Variation of Fe, Al, and F Substitution in Titanite (Sphene)
Abstract
:1. Introduction
2. Methods
3. Substitutions into Ti-Site of Titanite
4. Trends with Iron, Aluminum, and Fluorine
- (1)
- Volcanic: including titanite from all types of volcanic rocks except those from silica-undersaturated rocks.
- (2)
- Plutonic: including titanite from all types of plutonic rocks except pegmatites and silica-undersaturated rocks.
- (3)
- Silica-undersaturated igneous titanite: including titanite from both volcanic and plutonic rock types.
- (4)
- Metamorphic: including titanite from all types of metamorphic rocks except those from skarns and other metasomatic and hydrothermal environments.
- (5)
- Hydrothermal: including titanite formed in skarns and other water-rich environments (like many ore deposits), and sometimes occurring as overgrowths on plutonic or metamorphic titanite.
- (6)
- Pegmatitic.
5. Charge Balancing
6. Discussion
- (1)
- In all environments, the principal substitutions in the Ti+4 site of titanite are Fe+3 and Al+3.
- (2)
- The atomic ratio of Fe/Al in titanite from both volcanic and plutonic rocks is typically close to 1:1 and almost always > 1:2.
- (3)
- Volcanic titanite compositions typically cluster more tightly in terms of Fe, Al, and F than do titanite compositions from any other environment. Analyses of volcanic titanite from individual samples cluster even more tightly than the overall volcanic group. Given the wide range of potential compositions found in other environments, this suggests that titanite in volcanic rocks typically crystallized from magmas with limited ranges of Fe and Al.
- (4)
- Plutonic titanite typically clusters more loosely than does volcanic titanite in terms of Fe, Al, and F, suggesting a wider range of compositions for the magmas from which they crystallized. Some of the broader spread may be due to later metamorphic or hydrothermal overgrowths lumped in with the plutonic data that do not typically occur on volcanic titanite.
- (5)
- Unlike their Fe, Al, and F compositions, volcanic and plutonic titanite have the largest spread of REE and Y contents when compared to titanite from other environments.
- (6)
- Most primary volcanic and plutonic titanite grains are euhedral and have prominent (111) crystal faces, giving them their typical wedge or diamond shape while metamorphic titanite grains are typically less angular with a podlike shape.
- (7)
- Fe/Al ratios in titanite from silica-undersaturated volcanic and plutonic rocks are typically > 1:2. Although they overlap the field for normal volcanic and plutonic titanite, other elements (particularly high levels of Nb and low levels of Y) separate out titanite from these rocks.
- (8)
- Peralkaline rocks include titanite with the highest Fe/Al (typically > 2:1 and often much higher).
- (9)
- In most metamorphic rocks, the Fe/Al ratio in titanite is < 1:2 except for a few that have mafic and Fe-rich protoliths such as metabasalt or metabasite.
- (10)
- Titanite from high pressure metamorphic rocks (eclogites, blue schists, etc.) tends to have the lowest Fe/Al ratios, typically < 1:8. Apparently, Al-rich titanite is stable at higher pressures. However, some pegmatitic and hydrothermal titanite, including authigenic grains, also has Fe/Al in this low range.
- (11)
- Titanite from hydrothermal and pegmatitic environments scatters widely in terms of Fe/Al ratios even within single grains. This is likely due to crystallization from fluids with more variable compositions than is found in magmas and with a wider variety of oxidation conditions as seen particularly in the development of titanite in skarns. W-Mo skarns produce Al-rich titanite and magnetite skarns are dominated by Fe-rich titanite. Fluid composition and temperature in a hydrothermal environment may also change markedly due to a different water source flooding into the environment where the titanite crystals are forming, producing crystals with internally variable compositions.
- (12)
- Charge balance in metamorphic, hydrothermal, and pegmatitic titanite due to Fe+3 and Al+3 substitution into the Ti+4 site is largely accomplished by the coupled substitution of F− for O−2. However, in volcanic and plutonic titanite the charge imbalance due to Fe+3 and Al+3 substitution appears to be mainly coupled with REE+3 or Y+3 substitution into the Ca+2 site with a more minor contribution from F− substitution.
- (13)
- High quality BSE photos of titanite grains are critical in observing relationships and interpreting crystallization histories. Brightness variations correspond mainly with variations in REE concentrations, which typically anticorrelate with F and Al concentrations, particularly in igneous titanite.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock Forming Minerals: V. 1A, Orthosilicates, 2nd ed.; The Geological Society: London, UK, 1997. [Google Scholar]
- Frost, B.R.; Chamberlain, K.R.; Schumacher, J.C. Sphene (titanite): Phase relations and role as a geochonometer. Chem. Geol. 2000, 172, 131–148. [Google Scholar] [CrossRef]
- Jaffe, H.W. Reexamination of sphene (titanite). Am. Mineral. 1947, 32, 637–642. [Google Scholar]
- Kohn, M.J. Titanite petrochronology. Rev. Mineral. Geochem. 2017, 83, 419–441. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Coulson, I.M.; Schilling, J.; Jacob, D.E.; Schmitt, A.K.; Markl, G. The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chem. Geol. 2008, 257, 153–172. [Google Scholar] [CrossRef]
- Prowatke, S.; Klemme, S. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim. Cosmochim. Acta 2015, 69, 695–709. [Google Scholar] [CrossRef]
- Prowatke, S.; Klemme, S. Rare earth element partitioning between titanite and silicate melts: Henry’s law revisited. Geochim. Cosmochim. Acta 2006, 70, 4997–5012. [Google Scholar] [CrossRef]
- Tiepolo, M.; Oberti, R.; Vannucci, R. Trace-element incorporation in titanite: Constraints from experimentally determined solid/liquid partition coefficients. Chem. Geol. 2002, 191, 105–119. [Google Scholar] [CrossRef]
- Emsley, J. Nature’s Building Blocks; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Klaproth, M.H. Beiträge zur Chemischen Kenntniss der Mineralkörper, Erster Band; Decker und Compagnie: Posen, Prussia, 1795. [Google Scholar]
- Mellor, J.W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry; Longmans, Green, and Co., Ltd.: London, UK, 1927. [Google Scholar]
- Dana, E.S. A Text-Book of Mineralogy; John Wiley & Sons, Inc.: New York, NY, USA, 1916. [Google Scholar]
- Dana, J.D. A System of Mineralogy; John Wiley & Sons, Publishers: New York, NY, USA, 1869. [Google Scholar]
- Vakh, A.S.; Avchenko, O.V.; Karabtsov, A.A.; Stepanov, V.A. The first find of grothite in gold ore deposits. Dok. Earth Sci. 2009, 428, 1083–1087. [Google Scholar] [CrossRef]
- Vakh, A.S.; Avchenko, O.V.; Karabtsov, A.A.; Stepanov, V.A. High-alumina titanite in mineral assemblages of the Berezitovy gold-base-metal deposit, Upper Amur Region. Geol. Ore Depos. 2012, 54, 580–588. [Google Scholar] [CrossRef]
- Aleksandrov, S.M.; Troneva, M.A. Composition, mineral assemblages, and genesis of titanite and malayaite in skarns. Geochem. Int. 2007, 45, 1012–1024. [Google Scholar] [CrossRef]
- Alexander, J.B.; Flinter, B.H. A note on varlamoffite and associated minerals from the Batang Padang district, Perak, Malaya, Malaysia. Mineral. Mag. 1965, 35, 622–627. [Google Scholar] [CrossRef]
- Higgins, J.B.; Ribbe, P.H. The structure of malayaite, CaSnOSiO4, a tin analog of titanite. Am. Mineral. 1977, 62, 801–806. [Google Scholar]
- Takenouchi, S. Hydrothermal synthesis and consideration of the genesis of malayaite. Mineral. Depos. 1971, 6, 335–347. [Google Scholar] [CrossRef]
- Hey, M.H. International Mineralogical Association: Commission on New Minerals and Mineral Names. Mineral. Mag. 1982, 46, 513–514. [Google Scholar] [CrossRef]
- Angiboust, S.; Harlov, D. Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results. Am. Mineral. 2017, 102, 1696–1708. [Google Scholar] [CrossRef]
- Broska, I.; Harlov, D.; Tropper, P.; Siman, P. Formation of magmatic titanite and titanite–ilmenite phase relations during granite alteration in the Tribeč Mountains, Western Carpathians, Slovakia. Lithos 2007, 95, 58–71. [Google Scholar] [CrossRef]
- Broska, I.; Petrík, I. Accessory Fe-Ti oxides in the West-Carpathian I-type granitoids: Witnesses of the granite mixing and late oxidation processes. Mineral. Petrol. 2011, 102, 87–97. [Google Scholar] [CrossRef]
- Henze, P.K.; Christiansen, E.H.; Kowallis, B.J.; Dorais, M.J.; Mosher, H.D.; Franzen, L.M.; Martin, A.J.; Nabelek, P.I. Titanite geochemistry and textures: Implications for magmatic and post-magmatic processes in the Notch Peak and Little Cottonwood granitic intrusions, Utah. Am. Mineral. 2020, in press. [Google Scholar] [CrossRef]
- Horie, K.; Hidaka, H.; Gauthier-Lafaye, F. Elemental distribution in apatite, titanite and zircon during hydrothermal alteration: Durability of immobilization mineral phases for actinides. Phys. Chem. Earth 2008, 33, 962–968. [Google Scholar] [CrossRef]
- Middleton, A.W.; Förster, H.-J.; Uysal, I.T.; Golding, S.D.; Rhede, D. Accessory phases from the Soultz monzogranite, Soultz-sous-Forêts, France: Implications for titanite destabilisation and differential REE, Y and Th mobility in hydrothermal systems. Chem. Geol. 2013, 335, 105–117. [Google Scholar] [CrossRef]
- Pan, Y.; Fleet, M.E.; MacRae, N.D. Late alteration in titanite (CaTiSiO5): Redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochim. Cosmochim. Acta 1993, 57, 355–367. [Google Scholar] [CrossRef]
- Scott, D.J.; St.-Onge, M.R. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: Implications for U-Pb geochronology and P-T-t path determinations. Geology 1995, 23, 1123–1126. [Google Scholar] [CrossRef]
- Tilley, D.; Eggleton, R.A. Titanite low-temperature alteration and Ti mobility. Clays Clay Mineral. 2005, 53, 100–107. [Google Scholar] [CrossRef]
- Cao, M.-J.; Qin, K.-Z.; Li, G.-M.; Evans, N.J.; Jin, L.-Y. In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW China. Ore Geol. Rev. 2015, 65, 940–954. [Google Scholar] [CrossRef]
- Che, X.D.; Linnen, R.L.; Wang, R.C.; Groat, L.A.; Brand, A.A. Distribution of trace and rare earth elements in titanite from tungsten and molybdenum deposits in Yukon and British Columbia, Canada. Can. Mineral. 2013, 51, 415–438. [Google Scholar] [CrossRef]
- Fleischer, M. Relation of the relative concentrations of lanthanides in titanite to type of host rocks. Am. Mineral. 1978, 63, 869–873. [Google Scholar]
- Fleischer, M.; Altschuler, Z.S. The relationship of the rare-earth composition of minerals to geological environment. Geochim. Cosmochim. Acta 1969, 33, 725–732. [Google Scholar] [CrossRef]
- Gros, K.; Słaby, E.; Birski, Ł.; Kozug-Budzyń, G.; Sláma, J. Geochemical evolution of a composite pluton: Insight from major and trace element chemistry of titanite. Mineral. Petrol. 2020, 114, 375–401. [Google Scholar] [CrossRef]
- Ismail, R.; Ciobanu, C.L.; Cook, N.J.; Teale, G.S.; Giles, D.; Mumm, A.S.; Wade, B. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos 2014, 184–187, 456–477. [Google Scholar] [CrossRef]
- Kowallis, B.J.; Christiansen, E.H.; Dorais, M.J.; Barth, A.P. Are titanite grains found in Middle and Late Jurassic tuffs of the Carmel and Morrison Formations of Utah volcanic in origin or detrital grains from non-volcanic sources? Geol. Soc. Am. Abstr. Prog. 2016, 48. [Google Scholar] [CrossRef]
- Kowallis, B.J.; Christiansen, E.H.; Griffen, D.T. Compositional variations in titanite. Geol. Soc. Am. Abstr. Prog. 1997, 29, A402. [Google Scholar]
- Mazdab, F.K.; Wooden, J.L.; Barth, A.P. Trace element variability in titanite from diverse geologic environments. Geol. Soc. Am. Abstr. Prog. 2007, 39, 406. [Google Scholar]
- Nakada, S. Magmatic processes in titanite-bearing dacites, central Andes of Chile and Bolivia. Am. Mineral. 1991, 76, 548–560. [Google Scholar]
- Piuzana, D.; Casteñeda, C.; Noce, C.M.; Soares, A.C.P.; Silva, L.C. Titanite crystal chemistry and U-Pb isotopic data: A petrogenetic indicator for Precambrian granitoid plutons of the eastern Brazilian Shield. Geonomos 2008, 16, 29–36. [Google Scholar]
- Scibiorski, E.A.; Cawood, P.A. Titanite as a petrogenetic indicator. Terra Nova 2022, 34, 177–183. [Google Scholar] [CrossRef]
- Xie, L.; Wang, R.-C.; Chen, J.; Zhu, J.-Z. Mineralogical evidence for magmatic and hydrothermal processes in the Qitianling oxidized tin-bearing granite (Hunan, South China): EMP and (MC)-LA-ICPMS investigations of three types of titanite. Chem. Geol. 2010, 276, 53–68. [Google Scholar] [CrossRef]
- Xu, L.; Bi, X.; Hu, R.; Tang, Y.; Wang, X.; Xu, Y. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang—Red River alkaline igneous belt, SW China. Mineral. Petrol. 2015, 109, 181–200. [Google Scholar] [CrossRef]
- Jarosewich, E. Smithsonian microbeam standards. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 681–685. [Google Scholar] [CrossRef]
- Ribbe, P.H. Titanite. In Orthosilicates; Burns, R.G., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1980; pp. 137–154. [Google Scholar]
- Sharova, O.I.; Chudnenko, K.V.; Avchenko, O.V.; Badredinov, Z.G.; Vakh, A.S. Aluminum-fluorine sphene (titanite) as an indicator of fluorine fluid. Dok. Earth Sci. 2012, 422, 126–129. [Google Scholar] [CrossRef]
- Avchenko, O.V.; Vakh, A.S.; Cudnenko, K.V.; Sharova, O.I. Physicochemical crystallization conditions of Al-F sphene in metasomatic rocks with ore mineralization at the Berezitovoe Deposit. Geochem. Int. 2012, 50, 409–424. [Google Scholar] [CrossRef]
- Bernau, R.; Franz, G. Crystal chemistry and genesis of Nb-, V-, and Al-rich metamorphic titanite from Egypt and Greece. Can. Mineral. 1987, 25, 695–705. [Google Scholar]
- Carswell, D.A.; Wilson, R.N.; Zhai, M. Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China. Mineral. Mag. 1996, 60, 461–471. [Google Scholar] [CrossRef]
- Cave, B.J.; Stepanov, A.S.; Craw, D.; Large, R.R.; Halpin, J.A.; Thompson, J. Release of trace elements through the sub-greenschist facies breakdown of detrital rutile to metamorphic titanite in the Otago Schist, New Zealand. Can. Mineral. 2015, 53, 379–400. [Google Scholar] [CrossRef]
- Cempírek, J.; Houzar, S.; Novak, M. Complexly zoned niobian titanite from hedenbergite skarn at P|isek, Czech Republic, constrained by substitutions Al(Nb,Ta)Ti2, Al(F,OH)(TiO)1 and SnTi1. Mineral. Mag. 2008, 72, 1293–1305. [Google Scholar] [CrossRef]
- Černý, P.; Novak, M.; Chapman, R. The Al (Nb, Ta) Ti (in− 2) substitution in titanite: The emergence of a new species? Mineral. Petrol. 1995, 52, 61–73. [Google Scholar] [CrossRef]
- Enami, M.; Suzuki, K.; Liou, J.G.; Bird, D.K. Al-Fe3+ and F-OH substitutions in titanite and constraints on their PT dependence. Eur. J. Mineral. 1993, 5, 219–231. [Google Scholar] [CrossRef]
- Estrade, G.; Salvi, S.; Béziat, D.; Williams-Jones, A.E. The origin of skarn-hosted rare-metal mineralization in the Ambohimirahavavy alkaline complex, Madagascar. Econ. Geol. 2015, 110, 1485–1513. [Google Scholar] [CrossRef]
- Exley, R.A. Microprobe studies of REE-rich accessory minerals: Implications for Skye Granite petrogenesis and REE mobility in hydrothermal systems. Earth Planet. Sci. Lett. 1980, 48, 97–110. [Google Scholar] [CrossRef]
- Foord, E.E.; Hlava, P.F.; Erd, R.C.; Lichte, F.E. Rhyolite-hosted REE-Fe-Nb-bearing titanite from Willow Spring Draw, Sierra County, New Mexico, USA. In Rare Earth Minerals: Chemistry, Origin, and Ore Deposits; Mineralogical Society of Great Britain and Ireland: London, UK, 1993; pp. 39–41. [Google Scholar]
- Fu, Y.; Sun, X.; Zhou, H.; Lin, H.; Yang, T. In-situ LA–ICP–MS U–Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China. Ore Geol. Rev. 2016, 77, 43–56. [Google Scholar] [CrossRef]
- Grapes, R.; Watanabe, T. Paragenesis of titanite in metagreywackes of the Franz Josef-Fox Glacier area, Southern Alps, New Zealand. Eur. J. Mineral. 1992, 4, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Groat, L.A.; Carter, R.T.; Hawthorne, F.C.; Ercit, T.S. Tantalian niobian titanite from the Irgon claim, southeastern Manitoba. Can. Mineral. 1985, 23, 569–571. [Google Scholar]
- Hansen, E.; Reimink, J.; Harlov, D. Titaniferous accessory minerals in very low-grade metamorphic rocks, Keweenaw Peninsula Michigan, USA. Lithos 2010, 116, 167–174. [Google Scholar] [CrossRef]
- Houzar, S.; Litochleb, J.; Sejkora, J.; Cempírek, J.; Cícha, J. Unusual mineralization with niobian titanite and Bi-tellurides in scheelite skarn from Kamenné doly quarry near Písek, Moldanubian Zone, Bohemian Massif. J. Geosci. 2008, 53, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Janeczek, J. Nb-, Ta-and Sn-rich titanite and its alteration in pegmatites from Zólkiewka, Poland. Neues Jahr. Mineral. Monat. 1996, 10, 459–469. [Google Scholar]
- Liferovich, R.P.; Mitchell, R.H. Composition and paragenesis of Na-, Nb-, and Zr-bearing titanite from Khibina, Russia, and crystal-structure data for synthetic analogues. Can. Mineral. 2005, 43, 795–812. [Google Scholar] [CrossRef] [Green Version]
- Lussier, A.J.; Cooper, M.A.; Hawthorne, F.C.; Kristiansen, R. Triclinic titanite from the Heftetjern granitic pegmatite, Tordal, southern Norway. Mineral. Mag. 2009, 73, 709–722. [Google Scholar] [CrossRef]
- Markl, G.; Piazolo, S. Stability of high-Al titanite from low-pressure calcsilicates in light of fluid and host-rock composition. Am. Mineral. 1999, 84, 37–47. [Google Scholar] [CrossRef]
- Moore, J.M.; McStay, J.H. The formation of allanite-(Ce) in calcic granofelses, Namaqualand, South Africa. Can. Mineral. 1990, 28, 77–86. [Google Scholar]
- Paul, B.J.; Černý, P.; Chapman, R.; Hinthorne, J.R. Niobian titanite from the Huron Claim pegmatite, southeastern Manitoba. Can. Mineral. 1981, 19, 549–552. [Google Scholar]
- Sobolev, N.V.; Shatsky, V.S. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature 1990, 343, 742–746. [Google Scholar] [CrossRef]
- Xie, L.; Wand, R.C.; Wang, D.Z.; Qiu, J.S. A survey of accessory mineral assemblages in peralkaline and more aluminous A-type granites of the southeast coastal area of China. Mineral. Mag. 2006, 70, 709–729. [Google Scholar] [CrossRef]
- Bernau, R.; Franz, G.; Langer, K. Experimental Investigation of Titanite in the System CaO-Al2O3-TiO2-SiO2-H2O; Experimental Mineralogy and Geochemistry International Symposium: Nancy, France, 1986; pp. 21–22. [Google Scholar]
- Franz, G.; Spear, F.S. Aluminous titanite (sphene) from the eclogite zone, south-central Tauren Window, Austria. Chem. Geol. 1985, 50, 33–46. [Google Scholar] [CrossRef]
- Hollabaugh, C.L.; Foit, F.F., Jr. The crystal structure of an Al-rich titanite from Grisons, Switzerland. Am. Mineral. 1984, 69, 725–732. [Google Scholar]
- Oberti, R.; Smith, D.C.; Rossi, G.; Caucia, F. The crystal-chemistry of high-aluminium titanites. Eur. J. Mineral. 1991, 3, 777–792. [Google Scholar] [CrossRef] [Green Version]
- Sahama, T.G. On the chemistry of the mineral titanite. Bull. Comm. Géol. Finland 1946, 138, 88–120. [Google Scholar]
- Troitzsch, U.; Ellis, D.J. Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4–Ca-AlFSiO4. Contrib. Mineral. Petrol. 2002, 142, 543–563. [Google Scholar] [CrossRef]
- Laurent, O.; Zeh, A.; Gerdes, A.; Villaros, A.; Gros, K.; Słaby, E. How do granitoid magmas mix with each other? Insights from textures, trace element and Sr–Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa). Cont. Mineral. Petrol. 2017, 172, 80. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Wang, R.-C.; Yang, J.-H.; Wu, F.-Y.; Zhang, W.-L.; Gu, X.-P.; Zhang, A.-C. Zr and REE mineralization in sodic lujavrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks. Lithos 2016, 262, 232–246. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Palmer, M.R. Mn-rich ilmenite from the Sullivan Pb-Zn-Ag deposit, British Columbia. Can. Mineral. 1996, 34, 29–36. [Google Scholar]
- Higgins, J.B.; Ribbe, P.H. The crystal chemistry and space groups of natural and synthetic titanites. Am. Mineral. 1976, 61, 878–888. [Google Scholar]
- Colombini, L.L.; Miller, C.A.; Gualda, G.A.R.; Wooden, J.L.; Miller, J.S. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineral. Petrol. 2011, 102, 29–50. [Google Scholar] [CrossRef]
- Frost, B.R.; Lindsley, D.H. Occurrence of iron-titanium oxides in igneous rocks. Rev. Mineral. Geochem. 1991, 25, 433–468. [Google Scholar]
- Bachmann, O.; Dungan, M.A.; Bussy, F. Insights into shallow magmatic processes in large silicic magma bodies: The trace element record in the Fish Canyon magma body, Colorado. Contrib. Mineral. Petrol. 2005, 149, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, E.H.; Kowallis, B.J.; Skidmore, C.N.; Pickard, M.; Parks, E. The record of volcanism in the Brushy Basin Member of the Morrison Formation: Implications for the Late Jurassic of Western North America. In Late Jurassic Margin of Laurasia—A Record of Faulting Accommodating Plate Rotation; Anderson, T.H., Didenko, A.N., Johnson, C.L., Khanchuk, A.I., MacDonald, J.H., Jr., Eds.; Geological Society of America: Boulder, CO, USA, 2015; pp. 399–439. [Google Scholar]
- Kowallis, B.J.; Christiansen, E.H.; Deino, A.L.; Zhang, C.; Everett, B.H. The record of Middle Jurassic volcanism in the Carmel and Temple Cap Formations of southwestern Utah. Geol. Soc. Am. Bull. 2001, 113, 373–387. [Google Scholar] [CrossRef]
- Maughan, L.L.; Christiansen, E.H.; Best, M.G.; Grommé, C.S.; Deino, A.L.; Tingey, D.G. The Oligocene Lund Tuff, Great Basin, USA: A very large volume monotonous intermediate. J. Vol. Geother. Res. 2002, 113, 129–157. [Google Scholar] [CrossRef]
- Ackerson, M.R. Trace Element Partitioning between Titanite and Groundmass in Silicic Volcanic Systems. Master’s Thesis, University of North Carolina, Chapel Hill, NC, USA, 2011. [Google Scholar]
- Della Ventura, G.; Bellatreccia, F. Zr- and LREE-rich titanite from Tre Croci, Vico Volcanic complex (Latium, Italy). Mineral. Mag. 1999, 63, 123–130. [Google Scholar] [CrossRef]
- Iddon, F.; McLeod, G.W.; Dempster, T.J. Titanite from the Fish Canyon Tuff: Searching for clues to pre-eruptive magma chamber processes. In Proceedings of the Goldschmidt Conference Abstracts, Florence, Italy, 25–30 August 2013; p. 1354. [Google Scholar]
- Padilla, A.J.; Gualda, G.A.R. Crystal-melt elemental partitioning in silicic magmatic systems: An example from the Peach Spring Tuff high-silica rhyolite, southwest USA. Chem. Geol. 2016, 440, 326–344. [Google Scholar] [CrossRef]
- Pamukcu, A.S.; Carley, T.L.; Gualda, G.A.R.; Miller, C.A.; Ferguson, C.A. The evolution of the Peach Spring giant magma body: Evidence from accessory mineral textures and compositions, bulk pumice and glass geochemistry, and rhyolite-MELTS modeling. J. Petrol. 2013, 54, 1109–1148. [Google Scholar] [CrossRef] [Green Version]
- Bonamici, C.E.; Kozdon, R.; Ushikubo, T.; Valley, J.W. Intragraing oxygen isotope zoning in titanite by SIMS: Cooling rates and fluid infiltration along the Carthage-Colton mylonite zone, Adirondack Mountains, NY, USA. J. Metal. Geol. 2014, 32, 71–92. [Google Scholar] [CrossRef]
- Barth, A.P.; Wooden, J.L.; Howard, K.A.; Richards, J.L. Late Jurassic plutonism in the southwest U.S. Cordillera. In Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson; Wright, J.E., Shervais, J.W., Eds.; Special Paper 2008; Geological Society of America: Boulder, CO, USA, 2008; Volume 438, pp. 379–396. [Google Scholar]
- Dawson, J.B.; Hill, P.G. Mineral chemistry of a peralkaline combeite–lamprophyllite nephelinite from Oldoinyo Lengai, Tanzania. Mineral. Mag. 1998, 62, 179–196. [Google Scholar] [CrossRef]
- Dawson, J.B. Peralkaline nephelinite–natrocarbonatite relationships at Oldoinyo Lengai, Tanzania. J. Petrol. 1998, 39, 2077–2094. [Google Scholar] [CrossRef]
- Dawson, J.B.; Smith, J.V.; Steele, I.M. Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania. J. Petrol. 1995, 36, 797–826. [Google Scholar] [CrossRef]
- Krmíček, L.; Cempírek, J.; Havlín, A.; Přichystal, A.; Houzar, S.; Krmíčková, M.; Gadas, P. Mineralogy and petrogenesis of a Ba–Ti–Zr-rich peralkaline dyke from Šebkovice (Czech Republic): Recognition of the most lamproitic Variscan intrusion. Lithos 2011, 121, 74–86. [Google Scholar] [CrossRef]
- Mikhailova, J.A.; Pakhomovsky, Y.A.; Ivanyuk, G.Y.; Bazai, A.V.; Yakovenchuk, V.N.; Elizarova, I.R.; Kalashnikov, A.O. REE mineralogy and geochemistry of the Western Keivy peralkaline granite massif, Kola Peninsula, Russia. Ore Geol. Rev. 2017, 82, 181–197. [Google Scholar] [CrossRef]
- Paslick, C.R.; Halliday, A.N.; Lange, R.A.; James, D.; Dawson, J.B. Indirect crustal contamination: Evidence from isotopic and chemical disequilibria in minerals from alkali basalts and nephelinites from northern Tanzania. Cont. Mineral. Petrol. 1996, 125, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Shellnutt, J.G.; Iizuka, Y. Mineralogy from three peralkaline granitic plutons of the Late Permian Emeishan large igneous province (SW China): Evidence for contrasting magmatic conditions of A-type granitoids. Eur. J. Mineral. 2010, 23, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.-C.; Wang, D.-Z.; Zhao, G.-T.; Lu, J.-J.; Chen, X.-M.; Xu, S.-J. Accessory mineral record of magma-fluid interaction in the Laoshan I- and A-type granitic complex, eastern China. Phys. Chem. Earth 2001, 26, 835–849. [Google Scholar] [CrossRef]
- Woolley, A.R.; Platt, R.G.; Eby, N. Niobian titanite and eudialyte from the Ilomba nepheline syenite complex, north Malawi. Mineral. Mag. 1992, 56, 428–430. [Google Scholar] [CrossRef]
- Seifert, W. REE-, Zr-, and Th-rich titanite and associated accessory minerals from a kersantite in the Frankenwald, Germany. Mineral. Petrol. 2005, 84, 129–146. [Google Scholar] [CrossRef]
- Deng, X.-D.; Li, J.-W.; Zhou, M.-F.; Zhao, X.-F.; Yan, D.-R. In-situ LA-ICPMS trace elements and U–Pb analysis of titanite from the Mesozoic Ruanjiawan W–Cu–Mo skarn deposit, Daye district, China. Ore Geol. Rev. 2015, 65, 990–1004. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, X.; Hollings, P.; Li, D.; Yang, T. Geochronology and trace element geochemistry of titanite in the Machangqing Cu-Mo-dominated polymetallic deposit, Yunnan Province, southwest China. J. Asian Earth Sci. 2018, 158, 398–414. [Google Scholar] [CrossRef]
- Hu, H.; Li, J.-W.; McFarlane, C.R.M.; Luo, Y.; McCarron, T. Textures, trace element compositions, and U-Pb ages of titanite from the Mangling granitoid pluton, East Qinling Orogen: Implications for magma mixing and destruction of the North China Craton. Lithos 2017, 284-285, 50–68. [Google Scholar] [CrossRef]
- Whelan, J.A.; Hintze, L.F. Geologic road logs in the Star Range, Rocky Range, and San Francisco mountains, Beaver County, Utah. In Geology of the Milford Area; Hintze, L.F., Whelan, J.A., Eds.; Publication 3; Utah Geol. Assoc.: Salt Lake City, UT, USA, 1973; pp. 75–94. [Google Scholar]
- Whelan, J.A. Geology, ore deposits and mineralogy of the Rocky Range, near Milford, Beaver County, Utah. Utah Geol. Mineral. Sur. Special Stud. 1982, 57, 1–35. [Google Scholar]
- Tulloch, A.J. Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite. Cont. Mineral. Petrol. 1979, 69, 105–117. [Google Scholar] [CrossRef]
- Garber, J.M.; Hacker, B.R.; Kylander-Clark, A.R.C.; Stearns, M.; Seward, G. Controls on trace element uptake in metamorphic titanite: Implications for petrochronology. J. Petrol. 2017, 58, 1031–1058. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.E. Complex Zoning Patterns and Rare Earth Element Variations across Titanite Crystals from the Half Dome Granodiorite, Central Sierra Nevada, California. Master’s Thesis, University of North Carolina, Chapel Hill, NC, USA, 2015. [Google Scholar]
- Broska, I.; Petrík, I. Variscan thrusting in I- and S-type granitic rocks of the Tribeč Mountains, Western Carpathians (Slovakia): Evidence from mineral compositions and monazite dating. Geol. Carpathica 2015, 66, 455–471. [Google Scholar] [CrossRef] [Green Version]
- Viana da Cunha, I.R.; Dall’Agnol, R.; Feio, G.R.L. Mineral chemistry and magnetic petrology of the Archean Planalto Suite, Carajás Province—Amazonian Craton: Implications for the evolution of ferroan Archean granites. J. South Am. Earth Sci. 2016, 67, 100–121. [Google Scholar] [CrossRef]
- Harlov, D.E.; Förster, H.-J. Titanite reaction textures around ilmenite in amphibolite-facies rocks: Fluid induced? J Czech Geol. Soc. 2003, 48, 1–2. [Google Scholar]
- Oliveira, V.E.S.; Oliveira, D.C.; Marangoanha, B.; Lamarão, C.N. Geology, mineralogy and petrological affinities of the Neoarchean granitoids from the central portion of the Canaã dos Carajás domain, Amazonian craton, Brazil. J. South Am. Earth Sci. 2018, 85, 135–159. [Google Scholar] [CrossRef]
- Harlov, D.; Tropper, P.; Seifert, W.; Nijland, T.; Förster, H.-J. Formation of Al-rich titanite (CaTiSiO4–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of FH2O and FO2. Lithos 2006, 88, 72–84. [Google Scholar] [CrossRef]
- Gogoi, B.; Saikia, A.; Ahmad, M. Titanite-centered ocellar texture: A petrological tool to unravel the mechanism enhancing magma mixing. Period. Di Mineral. 2017, 86, 245–273. [Google Scholar]
- Rossetti, F.; Asti, R.; Faccenna, C.; Gerdes, A.; Lucci, F.; Theye, T. Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey). Lithos 2017, 282–283, 145–162. [Google Scholar] [CrossRef] [Green Version]
- Kraml, M.; Pik, R.; Rahn, M.; Selbekk, R.; Carignan, J.; Keller, J. A new multi-mineral age Reference material for 40Ar/39Ar, (U-Th)/He and fission track dating methods: The Limberg t3 Tuff. Geostand. Geoanaly. Res. 2006, 30, 73–86. [Google Scholar] [CrossRef]
- Schleicher, H.; Keller, J.; Kramm, U. Isotope studies on alkaline volcanics and carbonatites from the Kaiserstuhl, Federal Republic of Germany. Lithos 1990, 26, 21–35. [Google Scholar] [CrossRef]
- Wimmenauer, W. Beiträge zu Petrographie des Kaiserstuhls, Einführung und Teil I: Die Ergußgesteine und Tuffe. Neues Jahr. Mineral. Abhand. 1957, 91, 131–150. [Google Scholar]
- Erickson, R.L.; Blade, L.V. Geochemistry and petrology of the alkalic igneous complex at Magnet Cove, Arkansas. U.S. Geol. Surv. Prof. 1963, 425, 95. [Google Scholar]
- Flohr, M.J.K.; Ross, M. Alkaline igneous rocks of Magnet Cove, Arkansas: Mineralogy and geochemistry of syenites. Lithos 1990, 26, 67–98. [Google Scholar] [CrossRef]
- Howard, J.M.; Steele, K.F. Igneous rocks at Granite Mountain and Magnet Cove, Arkansas. In South-central Section of the Geological Society of America Centennial Field Guide; Hayward, O.T., Ed.; Geological Society of America: Boulder, CO, USA, 1988; Volume 4, pp. 259–262. [Google Scholar]
- Chen, Y.-X.; Zhou, K.; Zheng, Y.-F.; Gao, X.-Y.; Yang, Y. Polygenetic titanite records the composition of metamorphic fluids during the exhumation of ultrahigh-pressure metagranite in the Sulu orogen. J. Meta. Geol. 2016, 34, 573–594. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Zheng, Y.-F.; Chen, Y.-X.; Guo, J. Geochemical and U-Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen. Lithos 2012, 136–139, 93–108. [Google Scholar] [CrossRef]
- Jung, S.; Hellebrand, E. Textural, geochronological and chemical constraints from polygenetic titanite and monogenetic apatite from a mid-crustal shear zone: An integrated EPMA, SIMS, and TIMS study. Chem. Geol. 2007, 241, 88–107. [Google Scholar] [CrossRef]
- Marsh, J.H.; Kelly, E.D. Petrogenetic relations among titanium-rich minerals in an anatectic high-P mafic granulite. J. Meta. Geol. 2017, 35, 717–738. [Google Scholar] [CrossRef]
- Papapavlou, K.; Darling, J.R.; Storey, C.D.; Lightfoot, P.C.; Moser, D.E.; Lasalle, S. Dating shear zones with plastically deformed titanite: New insights into the orogenic evolution of the Sudbury impact structure (Ontario, Canada). Precamb. Res. 2017, 291, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Walters, J.B. Protracted Thrusting Followed by Late Rapid Cooling of the Greater Himalayan Sequence, Annapurna Himalaya, Central Nepal: Insights from Titanite Petrochronology. Master’s Thesis, Boise State University, Boise, ID, USA, 2016. [Google Scholar]
- Wintsch, R.P.; Aleinikoff, J.N.; Yi, K. Foliation development and reaction softening by dissolution and precipitation in the transformation of granodiorite to orthogneiss, Glastonbury Complex, Connecticut, U.S.A. Can. Mineral. 2005, 43, 327–347. [Google Scholar] [CrossRef]
- Ye, K.; Liu, J.-B.; Cong, B.-L.; Ye, D.-N.; Xu, P.; Omori, S.; Maruyama, S. Ultrahigh-pressure (UHP) low-Al titanites from carbonate-bearing rocks in Dabieshan-Sulu UHP terrane, eastern China. Am. Mineral. 2002, 87, 875–881. [Google Scholar] [CrossRef]
- Ahmed, Z.; Hariri, M.M. Formation and mineral chemistry of a calcic skarn from Al-Madhiq, SW Saudi Arabia. Chem. Der Erde 2006, 66, 187–201. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Y.; Zhou, T.; Zhang, L.; White, N.C.; Hong, H.; Zhang, W. LA-ICP-MS titanite U-Pb dating and mineral chemistry of the Luohe magnetite-apatite (MA)-type deposit in the Lu-Zong volcanic basin, Eastern China. Ore Geol. Rev. 2018, 92, 284–296. [Google Scholar] [CrossRef]
- Smith, M.P.; Storey, C.D.; Jeffries, T.E.; Ryan, C. In situ U-Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden: New constraints on the timing and origin of mineralization. J. Petrol. 2009, 50, 2063–2094. [Google Scholar] [CrossRef] [Green Version]
- Alderton, D.H.M. Calc-silicate minerals from the Dartmoor granite. Mineral. Mag. 1988, 52, 527–529. [Google Scholar] [CrossRef]
- Janeczek, J. The effect of aluminous titanite on the biotite-chlorite and amphibole-chlorite reactions. Eur. J. Mineral. 1994, 6, 623–625. [Google Scholar] [CrossRef]
- Morad, S.; Sirat, M.; El-Ghali, M.A.K.; Mansurbeg, H. Chloritization in Proterozoic granite from the Äspö Laboratory, southeastern Sweden: Record of hydrothermal alterations and implications for nuclear waste storage. Clay Mineral. 2011, 46, 495–513. [Google Scholar] [CrossRef]
- Piccoli, P.; Candela, P.; Rivers, M. Interpreting magmatic processes from accessory phases: Titanite–a small-scale recorder of large-scale processes. Transactions of the Royal Society of Edinburgh: Earth Sci. 2000, 91, 257–267. [Google Scholar] [CrossRef]
- Astrelina, E.; Smirnov, S.; Ragozin, A.; Karmanov, N.; Konovalenko, S. Late magmatic crystallization in the tourmaline-bearing miarolitic granitic pegmatites (by example of Shakhdarinskaya and Leskhozovskaya veins, SW Pamir, Tajikistan. In Proceedings of the European Current Research on Fluid Inclusions (ECROFI-XXI), Montanuniversität Leoben, Austria, 9–11 August 2011; pp. 24–25. [Google Scholar]
- Bakker, R.J.; Elburg, M.A. A magmatic-hydrothermal transition in Arkaroola (northern Flinders Ranges, South Australia): From diopside–titanite pegmatites to hematite–quartz growth. Contrib. Mineral. Petrol. 2006, 152, 541–569. [Google Scholar] [CrossRef]
- London, D. Pegmatites. Can. Mineral. 2008; Special Publication 10, 347p. Available online: https://www.mineralogicalassociation.ca/publications/special-publications/sp10/ (accessed on 14 April 2022).
- Thomas, R.; Davidson, P.; Rhede, D.; Leh, M. The miarolitic pegmatites from the Königshain: A contribution to understanding the genesis of pegmatites. Contrib. Mineral. Petrol. 2009, 157, 505–523. [Google Scholar] [CrossRef] [Green Version]
- Yeliseyev, N.A. Pneumatolytic crystallization of minerals. Int. Geol. Rev. 1962, 4, 799–816. [Google Scholar] [CrossRef]
- Uher, P.; Černý, P.; Chapman, R.; Határ, J.; Miko, O. Evolution of Nb, Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia. II. External hydrothermal Pb, Sb overprint. Can. Mineral. 1998, 36, 535–545. [Google Scholar]
- Russell, J.K.; Groat, L.A.; Halleran, A.A.D. LREE-rich niobian titanite from Mount Bisson, British Columbia: Chemistry and exchange mechanisms. Can. Mineral. 1994, 32, 575–587. [Google Scholar]
- Chakhmouradian, A.R. Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia. Am. Mineral. 2004, 89, 1752–1762. [Google Scholar] [CrossRef]
- Aramu, F.; Brovetto, P.; Delunas, A.; Maxia, V.; Rinaldi, R. Mössbauer spectroscopy of a natural titanite. Il Nuovo Cim. D 1990, 12, 132–138. [Google Scholar] [CrossRef]
- Holényi, K.; Annersten, H. Iron in titanite: A Mössbauer-spectroscopy study. Can. Mineral. 1987, 25, 429–433. [Google Scholar]
- Muir, I.J.; Metson, J.B.; Bancroft, G.M. 57Fe Mössbauer spectra of perovskite and titanite. Can. Mineral. 1984, 22, 689–694. [Google Scholar]
- Salje, E.K.H.; Safarik, D.J.; Taylor, R.D.; Pasternak, M.P.; Modic, K.A.; Groat, L.A.; Lashley, J.C. Determination of iron sites and the amount of amorphization in radiation-damaged titanite (CaSiTiO5). J. Phys. Cond. Matter 2011, 23, 105402. [Google Scholar] [CrossRef] [PubMed]
- Vuorinen, J.H.; Hålenius, U. Nb-, Zr- and LREE-rich titanite from the Alnö alkaline complex: Crystal chemistry and its importance as a petrogenetic indicator. Lithos 2005, 83, 128–142. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowallis, B.J.; Christiansen, E.H.; Dorais, M.J.; Winkel, A.; Henze, P.; Franzen, L.; Mosher, H. Variation of Fe, Al, and F Substitution in Titanite (Sphene). Geosciences 2022, 12, 229. https://doi.org/10.3390/geosciences12060229
Kowallis BJ, Christiansen EH, Dorais MJ, Winkel A, Henze P, Franzen L, Mosher H. Variation of Fe, Al, and F Substitution in Titanite (Sphene). Geosciences. 2022; 12(6):229. https://doi.org/10.3390/geosciences12060229
Chicago/Turabian StyleKowallis, Bart J., Eric H. Christiansen, Michael J. Dorais, Anthony Winkel, Porter Henze, Lauren Franzen, and Haley Mosher. 2022. "Variation of Fe, Al, and F Substitution in Titanite (Sphene)" Geosciences 12, no. 6: 229. https://doi.org/10.3390/geosciences12060229
APA StyleKowallis, B. J., Christiansen, E. H., Dorais, M. J., Winkel, A., Henze, P., Franzen, L., & Mosher, H. (2022). Variation of Fe, Al, and F Substitution in Titanite (Sphene). Geosciences, 12(6), 229. https://doi.org/10.3390/geosciences12060229