Integration of Geophysical Methods for Doline Hazard Assessment: A Case Study from Northern Oman
Abstract
:1. Introduction
2. Area and Geological Background
3. Methods, Data Acquisition, and Processing
3.1. Electrical Resistivity Tomography
3.2. Seismic Refraction
3.3. Ground-Penetrating Radar
4. Interpretation
Integrated Interpretation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chalikakis, K.; Plagnes, V.; Guerin, R.; Valois, R.; Bosch, F.P. Contribution of geophysical methods to karst-system exploration: An overview. Hydrogeol. J. 2011, 19, 1169–1180. [Google Scholar] [CrossRef]
- Martínez-Moreno, F.J.; Galindo-Zaldívar, J.; Pedrera, A.; Teixido, T.; Ruano, P.; Peña, J.A.; Martín-Rosales, W. Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). J. Appl. Geophys. 2014, 107, 149–162. [Google Scholar] [CrossRef]
- Wadas, S.; Polom, U.; Krawczyk, C.M. High-resolution shear-wave seismic reflection as a tool to image near-surface subrosion structures—A case study in Bad Frankenhausen, Germany. Solid Earth 2016, 7, 1491–1508. [Google Scholar] [CrossRef] [Green Version]
- Farfour, M.; Osman, A.; Al-Shukaili, F. Geophysical investigation of underground cavity in Bimmah Sinkhole, Northern Oman. In Proceedings of the Fifth International Conference on Engineering Geophysics (ICEG), Al Ain, United Arab Emirates, 21–24 October 2019; pp. 203–206. [Google Scholar]
- Parise, M.; Gabrovsek, F.; Kaufmann, G.; Ravbar, N. Recent advances in karst research: From theory to fieldwork and applications. Geol. Soc. Spec. Publ. 2018, 466, 1–24. [Google Scholar] [CrossRef]
- Loke, M.H. Tutorial: 2-D and 3-D Electrical Imaging Surveys; Geotomo Software Company: Houston, TX, USA, 2013. [Google Scholar]
- Afshar, A.; Abedi, M.; Norouzi, G.H.; Riahi, M.A. Geophysical investigation of underground water content zones using electrical resistivity tomography and ground penetrating radar: A case study in Hesarak-Karaj, Iran. Eng. Geol. 2015, 196, 183–193. [Google Scholar] [CrossRef]
- El-Kaliouby, H. GPR study of karst in a carbonate coastal area for evaluating its suitability for construction, Wadi Shab, Eastern Oman. In Proceedings of the International Conference on Engineering Geophysics 2015, Al Ain, United Arab Emirates, 15–18 November 2015. [Google Scholar]
- Mohamed, A.M.E.; El-Hussain, I.; Deif, A.; Araffa, S.A.S.; Mansour, K.; Al-Rawas, G. Integrated ground penetrating radar, electrical resistivity tomography and multichannel analysis of surface waves for detecting near-surface caverns at Duqm area, Sultanate of Oman. Near Surf. Geophys. 2019, 17, 379–401. [Google Scholar] [CrossRef]
- Senkaya, G.; Senkaya, M.; Karsli, H.; Güney, R. Integrated shallow seismic imaging of a settlement located in a historical landslide area. Bull. Eng. Geol. Environ. 2020, 79, 1781–1796. [Google Scholar] [CrossRef]
- Gan, F.; Han, K.; Lan, F.; Chen, Y.; Zhang, W. Multi-geophysical approaches to detect karst channels underground—A case study in Mengzi of Yunnan Province, China. J. Appl. Geophys. 2017, 136, 91–98. [Google Scholar] [CrossRef]
- Varnavina, A.V.; Khamzin, A.K.; Kidanu, S.T.; Anderson, N.L. Geophysical site assessment in karst terrain: A case study from southwestern Missouri. J. Appl. Geophys. 2019, 170, 103838. [Google Scholar] [CrossRef]
- Bechtel, T.D.; Bosch, F.P.; Gurk, M. Chapter Four- Geophysical methods. In Methods in Karst Hydrogeology International Contribution to Hydrogeology; Goldscheider, N., Drew, D., Eds.; Taylor and Francis: London, France, 2007; Volume 26, pp. 171–199. [Google Scholar]
- Kaufmann, G. Geophysical mapping of solution and collapse sinkholes. J. Appl. Geophys. 2014, 111, 271–288. [Google Scholar] [CrossRef]
- Margiotta, S.; Negri, S.; Parise, M.; Valloni, R. Mapping the susceptibility to sinkholes in coastal areas, based on stratigraphy, geomorphology and geophysics. Nat. Hazards 2012, 62, 657–676. [Google Scholar] [CrossRef]
- Pueyo-Anchuela, O.; Casas-Sainz, A.M.; Soriano, M.A.; Pocoví-Juan, A. A geophysical survey routine for the detection of doline areas in the surroundings of Zaragoza (NE Spain). Eng. Geol. 2010, 114, 382–396. [Google Scholar] [CrossRef]
- Hussain, Y.; Uagoda, R.; Borges, W.; Nunes, J.; Hamza, O.; Condori, C.; Aslam, K.; Dou, J.; Cárdenas-Soto, M. The Potential Use of Geophysical Methods to Identify Cavities, Sinkholes and Pathways for Water Infiltration. Water 2020, 12, 2289. [Google Scholar] [CrossRef]
- Sundararajan, N.; Raef, A.; Al-Wardi, M. Integration of micro-gravity and very low frequency (VLF-EM) data analyses to outline hazardous Cavities and low rock-strength: Coastal carbonates, Wadi Shab, Oman. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2015; SAGEEP; Curran Associates, Inc.: Austin, TX, USA, 2015. [Google Scholar]
- Moraetis, D.; Mattern, F.; Scharf, A.; Frijia, G.; Kusky, T.M.; Yuan, Y.; El-Hussain, I. Neogene to Quaternary uplift history along the passive margin of the northeastern Arabian Peninsula, eastern Al Hajar Mountains, Oman. Quat. Res. 2018, 90, 418–434. [Google Scholar] [CrossRef]
- Kusky, T.; Robinson, C.; El-Baz, F. Tertiary–Quaternary faulting and uplift in the northern Oman Hajar Mountains. J. Geol. Soc. 2005, 162, 871–888. [Google Scholar] [CrossRef] [Green Version]
- Wyns, R.; Béchennec, F.; Le Métour, J. Geological Map of Sur; Sheet NF 40-08, Scale 1: 250,000; Directorate General of Minerals, Ministry of Petroleum and Minerals: Muscat, Oman, 1992. [Google Scholar]
- Salem, H. Multi- and inter-disciplinary approaches towards understanding the sinkholes’ phenomenon in the Dead Sea Basin. Appl. Sci. 2020, 2, 667. [Google Scholar] [CrossRef] [Green Version]
- Al-Shaqsi, Y.; Humaid, R.; Abdullah, F.; Khalfan, F. The Study of the Formation of Sinkholes and Its Effect on Infrastructure and Utilities. Advanced Diploma, Higher College of Technology, Muscat, Oman, 2017. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Farooq, M.; Park, S.; Song, Y.; Kim, J.; Tariq, M.; Abraham, A. Subsurface cavity detection in a karst environment using electrical resistivity (er): A case study from yongweol-ri, South Korea. Earth Sci. Res. J. 2010, 16, 75–82. [Google Scholar]
- Cardarelli, E.; Di Filippo, G.; Tuccinardi, E. Electrical resistivity tomography to detect buried cavities in Rome: A case study. Near Surf. Geophys. 2006, 4, 387–392. [Google Scholar] [CrossRef]
- El-Qady, G.; Hafez, M.; Abdalla, M.; Ushijima, K. Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar. J. Cave Karst Stud. 2005, 67, 174–181. [Google Scholar]
- Adelinet, M.; Domínguez, C.; Fortin, J.; Violette, S. Seismic-refraction field experiments on Galapagos Islands: A quantitative tool for hydrogeology. J. Appl. Geophys. 2018, 148, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lopez, J.; Rey, J.; Duenas, J.; Hidalgo, C.; Benavente, J. Electrical tomography applied to the detection of subsurface cavities. J. Cave Karst Stud. 2013, 75, 28–37. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudo sections by a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Loke, M.H. RES2DINV—Rapid 2D Resistivity and IP Inversion Using Least-Squares Methods, User Manual; Advanced Geosciences, Inc.: Austin, TX, USA, 1998; 66p. [Google Scholar]
- Farfour, M.; Al-Hosni, T. Mapping of near-surface formations by refraction seismic tomography: A case study from Al-Amerat, Sultanate of Oman. Arab. J. Geosci. 2020, 13, 462. [Google Scholar] [CrossRef]
- Sheehan, J.R.; Doll, W.E.; Mandell, W.A. An Evaluation of Methods and Available Software for Seismic Refraction Tomography Analysis. J. Environ. Eng. Geophys. 2005, 10, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, J.R.; Doll, W.E.; Watson, D.B.; Mandell, W.A. Application of Seismic Refraction Tomography to Karst Cavities. In Proceedings of the U.S. Geological Survey Karst Interest Group Proceedings, Rapid City, SD, USA, 12–15 September 2005. U.S. Geological Survey Scientific Investigations Report 2005-5160. [Google Scholar]
- Farfour, M.; Al-Hosni, T. Application of Seismic Refraction Tomography to Map Bedrock: A Case Study from Al-Amrat, Oman: On Significant Applications of Geophysical Methods, Advances in Science, Technology & Innovation. In Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Sousse, Tunisia, 12–15 November 2018. [Google Scholar]
- Annan, A.P. Transmission dispersion and GPR. J. Environ. Eng. Geophys. 1996, 1, 125–136. [Google Scholar] [CrossRef]
- Fernandes, A.L.; Medeiros, W.E.; Bezerra, F.H.R.; Oliveira, J.G.; Cazarin, C.L. GPR investigation of karst guided by comparison with outcrop and unmanned aerial vehicle imagery. J. Appl. Geophys. 2015, 112, 268–278. [Google Scholar] [CrossRef]
- Tzanis, A. matGPR Release 2: A freeware MATLAB® package for the analysis & interpretation of common and single offset GPR data. FastTimes 2010, 15, 17–43. [Google Scholar]
- Claerbout, J.F. Earth Soundings Analysis: Processing Versus Inversion; Blackwell Scientific Publications, Co., Inc.: Cambridge, MA, USA, 2004. [Google Scholar]
- Economou, N.; Vafidis, A.; Bano, B.; Hamdan, H.; Ortega-Rameriz, J. Ground-penetrating radar data diffraction focusing without a velocity model. Geophysics 2020, 85, H13–H24. [Google Scholar] [CrossRef]
- Fomel, S. Applications of plane-wave destruction filters. Geophysics 2002, 67, 1946–1960. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J. Velocity Analysis Using Separated Diffractions for Lunar Penetrating Radar Obtained by Yutu-2 Rover. Remote Sens. 2021, 13, 1387. [Google Scholar] [CrossRef]
- Fomel, S. Shaping regularization in geophysical estimation problems. Geophysics 2007, 72, R29–R36. [Google Scholar] [CrossRef]
- Riddle, G.; Riddle, C.; Schmitt, D. ERT and Seismic Tomography in Identifying Subsurface Cavities. Geo. Can. Work Earth 2010, 1, 1–4. [Google Scholar]
- Li, S.; Fomel, S. A robust approach to time-to-depth conversion and interval velocity estimation from time migration in the presence of lateral velocity variations. Geophys. Prospect. 2015, 63, 315–337. [Google Scholar] [CrossRef]
- Yuan, H.; Montazeri, M.; Looms, M.; Nielsen, L. Diffraction imaging of ground-penetrating radar data. Geophysics 2019, 84, H1–H12. [Google Scholar] [CrossRef]
- Novais, A.; Costa, J.; Schleicher, J. GPR velocity determination by image-wave remigration. J. Appl. Geophys. 2008, 65, 65–72. [Google Scholar] [CrossRef]
- Clair, J.; Holbrook, W.S. Measuring snow water equivalent from common-offset GPR records through migration velocity analysis. Cryosphere 2017, 11, 2997–3009. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farfour, M.; Economou, N.; Abdalla, O.; Al-Taj, M. Integration of Geophysical Methods for Doline Hazard Assessment: A Case Study from Northern Oman. Geosciences 2022, 12, 243. https://doi.org/10.3390/geosciences12060243
Farfour M, Economou N, Abdalla O, Al-Taj M. Integration of Geophysical Methods for Doline Hazard Assessment: A Case Study from Northern Oman. Geosciences. 2022; 12(6):243. https://doi.org/10.3390/geosciences12060243
Chicago/Turabian StyleFarfour, Mohammed, Nikos Economou, Osman Abdalla, and Masdouq Al-Taj. 2022. "Integration of Geophysical Methods for Doline Hazard Assessment: A Case Study from Northern Oman" Geosciences 12, no. 6: 243. https://doi.org/10.3390/geosciences12060243
APA StyleFarfour, M., Economou, N., Abdalla, O., & Al-Taj, M. (2022). Integration of Geophysical Methods for Doline Hazard Assessment: A Case Study from Northern Oman. Geosciences, 12(6), 243. https://doi.org/10.3390/geosciences12060243