Impacts of Gravitational Mass Movements on Protective Structures—Rock Avalanches/Granular Flow
Abstract
:1. Introduction
2. Aims of this work
3. Model Experiments with Dry Granular Flow
3.1. Flume Apparatus of the University of Innsbruck
3.2. Experiments with Rigid Barrier
3.3. Experiments with Flexible Barriers—Nets
3.4. Experiments with Protection Embankment
4. Interpretation of the Laboratory Experiments
4.1. Kinematics of the Granular Flow on Rigid Barriers
4.2. Test Results with Flexible Barriers
4.3. Test Results with Protective Dams
4.4. Comparison of Impacts for Rigid Barriers, Flexible Structures and Embankments
4.5. Comparison of the Laboratory Experiments with the DEM Simulation
- -
- Coefficient of friction particle–particle: sand = 0.61; mixture = 0.66.
- -
- Coefficient of friction particle–flume: sand = 0.50; mixture = 0.48.
- -
- Rolling friction coefficient: sand = 0.52; mixture = 0.45.
- -
- Restitution factor particle–particle: sand = 0.35; mixture = 0.15.
- -
- Restitution factor particle–flume: sand = 0.55; mixture = 0.55.
5. Comparison of the Effects of Debris Flows and Rock Avalanches with Different Design Approaches for Rigid Structures
5.1. Comparison of the Laboratory Experiments of this Work with the Design Approaches According to Ng et al. for Debris Flows
5.2. Comparison of the Laboratory Experiments of this Work with the Hydrodynamic Approaches for Debris Flows
5.3. Comparison of the Test Results of this Work with the Design Approaches According to Ho et al. for Debris Flows
5.4. Design Approach According to Ashwood and Hungr for Rock Avalanches
5.5. Newly Proposed Impact Model for Barriers According to Choi et al. for Dry Granular Flow
6. Comparison of the Effects of Debris Flows and Rock Avalanches with Quasi-Static Design Approaches for Rigid Structures
6.1. General Aspects
6.2. Impact Model for Barriers with the Approach of “Creep Pressure”
6.3. Proposal for the Estimation of the Peak Impact Force based on the Quasi-Static Models
- Fg,red = static force obtained from creep pressure theory;
- ζs = static coefficient independent of the structure type (rigid, flexible, embankment);
- ζs = 1.0 to 1.5.
- ζd = dynamic coefficient depending on the type of structure;
- ζd = 1.0 to 1.06 for the embankment;
- ζd = 1.0 to 1.15 for the rigid barrier;
- ζd = 1.0 to 1.30 for the flexible barrier.
7. Summary for Rigid Barriers
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashwood, W.; Hungr, O. Estimating total resisting force in flexible barrier impacted by a granular avalanche using physical and numerical modeling. Can. Geotech. J. 2016, 53, 1700–1717. [Google Scholar] [CrossRef]
- Moriguchi, S.; Borja, R.I.; Yashima, A.; Sawada, K. Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 2009, 4, 57–71. [Google Scholar] [CrossRef]
- Albaba, A.; Lambert, S.; Faug, T. Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations. Phys. Rev. E 2018, 97, 052903. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.W.W.; Wang, C.; Choi, C.E.; de Silva, W.A.R.K.; Poudyal, S. Effects of barrier deformability on load reduction and energy dissipation of granular flow impact. Comput. Geotech. 2020, 121, 103445. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Song, D.; Choi, C.E.; Liu, L.H.D.; Kwan, J.S.H.; Koo, R.C.H.; Pun, W.K. Impact mechanisms of granular and viscous flows on rigid and flexible barriers. Can. Geotech. J. 2017, 54, 188–206. [Google Scholar] [CrossRef]
- Song, D.; Chen, X.; Zhou, G.G.; Lu, X.; Cheng, G.; Chen, Q. Impact dynamics of debris flow against rigid obstacle in laboratory experiments. Eng. Geol. 2021, 291, 106211. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, L.M.; Chen, H.X. Wo-dimensional simulation of debris flow impact pressures on buildings. Eng. Geol. 2017, 226, 236–244. [Google Scholar] [CrossRef]
- Ng, C.; Choi, C.; Liu, H.; Wang, C.; Kwan, J. Impact mechanisms of debris flow on barriers: Modelling, analysis and design. In Proceedings of the Scg-XIII International Symposium on Landslides, Cartagena, Colombia, 22–26 February 2021. [Google Scholar]
- Shu, H.; Ma, J.; Qi, S.; Chen, P.; Guo, Z.; Zhang, P. Experimental results of the impact pressure of debris flows in loess regions. Nat. Hazards 2020, 103, 3329–3356. [Google Scholar] [CrossRef]
- Berger, S.; Hofmann, R.; Wimmer, L. Einwirkungen auf starre Barrieren durch fließähnliche gravitative Massenbewegungen. Geotechnik 2021, 44, 77–91. [Google Scholar] [CrossRef]
- Strobl, T.; Zunic, F. Hydraulic Engineering—Current Basics—New Developments; Springer: Munich, Germany, 2006. [Google Scholar]
- Margreth, S.; Bartelt, P.; Bühler, Y.; Christen, M.; Graf, C.; Schweizer, J. Expert Report G2017.20 Modelling of the Cengalo Landslide with Different Framework Conditions, Bondo, GR; WSL Institute for Snow and Avalanche Research SLF: Davos, Switzerland, 2017. [Google Scholar]
- Sosio, R.; Crosta, G.B.; Hungr, O. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng. Geol. 2008, 100, 11–26. [Google Scholar] [CrossRef]
- PLANAT. PLANAT National Platform Natural Hazards Federal Office for the Environment FOEN. 2020. Landslide and Rockfall—Origin of Rockfall and Rockslide [Online]. Available online: http://www.planat.ch/de/wissen/rutschung-und-felssturz/steinschlag-felssturz/entstehung-s-f/ (accessed on 6 August 2020).
- Hofmann, R.; Vollmert, L. Rockfall embankments: Construction and Design. Geomech. Tunn. 2020, 13, 21–31. [Google Scholar] [CrossRef]
- Song, D.R.; Zhou, G.G.; Choi, C.E.; Zheng, Y. Debris flow impact on flexible barrier: Effects of debris-barrier stiffness and flow aspect ratio. J. Mt. Sci. 2019, 16, 1629–1645. [Google Scholar] [CrossRef]
- Tapia, F.; Pouliquen, O.; Guazzelli, E. Influence of surface roughness on the rheology of immersed and dry frictional spheres. Phys. Rev. Fluids 2019, 4, 104302. [Google Scholar] [CrossRef] [Green Version]
- Baselt, I.; de Oliveira, G.Q.; Fischer, J.T.; Pudasaini, S.P. Evolution of stony debris flows in laboratory experiments. Geomorphology 2021, 372, 107431. [Google Scholar] [CrossRef]
- Song, D.; Zhou, G.G.; Xu, M.; Choi, C.E.; Li, S.; Zheng, Y. Quantitative analysis of debris-flow flexible barrier capacity from momentum and energy perspectives. Eng. Geol. 2019, 251, 81–92. [Google Scholar] [CrossRef]
- Wendeler, C.; Salzmann, H.; Feiger, N. Flexible Debris Flow Barriers and Their Ability Proof; Second JTC1 Workshop: Hong Kong, 2018; pp. 167–170. [Google Scholar]
- Tan, D.Y.; Yin, J.H.; Feng, W.Q.; Qin, J.Q.; Zhu, Z.H. Influence of Debris Penetration on Impact Loading for Flexible Barrier Design; Second JTC1 Workshop: Hong Kong, 2018; pp. 155–158. [Google Scholar]
- Ng, C.W.; Choi, C.E.; Song, D.; Calvello, M.; Kwan, J.S.H.; Wang, G. Interaction of debris flow with rigid and flexible barriers: Centrifuge and numerical simulations. In Proceedings of the TC1 Workshop on Advances in Landslide Understanding, Barcelona, Spain, 24–26 May 2017. [Google Scholar]
- Hübl, J.; Suda, J.; Proske, D.; Kaitna, R.; Scheidl, C. Debris flow impact estimation. In Proceedings of the 11th International Symposium on Water Management and Hydraulic Engineering, Ohrid, Macedonia, 1–5 September 2009; University od Ss Cyril and Methodius, Faculty of Civil Engineering: Skopje, Macedonia, 2009. [Google Scholar]
- Ho, K.; Koo, R.; Kwan, J. Advances in debris flow risk mitigation practice in Hong Kong, Second JTC1 Workshop. In Triggering and Propagation of Rapid Flow-Like Landslides; Joint Technical Committee on Natural Slopes and Landslides: Hong Kong, 2018. [Google Scholar]
- Choi, C.E.; Ng, C.W.W.; Liu, H.; Wang, Y. Interaction between dry granular flow and rigid barrier with basal clearance: Analytical and physical modelling. Can. Geotech. J. 2020, 57, 236–245. [Google Scholar] [CrossRef]
- Zanuttigh, B.; Lamberti, A. Experimental analysis of the impact of dry avalanches on structures and implication for debris flows. J. Hydraul. Res. 2006, 44, 522–534. [Google Scholar] [CrossRef]
- Haefeli, P. Zur Erd- und Kriechdruck-Theorie. Schweiz. Bauztg. 1944, 124, 256–260, Erratum in Schweiz. Bauztg. 1944, 124, 267–271. [Google Scholar]
- Strom, A.; Li, L.; Lan, H. Role of Confinement on Spreading of Flow-Like Dry Rock Avalanches; Second JTC1 Workshop: Hong Kong, 2018; pp. 151–154. [Google Scholar]
- Huang, H.P.; Yang, K.C.; Lai, S.W. Impact Force of Debris Flow on Filter Dam. In Momentum; National Taiwan University: Taiwan, 2007; Volume 9, p. 03218. [Google Scholar]
- Scotton, P.; Deganutti, A.M. Phreatic line and dynamic impact in laboratory debris flow experiments. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment; ASCE: Reston, VA, USA, 1997; pp. 777–786. [Google Scholar]
- Daido, A. Impact force of mud-debris flows on structures. In Proceedings of the Congress-International Association for Hydraulic Research, Local Organizing Committee of The XXV Congress, Tokyo, Japan, 30 August–3 September 1993; Volume 3, p. 211. [Google Scholar]
- Armanini, A.; Scotton, P. On the dynamic impact of a debris flow on structures. In Proceedings of the Congress-International Association for Hydraulic Research, Local Organizing Committee of The XXV Congress, Tokyo, Japan, 30 August–3 September 1993; Volume 3, p. 203. [Google Scholar]
- Volkwein, A. Design of flexible debris flow barriers. In WSL Berichte, 18; Swiss Federal Institute for Forest, Snow and Landscape Research WSL: Birmensdorf, Switzerland, 2014. [Google Scholar]
- Ng, C.W.W.; Song, D.; Choi, C.E.; Koo, R.C.H.; Kwan, J.S.H. A novel flexible barrier for landslide impact in centrifuge. Géotechnique Lett. 2016, 6, 221–225. [Google Scholar] [CrossRef]
- Choi, C.E.; Au-Yeung, S.C.H.; Ng, C.W.W.; Song, D. Flume investigation of landslide granular debris and water runup mechanisms. Géotechnique Lett. 2015, 5, 28–32. [Google Scholar] [CrossRef]
- Song, D.; Ng, C.W.W.; Choi, C.E.; Zhou, G.G.; Kwan, J.S.; Koo, R.C.H. Influence of debris flow solid fraction on rigid barrier impact. Can. Geotech. J. 2017, 54, 1421–1434. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, R.; Kolymbas, D. Wasserdruck auf Konsolidierungssperren. In Bauingenieur BD.95; VDI Fachmedien: Düsseldorf, Germany, 2020; Volume 2020. [Google Scholar]
- Ng, C.W.W.; Choi, C.E.; Cheung, D.K.H.; Cui, Y. Effects of dynamic fragmentation on the impact force exerted on rigid barrier: Centrifuge modelling. Can. Geotech. J. 2019, 56, 1215–1224. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Soga, K. A new physically based impact model for debris flow. Géotechnique 2021, 71, 674–685. [Google Scholar] [CrossRef]
- Hungr, O. Simplified models of spreading flow of dry granular material. Can. Geotech. J. 2008, 45, 1156–1168. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Majeed, U.; Choi, C.E.; de Silva, W.A.R.K. New impact equation using barrier Froude number for the design of dual rigid barriers against debris flows. Landslides 2021, 18, 2309–2321. [Google Scholar] [CrossRef]
Variables | Scale Factor | Model Size | Sizes of Prototype | |
---|---|---|---|---|
Scale 1:30 | Scale 1:50 | |||
Grain size (mm) | λ | 8 | 250 | 400 |
Duration (s) | 3 | 16.4 | 21.2 | |
Velocity (m/s) | 5.5 | 30 | 39 | |
Density (kg/m3) | 1 | 1.78 | 1.78 | 1.78 |
Froude number | 1 | 7 | 7 | 7 |
Peak total force Fpeak (kN) | λ3 | 0.1 | 2700 | 12,500 |
Variables | Punta Thurwieser (2004) | Piz Cengalo (2017) |
---|---|---|
Grain size | - | Large blocks with gravel, sand and silt |
Velocity (m/s) | up to 57.2 | up to 75.0 |
Density (kg/m3) | -- | 1900 to 2150 |
Flow depth (m) | - | 2.0 to 14.0 |
Froude number | - | 2.6 to 14.7 |
Material | Friction Angle [°] | Bulk Density | ||
---|---|---|---|---|
Dynamic Friction Angle Particle–Particle | Basal Friction Angle Particle–Flume | Rolling Friction Angle Particle–Flume | ||
φdyn [°] | φb [°] | φroll [°] | ρ [kg/m3] | |
model tests by Ashwood and Hungr (2016) | ||||
Sand 0.5/1.0 mm | 31.0 | 21.5 | - | 1700 |
Gravel 3.0/8.0 mm | 35.0 | 21.5 | - | 1560 |
Mixture 1:1 (sand–gravel) | 33.0 | 21.5 | - | 1780 |
model tests by the University of Innsbruck | ||||
Sand 0.5/1.0 mm | 31.5 | 21.4 | ~27 | 1700 |
Mixture 1:1 (sand–gravel) | 33.5 | 21.7 | ~23 | 1780 |
Steel spheres 2 mm | 5.5 | 15.7 | ~0–2 | 4850 |
Glass spheres 2 mm | 16 | 17.3 | ~3 | 1483 |
Material | Rigid Barrier | Flexible Barriers | ||||
---|---|---|---|---|---|---|
Net | Dam | |||||
Net I | Net II | Net III | Earth Dam | Reinforced Dam | ||
Steel spheres | 28 * | - | - | - | 3 * | 9 * |
Glass spheres | 10 * | 9 * | 11 * | 11 * | 3 * | 6 * |
Sand | 23 * | - | - | - | - | - |
Mixture | 30 * | 11 * | 10 * | 10 * | 4 * | 7 * |
Total | 91 * | 20 * | 21 * | 21 * | 10 * | 22 * |
Material | Flume Inclination θ | Frontal Velocity v | Flow Depth hf | Static Height hst | Froude Number Fr | Peak Total Force Fpeak | Static Total Force Fstat | Ratio Fpeak/Fstat |
---|---|---|---|---|---|---|---|---|
[°] | [m/s] | [mm] | [cm] | [-] | [N] | [N] | [-] | |
Glass | 30.2 | 4.5 | 14.2 | 24.5 | 12 | 134.0 | 134.0 | 1.00 |
35.8 | 5.7 | 15.8 | 35.9 | 14.4 | 231.7 | 170.7 | 1.36 | |
38.8 | 6.3 | 16.7 | 36.8 | 15.6 | 242.9 | 149.0 | 1.63 | |
Mixture | 30.2 | 3.4 | 11.7 | 11.2 | 10 | 57.6 | 56.2 | 1.03 |
32.3 | 3.9 | 12.2 | 11.1 | 11.3 | 84.8 | 81.2 | 1.04 | |
34.1 | 4.4 | 12.6 | 14.4 | 12.4 | 118.1 | 111.3 | 1.06 | |
35.8 | 4.8 | 13 | 17.3 | 13.4 | 141.6 | 132.8 | 1.07 | |
38.8 | 5.5 | 13.7 | 22.1 | 15.1 | 172.3 | 150.3 | 1.15 | |
Sand | 28 | 2.1 | 10 | 2.7 | 6.8 | 4.2 | 3.7 | 1.14 |
29.7 | 2.4 | 10.3 | 4.0 | 7.7 | 10.7 | 10.5 | 1.02 | |
30.2 | 2.5 | 10.4 | 6.7 | 7.9 | 27.2 | 26.8 | 1.02 | |
32 | 2.9 | 10.8 | 8.2 | 8.9 | 35.7 | 34.1 | 1.05 | |
34.1 | 3.3 | 11.3 | 11.8 | 9.9 | 71.3 | 70.8 | 1.01 | |
35.9 | 3.6 | 11.7 | 14.3 | 10.8 | 97.1 | 96.1 | 1.01 | |
Steel | 23.8 | 3.5 | 8 | 12.0 | 12.6 | 138.9 | 124.8 | 1.11 |
25.8 | 3.8 | 8.5 | 13.3 | 13.2 | 187.3 | 126.9 | 1.48 | |
28 | 4.1 | 9.1 | 14.3 | 13.9 | 213.5 | 126.5 | 1.69 | |
30.2 | 4.5 | 9.7 | 14.5 | 14.5 | 247.0 | 119.7 | 2.06 | |
38.8 | 5.7 | 11.9 | 15.0 | 16.7 | 348.5 | 123.4 | 2.82 |
Source | Fpeak/Fstat | Inclination of the Flume | Material | Investigations |
---|---|---|---|---|
[-] | [°] | - | - | |
Albaba, 2018, [3] | 1.1 to 2.7 | 30 to 55 | dry granular | DEM |
Moriguchi et al., 2009, [2] | 1.0 to 2.5 | 45 to 65 | dry granular sand, φdyn = 35° | model experiments |
1.0 | 45 | dry granular sand, φdyn = 30° to 40° | DEM | |
1.0 | 50 | dry granular sand, φdyn = 35° | DEM | |
1.5 | 55 | dry granular sand, φdyn = 35° | DEM | |
1.75 | 60 | dry granular sand, φdyn = 35° | DEM | |
2.5 | 65 | dry granular sand, φdyn = 35° | DEM | |
Ng, C.W.W. et al., 2020, [4] | 1.0 to 2.6 | dry granular sand, φdyn = 31° | MPM | |
1.0 | 23 and 40 | dry granular sand, φdyn = 31° | computed | |
Ng, C.W.W. et al., 2021, [41] | 1.0 to 10 | 26 to 45 | dry granular sand, φdyn = 31°, d50 = 0.2 mm | model experiments |
Choi et al., 2015, [35] | 0.25 to 0.75 | 20 to 45 | dry granular flow (3 and 10 mm monodisperse glass spheres) | flume experiments |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, R.; Berger, S. Impacts of Gravitational Mass Movements on Protective Structures—Rock Avalanches/Granular Flow. Geosciences 2022, 12, 223. https://doi.org/10.3390/geosciences12060223
Hofmann R, Berger S. Impacts of Gravitational Mass Movements on Protective Structures—Rock Avalanches/Granular Flow. Geosciences. 2022; 12(6):223. https://doi.org/10.3390/geosciences12060223
Chicago/Turabian StyleHofmann, Robert, and Simon Berger. 2022. "Impacts of Gravitational Mass Movements on Protective Structures—Rock Avalanches/Granular Flow" Geosciences 12, no. 6: 223. https://doi.org/10.3390/geosciences12060223
APA StyleHofmann, R., & Berger, S. (2022). Impacts of Gravitational Mass Movements on Protective Structures—Rock Avalanches/Granular Flow. Geosciences, 12(6), 223. https://doi.org/10.3390/geosciences12060223