Slab Load Controls Beneath the Alps on the Source-to-Sink Sedimentary Pathways in the Molasse Basin
Abstract
:1. Introduction
2. Geological Setting
2.1. Crustal-Scale Architecture of the Alps
2.2. The Sedimentary Basins Surrounding the Alps
2.3. The Molasse Basin
3. Datasets and Methods
3.1. Sequential Restoration of the Shortening of the Alpine Orogen
3.2. Subsidence History and Evolution of the Molasse Basin
3.2.1. French Part of the Molasse Basin
3.2.2. Swiss Part of the Molasse Basin
3.2.3. German Part of the Molasse Basin
3.2.4. Austrian Part of the Molasse Basin
4. Results
4.1. Sequential Restoration of the Alps and Orogenic Development
4.2. Development and Subsidence of the Molasse Basin between 35 and 20 Ma
4.3. Development and Subsidence of the Molasse Basin after 20 Ma
5. Discussion
5.1. Possible Controls of Surface and Basin Fill Loads on the Development of the Molasse Basin
5.2. Possible Controls of Eustatic Sea-Level Changes on the Development of the Molasse Basin
5.3. Slab Load Controls
5.3.1. Prior to 32 Ma: Flysch Stage in the Entire Molasse Basin
5.3.2. At 30 Ma: Slab Load Controls on the Along-Strike Differences in Sedimentation
5.3.3. At 20 Ma: Controls of Slab Unloading Beneath the Eastern Alps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeCelles, P.; Giles, K.A. Foreland basin systems. Basin Res. 1996, 8, 105–123. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Gehrels, G.E.; Quade, J.; Ojha, T.P. Eocene-early Miocene foreland basin development and the history of Himalayan thrustiing, western and central Nepal. Tectonics 1998, 5, 741–765. [Google Scholar] [CrossRef]
- Garcia-Castellanos, D.; Fernàndez, M.; Torne, M. Modeling the evolution of the Guadalquivir foreland basin (southern Spain). Tectonics 2002, 21, 1018. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, H.D.; Naylor, M. Foreland basin subsidence driven by topographic growth versus plate subduction. Geol. Soc. Amer. Bull. 2012, 124, 368–379. [Google Scholar] [CrossRef]
- Horton, B.K. Sedimentary record of Andean mountain building. Earth-Sci. Rev. 2018, 178, 279–309. [Google Scholar] [CrossRef]
- Sinclair, H.D.; Coakley, B.J.; Allen, P.A.; Watts, A.B. Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: An example from the Central Alps, Switzerland. Tectonics 1991, 10, 599–620. [Google Scholar] [CrossRef]
- Flemings, P.B.; Jordan, T.E. Stratigraphic modeling of foreland basins: Interpreting thrust deformation and lithosphere rheology. Geology 1990, 18, 430–434. [Google Scholar] [CrossRef]
- Jordan, T.E.; Flemings, P.B. Large-scale stratigraphic architecture, eustatic variation, and unsteady tectonism: A theoretical evaluation. J. Geophys. Res.-Solid Earth 1991, 96, 6681–6699. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Schubert, G. Geodynamics: Application of Continuum Physics to Geological Problems; John Wiley: New York, NY, USA, 1982; p. 650. [Google Scholar]
- Jordan, T.E. Thrust loads and foreland basin evolution, Cretaceous, western United States. AAPG Bull. 1981, 65, 2506–2520. [Google Scholar]
- Beaumont, C. Foreland basins. Geophys. J. Int. 1981, 65, 291–329. [Google Scholar] [CrossRef] [Green Version]
- Füchtbauer, H. Sedimentpetrographische Untersuchungen in der älteren Molasse nördlich der Alpen. Eclogae Geol. Helv. 1964, 61, 157–298. [Google Scholar]
- Pfiffner, O.A. Evolution of the north Alpine foreland basin in the Central Alps. In Foreland Basins; Allen, P.A., Homewood, P., Eds.; John Wiley & Sons: New York, NY, USA, 1986; Volume 8, pp. 219–228. [Google Scholar]
- Schlunegger, F.; Matter, A.; Burbank, D.W.; Klaper, E.M. Magnetostratigraphic constraints on relationships between evolution of the central Swiss Molass Basin and Alpine orogenic events. Geol. Soc. Am. Bull. 1997, 109, 225–241. [Google Scholar] [CrossRef]
- Zweigel, J. Eustatic versus tectonic control on foreland basin fill: Sequences stratigraphy, subsidence analysis, stratigraphic modeling, and reservoir modeling applied to the German Molasse basin. Contr. Sed. Geol. 1998, 20, 140. [Google Scholar]
- Kempf, O.; Matter, A.; Burbank, D.W.; Mange, M. Depositional and structural evolution of a foreland basin margin in a magnetostratigraphic framework; the eastern Swiss Molasse Basin. Int. J. Earth Sci. 1999, 88, 253–275. [Google Scholar] [CrossRef]
- Strunck, P.; Matter, A. Depositional evolution of the western Swiss Molasse. Eclogae Geol. Helv. 2002, 95, 197–222. [Google Scholar]
- Sinclair, H.D.; Allen, P.A. Vertical versus horizontal motions in the Alpine orogenic wedge: Stratigraphic response in the foreland basin. Basin Res. 1992, 4, 215–232. [Google Scholar] [CrossRef]
- Hülscher, J.; Fischer, G.; Grunert, P.; Auer, G.; Bernhardt, A. Selective recording of the tectonic forcings in an Oligocene/Miocene submarine channel system: Insights from new age constraints and sediment volumes from the Austrian northern Alpine foreland basin. Front. Earth Sci. 2019, 7, 302. [Google Scholar] [CrossRef] [Green Version]
- Hülscher, J.; Sobel, E.R.; Verwater, V.; Groß, P.; Chew, D.; Bernhardt, A. Detrital apatite geochemistry and thermochronology from the Oligocene/Miocene Alpine foreland record the early exhumation of the Tauern Window. Basin Res. 2021, 33, 3021–3044. [Google Scholar] [CrossRef]
- Kalifi, A.; Leloup, P.H.; Sorrel, P.; Galy, A.; Demory, F.; Spina, V.; Huet, B.; Quillévéré, F.; Ricciardi, F.; Michoux, D.; et al. Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps). Solid Earth 2021, 12, 2735–2771. [Google Scholar] [CrossRef]
- Rögl, F.; Hochuli, P.; Müller, C. Oligocene-early miocene stratigraphic correlations in the molasse basin of Austria. Ann. Geol. Pay. Hell. Tome Hors Series 1979, 30, 1045–1050. [Google Scholar]
- Spiegel, C.; Kuhlemann, J.; Dunkl, I.; Frisch, W.; von Eynatten, H.; Balogh, K. The erosion history of the Central Alps: Evidence from zircon fission track data of the foreland basin sediments. Terra Nova 2000, 12, 163–170. [Google Scholar] [CrossRef]
- Anfinsion, O.A.; Stockli, D.F.; Miller, J.C.; Möller, A.; Schlunegger, F. Tectonic exhumation of the Central Alps recorded by detrital zircon in the Molasse Basin, Switzerland. Solid Earth 2020, 11, 2197–2220. [Google Scholar] [CrossRef]
- Pfiffner, O.A.; Schlunegger, F.; Buiter, S.J.H. The Swiss Alps and their peripheral foreland basin: Stratigraphic response to deep crustal processes. Tectonics 2002, 6, 1054. [Google Scholar] [CrossRef] [Green Version]
- Schlunegger, F.; Kissling, E. Slab rollback orogeny in the Alps and evolution of the Swiss Molasse basin. Nat. Commun. 2015, 6, 8605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhlemann, J. Paleogeographic and paleotopographic evolution of the Swiss and Eastern Alps since the Oligocene. Glob. Planet. Chang. 2007, 58, 224–236. [Google Scholar] [CrossRef]
- Handy, M.R.; Schmid, S.M.; Paffrath, M.; Friederich, W.; the AlpArray Working Group. Orogenic lithosphere and slabs in the greater Alpine area–interpretations based on teleseismic P-wave tomography. Solid Earth 2021, 12, 2633–2669. [Google Scholar] [CrossRef]
- Lippitsch, R.; Kissling, E.; Ansorge, J. Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J. Geophys. Res. 2003, 108, 2376. [Google Scholar] [CrossRef]
- Froitzheim, N.; Schmid, S.M.; Frey, M. Mesozoic paleogeography and the timing of eclogite-facies metamorphism in the Alps: A working hypothesis. Eclogae Geol. Helv. 1996, 89, 81–110. [Google Scholar]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Handy, M.; Schmid, S.; Bousquet, R.; Kissling, E.; Bernoulli, D. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Sci. Rev. 2010, 102, 121–158. [Google Scholar] [CrossRef]
- Kissling, E.; Schlunegger, F. Rollback orogeny model for the evolution of the Swiss Alps. Tectonics 2008, 37, 1097–1115. [Google Scholar] [CrossRef]
- Schmid, S.M.; Pfiffner, O.A.; Froitzheim, N.; Schönborn, G.; Kissling, E. Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 1996, 15, 1036–1064. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, C.L.; Berger, A.; Bellahsen, N.; Bousquet, R. Relating orogen width to shortening, erosion, and exhumation during Alpine collision. Tectonics 2015, 34, 1306–1328. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, C.L.; Schneider, S.; Scharf, A.; Bertrand, A.; Hammerschmidt, K.; Rabaute, A.; Brun, J.-P. Relating collisional kinematics to exhumation processes in the Eastern Alps. Earth-Sci. Rev. 2018, 176, 311–344. [Google Scholar] [CrossRef] [Green Version]
- Handy, M.R.; Ustaszewski, K.; Kissling, E. Reconstructing the Alps-Carpathians-Dinarides as key to understanding switches in subduction polarity, slab gaps and surface motion. Int. J. Earth Sci. 2015, 104, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Herwegh, M.; Berger, A.; Glotzbach, C.; Wangenheim, C.; Mock, S.; Wehrens, P.; Baumberger, R.; Egli, D.; Kissling, E. Late stages of continent-continent collision: Timing, kinematic evolution, and exhumation of the Northern rim (Aar Massif) of the Alps. Earth-Sci. Rev. 2020, 200, 102959. [Google Scholar] [CrossRef]
- Schönborn, G. Alpine tectonics and kinematic models of the Central Southern Alps. Mem. Soc. Geol. 1992, 44, 229–393. [Google Scholar]
- Ustaszewski, K.; Schmid, S.M.; Fügenschuh, B.; Tischler, M.; Kissling, E.; Spakman, W. A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. Swiss J. Geosci. 2008, 101, 273–294. [Google Scholar] [CrossRef] [Green Version]
- Stipp, M.; Fügenschuh, B.; Gromet, L.P.; Stünitz, H.; Schmid, S.M. Contemporaneous plutonism and strike-slip faulting: A case study from the Tonale fault zone north of the Adamello pluton (Italian Alps). Tectonics 2004, 23, TC3004. [Google Scholar] [CrossRef] [Green Version]
- Ratschbacher, L.; Frisch, W.; Linzer, H.G.; Merle, O. Lateral extrusion in the Eastern Alps, part 2: Structural analysis. Tectonics 1991, 10, 257–271. [Google Scholar] [CrossRef]
- Frisch, W.; Dunkl, I.; Kuhlemann, J. Post-collisional orogen-parallel large-scale extension in the Eastern Alps. Tectonophysics 2000, 327, 239–265. [Google Scholar] [CrossRef]
- Kissling, E.; Schmid, S.; Lippitsch, R.; Ansorge, J.; Fügenschuh, B. Lithosphere structure and tectonic evolution of the Alpine arc: New evidence from high-resolution teleseismic tomography. Geol. Soc. London Mem. 2006, 32, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Fry, B.; Deschamps, F.; Kissling, E.; Stehly, L.; Giardini, D. Layered azimuthal anisotropy of Rayleigh wave phase velocities in the European Alpine lithosphere inferred from ambient noise. Earth Planet. Sci. Lett. 2010, 297, 95–102. [Google Scholar] [CrossRef]
- Lyon-Caen, H.; Molnar, P. Constraints on the deep structure and dynamic processes beneath the Alps and adjacent regions from an analysis of gravity anomalies. Geophys. J. Int. 1998, 99, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Holliger, K.; Kissling, E. Gravity interpretation of a unified 2-D acoustic image of the central Alpine collision zone. Geophys. J. Int. 1992, 111, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Paul, A.; Malusà, M.G.; Xu, X.; Zheng, T.; Solarino, S.; Guillot, S.; Schwartz, S.; Dumont, T.; Salimbeni, S.; et al. Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res.-Solid Earth 2016, 121, 8720–8737. [Google Scholar] [CrossRef]
- Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Paul, A.; Zhao, L. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion. Geophys. J. Int. 2018, 212, 1369–1388. [Google Scholar] [CrossRef]
- Lammerer, H.; Gebrande, E.; Lüschen, E.; Veselá, P. A crustal-scale cross-section through the Tauern Window (eastern Alps) from geophysical and geological data. Geol. Soc. London Spec. Publ. 2008, 298, 219–229. [Google Scholar] [CrossRef]
- Scharf, A.; Handy, M.R.; Favaro, S.; Schmid, S.M.; Bertrand, A. Modes of orogen-parallel stretching and extensional exhumation in response to microplate indentation and roll-back subduction (Tauern Window, Eastern Alps). Int. J. Earth Sci. 2013, 102, 1627–1654. [Google Scholar] [CrossRef]
- Kaestle, E.D.; Rosenberg, C.; Boschi, L.; Bellahsen, N.; Meier, T.; El-Sharkawy, A. Slab break-offs in the Alpine subduction zones. Int. J. Earth Sci. 2020, 109, 587–603. [Google Scholar] [CrossRef] [Green Version]
- Piromallo, C.; Morelli, A. P-wave tomography of the mantle under the Alpine–Mediterranean area. J Geophys. Res. 2003, 108, 2065. [Google Scholar] [CrossRef]
- Karousova, H.; Plomerova, J.; Babuska, V. Upper-mantle structure beneath the southern Bohemian Massif and its surroundings imaged by high-resolution tomography. Geophys. J. Int. 2013, 194, 1203–1215. [Google Scholar] [CrossRef] [Green Version]
- Dando, B.D.E.; Stuart, G.W.; Houseman, G.A.; Hegedüs, E.; Brückl, E.; Radovanović, S. Teleseismic tomography of the mantle in the Carpathian–Pannonian region of central Europe. Geophys. J. Int. 2011, 186, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Mitterbauer, U.; Behm, M.; Brückl, E.; Lippitsch, R.; Guterch, A.; Keller, G.R.; Koslovskaya, E.; Rumpfhuber, E.M.; Sumanovac, F. Shape and origin of the East-Alp slab constrained by the ALPASS teleseismic model. Tectonophysics 2011, 510, 195–206. [Google Scholar] [CrossRef]
- Wortel, M.J.R.; Spakman, W. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 2000, 290, 1910–1917. [Google Scholar] [CrossRef]
- Spakman, W.; Wortel, M.J.R. Tomographic View on Western Mediterranean Geodynamics. In The TRANSMED Atlas, the Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F.M., Stampfli, G.M., Ziegler, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 31–52. [Google Scholar] [CrossRef]
- Linzer, H.-G.; Decker, K.; Peresson, H.; Dell’Mour, R.; Frisch, W. Balancing lateral orogenic float of the Eastern Alps. Tectonophysics 2002, 354, 211–237. [Google Scholar] [CrossRef]
- Zahorec, P.; Papčo, J.; Pašteka, R.; Bielik, M.; Bonvalot, S.; Braitenberg, C.; Ebbing, J.; Gabriel, G.; Gosar, A.; Grand, A.; et al. The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers. Earth Syst. Sci. Data 2021, 13, 2165–2209. [Google Scholar] [CrossRef]
- Spada, M.; Bianchi, I.; Kissling, E.; Agostinetti, N.P.; Wiemer, S. Combining controlled-source seismology and receiver function information to derive 3-D Moho topography for Italy. Geophys. J. Int. 2013, 194, 1050–1068. [Google Scholar] [CrossRef] [Green Version]
- Laubscher, H.P. The arcs of the Western Alps and the Northern Apennines: An updated view. Tectonophysics 1998, 146, 67–78. [Google Scholar] [CrossRef]
- Speranza, F.; Villa, I.M.; Sagnotti, L.; Florindo, F.; Cosentino, D.; Cipollari, P. Age of the Corsica-Sardinia rotation and Liguro-Provençal Basin spreading: New paleomagnetic and Ar/Ar evidence. Tectonophysics 2002, 347, 231–251. [Google Scholar] [CrossRef]
- Argnani, A. Plate motion and the evolution of Alpine Corsica and Northern Apennines. Tectonophysics 2012, 579, 207–219. [Google Scholar] [CrossRef]
- Carminati, E.; Doglioni, C. Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth. Earth-Sci. Rev. 2012, 112, 67–96. [Google Scholar] [CrossRef]
- Amadori, C.; Toscani, G.; Di Giulio, A.; Maesano, F.; D’Ambrogi, C.; Ghielmi, M.; Fantoni, R. From cylindrical to non-cylindrical foreland basin: Pliocene-Pleistocene evolution of the Po Plain-Northern Adriatic Basin (Italy). Basin Res. 2019, 31, 991–1015. [Google Scholar] [CrossRef] [Green Version]
- Sissingh, W. Tectonostratigraphy of the North Alpine Foreland Basin: Correlation of Tertiary depositional cycles and orogenic phases. Tectonophysics 1997, 282, 223–256. [Google Scholar] [CrossRef]
- Sissingh, W. Comparative Tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin: Correlation of Alpine foreland events. Tectonophysics 1998, 300, 249–284. [Google Scholar] [CrossRef]
- Berger, J.-P.; Reichenbacher, B.; Becker, D.; Grimm, M.; Grimm, K.; Picot, L.; Storni, A.; Pirkenseer, C.; Derer, C.; Schäfer, A. Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene. Int. J. Earth Sci. 2005, 94, 697–710. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, M. Aspects of the large-scale miocene deformation in the most external part of the Swiss Alps (Sub-Alpine Molasse to Jura Fold Belt). Eclogae Geol. Helv. 1990, 83, 559–583. [Google Scholar]
- Cederbom, C.; Sinclair, H.D.; Schlunegger, F.; Rahn, M. Climate-induced rebound and exhumation of the European Alps. Geology 2004, 32, 709–712. [Google Scholar] [CrossRef]
- Hinsch, R. Laterally varying structure and kinematics of the molasse fold and thrust belt of the central eastern alps: Implications for exploration. AAPG Bull. 2013, 97, 1805–1831. [Google Scholar] [CrossRef]
- Ortner, H.; Aicholzer, S.; Zerlauth, M.; Pilser, R.; Fügenschuh, B. Geometry, amount, and sequence of thrusting in the Subalpine Molasse of western Austria and southern Germany, European Alps. Tectonics 2015, 34, 1–30. [Google Scholar] [CrossRef]
- Malz, A.; Madritsch, H.; Jordan, P.; Meier, B.; Kley, J. Along-strike variation of thin-skinned thrusting style controlled by pre-existing basement structure in the easternmost Jura Mountains (Northern Switzerland). In Fold and Thrust Belts: Structural Style, Evolution and Exploration; Hammerstein, J.A., di Cuia, R., Cottam, M.A., Zamora, G., Butler, R.W.H., Eds.; Geological Society of London: London, UK, 2019; Volume 490, pp. 199–220. [Google Scholar]
- Sommaruga, A.; Eichenbeger, U.; Marillier, F. Seismic Atlas of the Swiss Molasse Basin; Swiss Geophysical Commission, Ed.; Matér. Géol. Suisse, Géophys; 2012; p. 44. Available online: https://www.geologieportal.ch/en/themes/fundamentals-of-geology/geophysics/seismic-atlas.html (accessed on 23 May 2022).
- Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L. A new thermal and rheological model of the European lithosphere. Tectonophysics 2009, 476, 478–495. [Google Scholar] [CrossRef]
- Mey, J.; Scherler, D.; Wickert, A.D.; Egholm, D.L.; Tesauro, M.; Schildgen, T.F.; Strecker, M. Glacial isostatic uplift of the European Alps. Nat. Comm. 2016, 7, 13382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waschbusch, P.J.; Royden, L.H. Spatial and temporal evolution of foredeep basins: Lateral strength variations and inelastic yielding in continental lithosphere. Basin Res. 1992, 4, 179–196. [Google Scholar] [CrossRef]
- Matter, A.; Homewood, P.; Caron, C.; Rigassi, D.; van Stuijvenberg, J.; Weidmann, M.; Winkler, W. Flysch and Molasse of Western and Central Switzerland. In Geology of Switzerland Exc. Guidebook No. 126A, Proceedings of the 26th International Geological Congress, Paris, France, 15 January 1980; Geol. Komm.; Wepf & Co.: Basel, Switzerland, 1980. [Google Scholar]
- Kuhlemann, J.; Kempf, O. Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sediment. Geol. 2002, 152, 45–78. [Google Scholar] [CrossRef]
- Jin, J.; Aigner, T.; Luterbacher, H.P.; Bachmann, G.H.; Müller, M. Sequence stratigraphy and depositional history in the south-eastern German Molasse Basin. Mar. Petrol. Geol. 1995, 12, 929–936. [Google Scholar] [CrossRef]
- Zweigel, J.; Aigner, T.; Luterbacher, H. Eustatic versus tectonic controls on Alpine foreland basin fill: Sequence stratigraphy and subsidence analysis in the SE German Molasse. In Cenzoic Foreland Basins of Western Europe; Mascle, A., Puigdefabregas, C., Luterbacher, H.P., Fernandez, M., Eds.; Geological Society of London: London, UK, 1998; Volume 134, pp. 299–323. [Google Scholar]
- Cederbom, C.; van der Beek, P.; Schlunegger, F.; Sinclair, H.; Oncken, O. Rapid extensive erosion oft he North Alpine foreland basin at 5-4 Ma. Basin Res. 2011, 23, 528–550. [Google Scholar] [CrossRef]
- Baran, R.; Friedrich, A.; Schlunegger, F. The late Miocene to Holocene erosion pattern of the Alpine foreland reflects Eurasian slab unloading beneath the western Alps rather than global climate change. Lithosphere 2014, 6, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Lemcke, K. Vertikalbewegungen des vormesozoischen Sockels im nördlichen Alpen-vorland Perm bis zur Gegenwart? Eclogae Geol. Helv. 1974, 67, 121–133. [Google Scholar]
- Hetényi, G.; Plomerová, J.; Bianchi, I.; Kampfová Exnerová, H.; Bokelmann, G.; Handy, M.R.; Babuška, V. From mountain summits to roots: Crustal structure of the Eastenr Alps and Bohemian Massif along longitude 13.3 E. Tectonophysics 2018, 744, 239–255. [Google Scholar] [CrossRef]
- Rosenberg, C.L.; Berger, A. On the causes and modes of exhumation and lateral growth of the Alps. Tectonics 2009, 28, TC6001. [Google Scholar] [CrossRef] [Green Version]
- Kempf, O.; Pfiffner, O.A. Early Tertiary evolution of the North Alpine Foreland Basin of the Swiss Alps and adjoining areas. Basin Res. 2004, 16, 549–567. [Google Scholar] [CrossRef]
- Schlunegger, F.; Burbank, D.W.; Matter, A.; Engesser, B.; Mödden, C. Magnetostratigraphic calibration of the Oligocene to Middle Miocene (30–15 Ma) mammal biozones and depositional sequences of the Swiss Molasse Basin. Eclogae Geol. Helv. 1996, 89, 753–788. [Google Scholar]
- Van der Boon, A.; Beniest, A.; Ciurej, A.; Gaździcka, E.; Grothe, A.; Sachsenhofer, R.F.; Langereis, C.G.; Krijgsman, W. The Eocene-Oligocene trnasition in the North Alpine Foreland Basin and subsequent closure of a Paratethys gateway. Glob. Planet. Chang. 2018, 162, 101–119. [Google Scholar] [CrossRef]
- Engesser, B. New Eomyidae, Dipodidae, and Cricetidae (Rodentia, Mammalia) of the Lower Freshwater Molasse of Switzeraland and Savoy. Eclogae Geol. Helv. 1987, 80, 943–994. [Google Scholar]
- Diem, B. Die Untere Meeresmolasse zwischen der Saane (Westschweiz) und der Ammer (Oberbayern). Eclogae Geol. Helv. 1986, 79, 493–559. [Google Scholar]
- Sachsenhofer, F.; Leitner, B.; Linzer, H.-G.; Bechtel, A.; Ćorić, S.; Gratzer, R.; Reischenbacher, D.; Soliman, A. Deposition, erosion and hydrocarbon source potential of the Oligocene Eggerding Formation (Molasse basin, Austria). Austrian J. Earth Sci. 2010, 103, 76–99. [Google Scholar]
- Bernhardt, A.; Stright, L.; Lowe, D.R. Channelized debris-flow deposits and their impact on turbidity currents: The Puchkirchen axial channel belt in the Austrian Molasse Basin. Sedimentology 2012, 59, 2042–2070. [Google Scholar] [CrossRef]
- Grunert, P.; Hinsch, R.; Sachsenhofer, R.F.; Bechtel, A.; Ćorić, S.; Harzhauser, M.; Piller, W.E.; Sperl, H. Early Burdigalian infill of the Puchkirchen Trough (North Alpine Foreland Basin, Central Paratethys): Facies development and sequence stratigraphy. Mar. Pet. Geol. 2013, 39, 164–186. [Google Scholar] [CrossRef]
- De Ruig, M.J.; Hubbard, S.M. Seismic facies and reservoir characteristics of a deep-marine channel belt in the Molasse foreland basin. Puchkirchen Formation, Austria. AAPG Bull. 2006, 90, 735–752. [Google Scholar] [CrossRef]
- Rubatto, D.; Regis, D.; Hermann, J.; Boston, K.; Engi, M.; Beltrando, M.; McAlpine, S.R. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nat. Geosci. 2011, 4, 338–342. [Google Scholar] [CrossRef]
- Davis, J.H.; von Blanckenburg, F. Slab breakoff: A model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 1994, 129, 85–102. [Google Scholar] [CrossRef]
- Schmid, S.; Aebli, H.R.; Heller, F.; Zingg, A. The role of the Periadriatic Line in the tectonic evolution of the Alps. In Alpine Tectonics; Coward, M.P., Dietrich, D., Park, R.G., Eds.; Geological Society: London, UK, 1989; Volume 45, pp. 153–171. [Google Scholar]
- Engi, M.; Todd, C.S.; Schmalz, D.R. Tertiary metamorphic conditions in the eastern Lepontine Alps. Schweiz. Mineral. Petrogr. Mitt. 1995, 75, 347–369. [Google Scholar]
- Boston, K.R.; Rubatto, J.; Hermann, J.; Engi, M.; Amelin, Y. Geochronology of accessory allanite and monazite in the Barrovian metamorphic sequence of the Central Alps, Switzerland. Lithos 2017, 286, 502–518. [Google Scholar] [CrossRef] [Green Version]
- Kováč, M.; Nagymarosy, A.; Oszcypko, N.; Csontos, L.; Slaczka, A.; Marunteanu, M.; Matenko, L.; Márton, E. Palinspastic reconstruction of the Carpathian–Pannonian region during the Miocene. In Geodynamic Development of the Western Carpathians; Rakuš, M., Ed.; GUDS Bratislava: Bratislava, Slovakia, 1998; pp. 198–217. [Google Scholar]
- Oszczypko, N. The structural position and tectonosedimentary evolution of the Polish Outer Carpathians. Przegląd Geol. 2004, 52, 780–791. [Google Scholar]
- Bolliger, T.; Engesser, B.; Weidmann, M. Premiere Decouverte De Mammiferes Pliocenes Dans Le Jura Neuchateois. Eclogae Geol. Helv. 1993, 86, 1031–1068. [Google Scholar]
- Sinclair, H.D. Flysch to Molasse transition in peripheral foreland basins: The role of the passive margin versus slab breakoff. Geology 1997, 25, 1123–1126. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Winkler, W.; Rahn, M.; von Quadt, A.; Willett, S.D. Evaluating igneous sources of the Taveyannaz formation in the Central Alps by detrital zircon U–Pb age dating and geochemistry. Swiss J. Geosci. 2018, 111, 399–416. [Google Scholar] [CrossRef]
- Peresson, H.; Decker, K. Far-field effects of Late Miocene subduction in the Eastern Carpathians: E-W compression and inversion of structures in the Alpine-Carpathian-Pannonian region. Tectonics 1997, 16, 38–56. [Google Scholar] [CrossRef]
- Frisch, W.; Kuhlemann, J.; Dunkl, I.; Skékely, B. The Dachstein paleosurface and the Augenstein Formation in the Northern Calcareous Alps–A mosaic stone in the geomorphological evolution of the Eastern Alps. Int. J. Earth Sci. 2001, 90, 500–518. [Google Scholar] [CrossRef]
- Berger, J.-P. Paléontologie de la Molasse de Suisse Occidentale, taxonomie, biostratigraphie, paléoecologie et paléoclima tologie. Habilitation Thesis, University Fribourg, Fribourg, Switzerland, 1992; p. 405. [Google Scholar]
- Ford, M.; Lickorish, H. Forleand basin evolution around the western Alpine arc. In Deep-Water Sedimentation in the Alpine Basin of SE France; New Perspectives on the Grès d’Annot and Related Systems; Joseph, P., Lomas, S.A., Eds.; Geological Society of London: London, UK, 2004; Volume 221, pp. 39–63. [Google Scholar]
- Charollais, J.; Weidmann, M.; Berger, J.-P.; Engesser, B.; Hotellier, J.-F.; Gorin, G.; Reichenbacher, B.; Schäfer, P. La Molasse du bassin franco-genevois et son substratum. Arch. Sci. 2007, 60, 59–174. [Google Scholar]
- Garefalakis, P.; Schlunegger, F. Tectonic processes, variations in sediment flux, and eustatic sea level recorded by teh 20 Myr old Burdigalian transgression in the Swiss Molasse basin. Solid Earth 2019, 10, 2045–2072. [Google Scholar] [CrossRef] [Green Version]
- Keller, B. Fazies und Stratigraphie der Oberen Meeresmolasse (Unteres Miozän) Zwischen Napf und Bodensee. Ph.D. Thesis, University of Bern, Bern, Switzerland, 1989; p. 302. [Google Scholar]
- Schlunegger, F.; Jordan, T.E.; Klaper, E.M. Controls of erosional denudation in the orogen on foreland basin evolution: The Oligocene central Swiss Molasse Basin as an example. Tectonics 1997, 16, 823–840. [Google Scholar] [CrossRef] [Green Version]
- Krsnik, E.; Methner, K.; Campani, M.; Botsyun, S.; Mutz, S.G.; Ehlers, T.A.; Kempf, O.; Fiebig, J.; Schlunegger, F.; Mulch, A. Miocene high elevation in the Central Alps. Solid Earth 2021, 12, 2615–2631. [Google Scholar] [CrossRef]
- Bernhard, R.; Sinclari, H.D.; Gailleton, B.; Fox, M. Formation of Longitudinal River Valleys and the Fixing of Drainage Divides in Response to Exhumation of Crystalline Basement. Geophys. Res. Lett. 2021, 48, e2020GL092201. [Google Scholar] [CrossRef]
- Kühni, A.; Pfiffner, O.A. Drainage patterns and tectonic forcing: A model study for the Swiss Alps. Basin Res. 2001, 13, 169–197. [Google Scholar] [CrossRef]
- Schlunegger, F.; Melzer, J.; Tucker, G. Climate, exposed source-rock lithologies, crustal uplift and surface erosion: A theoretical analysis calibrated with data from the Alps/North Alpine foreland basin system. Int. J. Earth Sci. 2001, 90, 484–499. [Google Scholar] [CrossRef]
- Schlunegger, F.; Willett, S.D. Spatial and temporal variations in exhumation of the central Swiss Alps and implications for exhumation mechanisms. In Exhumation Processes: Normal Faulting, Ductile Flow and Erosion; Ring, U., Brandon, M.T., Lister, G.S., Willett, S.D., Eds.; Geological Society of London: London, UK, 1999; Volume 154, pp. 157–179. [Google Scholar]
- Girault, J.-P.; Bellahsen, N.; Bernet, M.; Pik, R.; Loget, N.; Lasseur, E.; Rosenberg, C.L.; Balvay, M.; Sonnet, M. Exkumation of the Western Alpine collisional wedge: New thermochronological data. Tectonophysics 2021, 822, 229155. [Google Scholar] [CrossRef]
- Girault, J.B. Exhumation du Prisme Collisionnel Ouest Alpin et Évolution Girault, J.B. Exhumation du Prisme Collisionnel Ouest Alpin et Évolution du Bassin Molassique: Nouvelles Données Thermochronologiques et Tectono-Sédimentaires. Sciences de la Terre; Sorbonne Université: Paris, France, 2020; NNT: 2020SORUS086. tel-03372619. [Google Scholar]
- Allen, P.A.; Bass, J.P. Sedimentology of the Upper Marine Molasse of the Rhône-Alp region, Eastern France: Implications for basin evolution. Eclogae Geol. Helv. 1993, 86, 121–171. [Google Scholar]
- Kalifi, A.; Sorrel, P.; Leloup, P.-H.; Galy, A.; Spina, V.; Huet, B.; Russo, S.; Pittet, B.; Rubino, J.-L. Tectonic control on the paleogeographical evolution of the Miocene Seaway along the Western Alpine foreland basin. In Straits and Seaways: Controls, Processes and Implications in Modern and Ancient Systems; Rossi, V.M., Longhitano, S., Olariu, C., Chiocci, F., Eds.; Geological Society of London: London, UK, 2022; Volume 523, in press. [Google Scholar] [CrossRef]
- Bellahsen, N.; Mouthereau, F.; Boutoux, A.; Bellanger, M.; Lacombe, O.; Jolivet, L.; Rolland, Y. Collision kinematics in the western external Alps. Tectonics 2014, 33, 1055–1088. [Google Scholar] [CrossRef] [Green Version]
- Herwegh, M.; Berger, A.; Baumberger, R.; Wehrens, P.; Kissling, E. Large-scale crustal-block-extrusion during late Alpine collision. Sci. Rep. 2017, 7, 413. [Google Scholar] [CrossRef] [Green Version]
- Allen, P.A.; Mange-Rajetky, A.; Matter, A. Dynamic palaeogeography of the open Burdigalian seaway, Swiss Molasse basin. Eclogae Geol. Helv. 1985, 78, 351–381. [Google Scholar]
- Martel, A.T.; Allen, P.A.; Slingerland, R. Use of tidal-circulation modeling in paleogeographical studies: An example from the Tertiary of the Alpine perimeter. Geology 1994, 22, 925–928. [Google Scholar] [CrossRef]
- Dal Zilio, L.; Kissling, E.; Gerya, T.; van Dinther, Y. Slab rollback orogeny model: A test of concept. Geophys. Res. Lett. 2020, 47, e2020GL089917. [Google Scholar] [CrossRef]
- Willett, S.D.; Schlunegger, F.; Picotti, V. Messinian climate change and erosional destruction of the central European Alps. Geology 2006, 34, 613–616. [Google Scholar] [CrossRef]
- Kuhlemann, J. Postcollisional sediment budget of circum-Alpine basins (central Europe). Mem. Sci. Geol. Univ. Padova 2000, 52, 1–91. [Google Scholar]
- Kuhlemann, J.; Frisch, W.; Dunkl, I.; Skékely, B. Quantifying tectonic versus erosive denudation by the sediment budget: The Miocene core complexes of the Alps. Tectonophysics 2001, 330, 1–23. [Google Scholar] [CrossRef]
- Ji, W.-Q.; Malusà, M.G.; Tiepolo, M.; Langone, A.; Zhao, L.; Wu, F.-Y. Synchronous Periadriatic magmatism in the Western and Central Alps in the absence of slab breakoff. Terra Nova 2019, 31, 120–128. [Google Scholar] [CrossRef]
- Mellere, D.; Stefani, C.; Angevine, C. Polyphase tectonics through subsidence analysis: The Oligo-Miocene Venetian and Friuli Basin, north-east Italy. Basin Res. 2020, 12, 159–182. [Google Scholar] [CrossRef]
- Jost, J.; Kempf, O.; Kälin, D. Stratigraphy and palaeoecology of the Upper Marine Molasse (OMM) of the central Swiss Plateau. Swiss J. Geosci. 2016, 109, 149–169. [Google Scholar] [CrossRef]
Lithostratigraphic Unit | Ages (Ma) | Thickness (m) | Water Depth (m) | Proxy for Depth of Foreland Plate (m) | References |
---|---|---|---|---|---|
USM | 30–21 | 50 | 0 | 50 | Kalifi et al. [21] |
OMM | 21–18 | 200 | 20 | 270 | Kalifi et al. [21] |
OMM | 20–17 | 500 | 20 | 770 | Kalifi et al. [21] |
OMM | 17–16.5 | 270 | 20 | 1040 | Kalifi et al. [21] |
OMM | 16.5–14 | 300 | 0 | 1320 | Kalifi et al. [21] |
OSM continued (?) | 14–10 | 250 | 0 | 1570 | |
Erosion (?) | 10–0 | 100 | 0 | 1470 |
Lithostratigraphic Unit | Ages (Ma) | Thickness (m) | Water Depth (m) | Proxy for Depth of Foreland Plate (m) | References |
---|---|---|---|---|---|
UMM | 32–30 | 150 | 50 m at 30 Ma | 200 | Diem [92] Schlunegger et al. [14] |
USM I | 25–20 | 500 | 0 | 650 | Schlunegger et al. [14] Kempf et al. [16] |
USM II | 25–20 | 1460 | 0 | 2110 | Schlunegger et al. [14] Kempf et al. [16] |
OMM I | 20–18 | 600 | 20 | 2730 | Schlunegger et al. [14] |
OMM II | 18–16.5 | 225 | 50 | 2985 | Schlunegger et al. [14] |
OSM preserved | 16.5–15.5 | 500 | 0 | 3435 | Schlunegger et al. [14] |
OSM continued | 15.5–10/5 | 1400–3000 mean 2350 | 0 | 5785 | Cederbom et al. [83] |
Erosion | 10/5–0 | 1400–3000 mean 2350 | 0 | 3435 | Cederbom et al. [83] |
Lithostratigraphic Unit | Ages (Ma) | Thickness (m) | Water Depth (m) | Proxy for Depth of Foreland Plate (m) | References |
---|---|---|---|---|---|
Rupelian marls | 32–30 | 800 | 50 m at 30 Ma | 850 | Jin et al. [81] |
Chattian marls and sands | 30–25 | 1700 | 50 | 2550 | Jin et al. [81] |
Aquitanian marls and sands | 25–20 | 1300 | 50 | 3850 | Jin et al. [81] |
Sandstone-shale Series; Fish Shales | 20–18 | 150 | 20 | 3970 | Jin et al. [81] |
Neuhofer beds, Blättermergel and Glauconite sands | 18–16.5 | 250 | 20 | 4220 | Jin et al. [81] |
Kirchberger beds and OSM | 16.5–12 | 450 | 0 | 4650 | Jin et al. [81] |
OSM continued | 12–10/5 | 600 | 0 | 5250 | Lemcke [85] |
Erosion | 10/5–0 | 600 | 0 | 4650 | Lemcke [85] |
Lithostratigraphic Unit | Ages (Ma) | Thickness (m) | Water Depth (m) | Proxy for Depth of Foreland Plate (m) | References |
---|---|---|---|---|---|
Schöneck, Dynson, and Eggerdingen Fms. | 35–30 | 65 | 600 | 665 | Sachsenhofer et al. [93] |
Zupfing Fm. | 30–27 | 450 | 400–600 (mean of 500) | 1015 | Sachsenhofer et al. [93] |
Puchkirchen Fm. and sands | 27–20 | 1500 | 1000–1500 (mean of 1250) | 3265 | Bernhardt et al. [94] Grunert et al. [95] |
Hall Fm. and Inn- viertel group | 20–16.5 | 1200 | 50 | 3265 | Hülscher et al. [19] |
OSM | 16.5–10 | c. 450 | 0 | 3665 | Ruig and Hubbard [96] |
Uplift and erosion | 5–0 | c. 300 | 0 | 3365 | Lemcke [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlunegger, F.; Kissling, E. Slab Load Controls Beneath the Alps on the Source-to-Sink Sedimentary Pathways in the Molasse Basin. Geosciences 2022, 12, 226. https://doi.org/10.3390/geosciences12060226
Schlunegger F, Kissling E. Slab Load Controls Beneath the Alps on the Source-to-Sink Sedimentary Pathways in the Molasse Basin. Geosciences. 2022; 12(6):226. https://doi.org/10.3390/geosciences12060226
Chicago/Turabian StyleSchlunegger, Fritz, and Edi Kissling. 2022. "Slab Load Controls Beneath the Alps on the Source-to-Sink Sedimentary Pathways in the Molasse Basin" Geosciences 12, no. 6: 226. https://doi.org/10.3390/geosciences12060226
APA StyleSchlunegger, F., & Kissling, E. (2022). Slab Load Controls Beneath the Alps on the Source-to-Sink Sedimentary Pathways in the Molasse Basin. Geosciences, 12(6), 226. https://doi.org/10.3390/geosciences12060226