | 0.533 | 0.675 | 0.689 | ||||
Si4+ | 0.4 | 0.411 | 0.54 | 0.551 | ||||
Sn4+ | 0.69 | 0.689 | 0.83 | 0.853 | 0.95 | 1.020 | ||
Pb4+ | 0.79 | 0.793 | 0.915 | 0.916 | 1.08 | 1.102 | ||
Ge4+ | 0.53 | 0.533 | 0.67 | 0.689 | ||||
C4+ | 0.29 | 0.288 | 0.3 | 0.296 | ||||
Sc3+ | 0.885 | 0.892 | 1.01 | 1.020 | ||||
Y3+ | 1.04 | 0.96 | 1.159 | 1.145 | ||||
La3+ | 1.172 | 1.19 | 1.3 | 1.377 | 1.5 | 1.482 | ||
Ce3+ | 1.15 | 1.14 | 1.283 | 1.219 | 1.48 | 1.482 | ||
Pr3+ | 1.13 | 1.14 | 1.266 | 1.219 | ||||
Nd3+ | 1.123 | 1.19 | 1.249 | 1.219 | 1.41 | 1.422 | ||
Sm3+ | 1.098 | 1.14 | 1.219 | 1.219 | 1.38 | 1.378 | ||
Eu3+ | 1.087 | 1.14 | 1.206 | 1.219 | ||||
Eu2+ | 1.31 | 1.43 | 1.39 | 1.377 | ||||
Gd3+ | 1.078 | 1.14 | 1.193 | 1.218 | ||||
Tb3+ | 1.063 | 1.14 | 1.18 | 1.22 | ||||
Dy3+ | 1.052 | 1.14 | 1.167 | 1.22 | ||||
Ho3+ | 1.041 | 1.14 | 1.155 | 1.14 | 1.26 | 1.219 | ||
Er3+ | 1.03 | 0.98 | 1.144 | 1.14 | ||||
Tm3+ | 1.02 | 0.98 | 1.134 | 1.14 | ||||
Yb3+ | 1.008 | 0.98 | 1.125 | 1.14 | ||||
Lu3+ | 1.001 | 0.96 | 1.117 | 1.14 | ||||
Th4+ | 1.08 | 1.190 | 1.19 | 1.218 | 1.35 | 1.377 | ||
U4+ | 1.03 | 1.190 | 1.14 | 1.145 | 1.31 | 1.377 | ||
Ti2+ | 1 | 0.960 | ||||||
Ti3+ | 0.81 | 0.793 | ||||||
Ti4+ | 0.56 | 0.552 | 0.745 | 0.740 | 0.88 | 0.893 | ||
Zr4+ | 0.73 | 0.720 | 0.86 | 0.853 | 0.98 | 0.960 | ||
Hf4+ | 0.72 | 0.720 | 0.85 | 0.853 | 0.97 | 0.960 | ||
V2+ | 0.93 | 0.918 | ||||||
V3+ | 0.78 | 0.787 | ||||||
V4+ | 0.72 | 0.720 | 0.86 | 0.853 | ||||
Nb3+ | 0.86 | 0.853 | ||||||
Nb5+ | 0.78 | 0.775 | 0.88 | 0.892 | ||||
Ta3+ | 0.86 | 0.853 | ||||||
Ta5+ | 0.78 | 0.787 | 0.88 | 0.892 | ||||
Cr3+ | 0.755 | 0.763 | ||||||
Mo3+ | 0.83 | 0.793 | ||||||
Mo6+ | 0.73 | 0.720 | ||||||
W6+ | 0.74 | 0.740 | ||||||
Mn3+HS | 0.785 | 0.787 | ||||||
Mn3+LS | 0.72 | 0.720 | ||||||
Re7+ | 0.67 | 0.689 | ||||||
Fe2+HS | 0.77 | 0.775 | 0.92 | 0.916 | 1.06 | 1.066 | ||
Fe2+LS | 0.75 | 0.740 | ||||||
Fe3+HS | 0.785 | 0.763 | 0.92 | 0.918 | ||||
Fe3+LS | 0.69 | 0.689 | ||||||
Ru4+ | 0.76 | 0.763 | ||||||
Os4+ | 0.77 | 0.775 | ||||||
Co2+HS | 0.72 | 0.720 | 0.885 | 0.892 | 1.04 | 1.020 | ||
Co2+LS | 0.79 | 0.793 | ||||||
Co3+HS | 0.75 | 0.740 | ||||||
Co3+LS | 0.685 | 0.689 | ||||||
Rh3+ | 0.805 | 0.763 | ||||||
Ir4+ | 0.765 | 0.763 | ||||||
Ni2+ | 0.69 | 0.720 | 0.83 | 0.793 | ||||
Ni3+HS | 0.74 | 0.74 | ||||||
Ni3+LS | 0.7 | 0.689 | ||||||
Pd2+ | 1 | 0.960 | ||||||
Pt2+ | 0.94 | 0.960 | ||||||
Cu2+ | 0.71 | 0.720 | 0.87 | 0.916 | ||||
Ag2+ | 1.08 | 1.102 | ||||||
Au3+ | 0.99 | 0.916 | ||||||
Zn2+ | 0.74 | 0.720 | 0.88 | 0.916 | ||||
Cd2+ | 0.92 | 1.102 | 1.09 | 1.102 | 1.24 | 1.219 | 1.45 | 1.440 |
As3+ | 0.72 | 0.720 | ||||||
Sb3+ | 0.9 | 0.893 | ||||||
Bi3+ | 1.17 | 1.19 | ||||||
O2− | 1.60 | 1.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tschauner, O. An Observation Related to the Pressure Dependence of Ionic Radii. Geosciences 2022, 12, 246. https://doi.org/10.3390/geosciences12060246
Tschauner O. An Observation Related to the Pressure Dependence of Ionic Radii. Geosciences. 2022; 12(6):246. https://doi.org/10.3390/geosciences12060246
Chicago/Turabian StyleTschauner, Oliver. 2022. "An Observation Related to the Pressure Dependence of Ionic Radii" Geosciences 12, no. 6: 246. https://doi.org/10.3390/geosciences12060246
APA StyleTschauner, O. (2022). An Observation Related to the Pressure Dependence of Ionic Radii. Geosciences, 12(6), 246. https://doi.org/10.3390/geosciences12060246