The Porosity in Heterogeneous Carbonate Reservoir Rocks: Tectonic versus Diagenetic Imprint—A Multi-Scale Study from the Hyblean Plateau (SE Sicily, Italy)
Abstract
:1. Introduction
2. Geological and Tectonic Setting of the Hyblean Area
- (a)
- Neotethyan rifting during Late Triassic-Early Jurassic age;
- (b)
- a slow thermal subsidence from Early Jurassic until Late Cretaceous time, leading to the formation of widespread Mesozoic carbonate platforms;
- (c)
- compressional phase during Late Cretaceous-Palaeogene time, which resulted in the formation of fold systems;
- (d)
- uplift and subsidence events during the middle Tertiary, as the result of the continued collision of the European-African plates. After the Early Pleistocene an uplift occurred in the northern Hyblean plateau following the Upper Miocene-Lower Pleistocene massive volcanic activity. This uplift is probably associated with the latest stages of thrusting along the frontal part of the Maghrebian thrust belt.
3. Carbonate Reservoirs in the Hyblean Plateau
4. Materials and Methods
4.1. Mesoscopic and Microscopic Description of Cores
4.2. Petrophysical and 3D Image Investigation
4.3. Microstructural Survey and Reference System of Cores
4.4. Well Logging Analysis
5. Results
5.1. Description of Facies
5.2. Facies Interpretation
5.3. Thin Section Analysis
5.3.1. Microstructure
5.3.2. Porosity Types
- Fabric selective (primary porosity)
- 2.
- Non-fabric-selective (secondary porosity)
5.3.3. Diagenetic Features
5.3.4. 3D Image Investigation
Fabric and Primary and Secondary Porosity
5.4. Petrophysics: Seismic Wave Measured on Cores
5.5. Sedimentary, Diagenetic, and Tectonic Structures and Their Depth Distribution on Cores
5.6. Well Logging Analysis
6. Discussion
6.1. Different Stages in Diagenetic versus Tectonic Structures Formation
6.2. The Impact of Fracturing and Diagenetic Features on Porosity
7. Conclusions
- The dominant sedimentary and diagenetic features are bedding and burial stylolites. Tectonic features are mainly mineralized fractures, veins, faults, and tectonic stylolites. The dominant extensional tectonic features are steeply inclined fractures and faults related to the main upper Triassic rifting event. Compressional tectonic structures and tectonic stylolites are related to a younger compressional event linked to tectonic inversion and Europe-Africa plate collision;
- The qualitative analysis of voids shows a dominance of joints, and fractures instead of isolate pores, which are rare and scattered within the investigated volumes;
- Depositional and diagenetic processes led to the formation of a micro-dominated pore system with a low residual porosity;
- Fractures are mainly mineralized (85% of the total amount); thus, they do not contribute to the overall porosity. Stylolites may partially increase it, showing permeation by secondary fluids;
- Log analysis confirm the good match between Vshale, gamma ray, spontaneous potential, density, Vp measured on core, and sonic log;
- High gamma-ray values (150 GAPI) are related to high organic content (black shales);
- Compressional P wave velocity values, measured on cores, are consistently lower than those measured along the well. This is likely due to removal of the overburden and, therefore, lithostatic pressure;
- Streppenosa and Noto Fms. have been subdivided, respectively, into two main clusters: the Streppenosa Formation, acting as seal, shows higher shale volume and a fining upward trend linked to the flooding of the platform; the Noto Fm. displays two different clusters with higher carbonate content and peaks, related to black shales intercalations.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Grande, A.; Grasso, M.; Romeo, M. Stratigrafia dei terreni affioranti nei dintorni di Ragusa. Riv. Ital. Paleontol. Stratigr. 1977, 83, 137–177. [Google Scholar]
- Carbone, S.; Grasso, M.; Lentini, F. Considerazioni sull'evoluzione geodinamica della Sicilia sud-orientale dal Cretaceo al Quaternario. Mem. Soc. Geol. Ital. 1982, 24, 367–386. [Google Scholar]
- Carbone, S.; Grasso, M.; Lentini, F. Lineamenti geologici del Plateau Ibleo (Sicilia SE). Presentazione della carta geologica della Sicilia sud-orientale. Mem. Soc. Geol. Ital. 1987, 38, 127–135. [Google Scholar]
- Grasso, M.; Pedley, H.M.; Maniscalco, R.; Ruggieri, R. Geological context and explanatory notes of the Carta geologica del settore centro-meridionale dell’altopiano Ibleo. Mem. Soc. Geol. Ital. 2000, 55, 45–52. [Google Scholar]
- Granath, J.W.; Casero, P. Tectonic setting of the petroleum systems of Sicily. In Deformation, Fluid Flow, and Reservoir Appraisal in Foreland Fold and Thrust Belts; Swennen, R., Roure, F., Granath, J.W., Eds.; AAPG Hedberg Series; AAPG: Tulsa, OK, USA, 2004; Volume 1, pp. 391–411. [Google Scholar]
- Lee, H.; Lee, S.G.; Doyle, P.S. Photopatterned oil-reservoir micromodels with tailored wetting properties. Lab Chip 2015, 15, 3047–3055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezati, M.; Azizzadeh, M.; Riahi, M.A.; Fattahpour, V.; Honarmand, J. Characterization of micro-fractures in carbonate Sarvak reservoir, using petrophysical and geological data, SW Iran. J. Petrol. Sci. Eng. 2018, 170, 675–695. [Google Scholar] [CrossRef]
- Aydin, A. Fractures, faults, and hydrocarbon entrapment, migration and flow. Mar. Pet. Geol. 2000, 17, 797–814. [Google Scholar] [CrossRef]
- Cooper, M. Structural style and hydrocarbon prospectivity in fold and thrust belts: A global review. Spec. Publ. Geol. Soc. Lond. 2007, 272, 447. [Google Scholar] [CrossRef]
- Garland, C.R.; Abalioglu, I.; Akca, L.; Cassidy, A.; Chiffoleau, Y.; Godail, L.; Grace, M.A.S.; Kader, J.H.; Khalek, F.; Legarre, H.; et al. Appraisal and development of the Taq field, Kurdistan region, Iraq. In Geological Society, Petroleum Geology Conference Series; Geological Society of London: London, UK, 2010; Volume 7, pp. 801–810. [Google Scholar]
- Al-Qayim, B.; Rashid, F. Reservoir characteristics of the Albian upper Qamchuqa Formation carbonates, Taq Taq oilfield, Kurdistan, Iraq. J. Petrol. Geol. 2012, 35, 317–341. [Google Scholar] [CrossRef]
- Al-Qayim, B.; Othman, D. Reservoir characterization of an intra-orogenic carbonates platform: Pila Spi Formation, Taq Taq oil field, Kurdistan, Iraq. Geol. Soc. Lond. Spec. Publ. 2012, 370, 139–168. [Google Scholar] [CrossRef]
- Lamarche, J.; Lavenu, A.P.; Gauthier, B.D.; Guglielmi, Y.; Jayet, O. Relationships between fracture patterns, geodynamics and mechanical stratigraphy in Carbonates (South-East Basin, France). Tectonophysics 2012, 581, 231–245. [Google Scholar] [CrossRef]
- Lavenu, A.P.; Lamarche, J.; Salardon, R.; Gallois, A.; Marié, L.; Gauthier, B.D. Relating background fractures to diagenesis and rock physical properties in a platform–slope transect. Example of the Maiella Mountain (central Italy). Mar. Petrol. Geol. 2014, 51, 2–19. [Google Scholar] [CrossRef]
- Zebari, M.M.; Burberry, C.M. 4-D evolution of anticlines and implications for hydrocarbon exploration within the Zagros Fold-Thrust Belt, Kurdistan Region, Iraq. GeoArabia 2015, 20, 161–188. [Google Scholar] [CrossRef]
- Rashid, F.; Hussein, D.; Lawrence, J.A.; Khanaqa, P. Characterization and impact on reservoir quality of fractures in the Cretaceous Qamchuqa Formation, Zagros folded belt. Mar. Petrol. Geol. 2020, 113, 104117. [Google Scholar] [CrossRef]
- Ahr, W.M. Geology of Carbonate Reservoirs: The Identification, Description and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Gambino, S.; Fazio, E.; Maniscalco, R.; Punturo, R.; Lanzafame, G.; Barreca, G.; Butler, R.W.H. Fold-related deformation bands in a weakly buried sandstone reservoir analogue: A multi-disciplinary case study from the Numidian (Miocene) of Sicily (Italy). J. Struct. Geol. 2019, 118, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Neuzil, C.E.; Tracy, J.V. Flow through fractures. Water Resour. Res. 1981, 17, 191–199. [Google Scholar] [CrossRef]
- Laubach, S.E. Practical approaches to identifying sealed and open fractures. AAPG Bull. 2003, 87, 561–579. [Google Scholar] [CrossRef]
- Barr, D.; Savory, K.E.; Fowler, S.R.; Arman, K.; McGarrity, J.P. Pre-development fracture modelling in the Clair field, west of Shetland. Geol. Soc. Lond. Spec. Publ. 2007, 270, 205–225. [Google Scholar] [CrossRef]
- Agosta, F.; Alessandroni, M.; Antonellini, M.; Tondi, E.; Giorgioni, M. From fractures to flow: A field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics 2010, 490, 197–213. [Google Scholar] [CrossRef]
- Solano, N.; Zambrano, L.; Aguilera, R. Cumulative Gas Production Distribution on the Nikanassin Tight Gas Formation, Alberta and British Columbia, Canada. SPE Res. Eval. Eng. 2011, 14, 357–376. [Google Scholar] [CrossRef]
- Korneva, I.; Tondi, E.; Agosta, F.; Rustichelli, A.; Spina, V.; Bitonte, R.; Di Cuia, R. Structural properties of fractured and faulted Cretaceous platform carbonates, Murge Plateau (southern Italy). Mar. Petrol. Geol. 2014, 57, 312–326. [Google Scholar] [CrossRef]
- Rashid, F.; Glover, P.W.J.; Lorinczi, P.; Collier, R.; Lawrence, J. Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq. J. Petrol. Sci. Eng. 2015, 133, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Rashid, F.; Glover, P.W.J.; Lorinczi, P.; Hussein, D.; Collier, R.; Lawrence, J. Permeability prediction in tight carbonate rocks using capillary pressure measurements. Mar. Petrol. Geol. 2015, 68, 536–550. [Google Scholar] [CrossRef]
- Rashid, F.; Glover, P.W.J.; Lorinczi, P.; Hussein, D.; Lawrence, J.A. Microstructural controls on reservoir quality in tight oil carbonate reservoir rocks. J. Petrol. Sci. Eng. 2017, 156, 814–826. [Google Scholar] [CrossRef]
- Dashti, R.; Rahimpour-Bonab, H.; Zeinali, M. Fracture and mechanical stratigraphy in naturally fractured carbonate reservoirs—A case study from Zagros region. Mar. Petrol. Geol. 2018, 97, 466–479. [Google Scholar] [CrossRef]
- Borrelli, M.; Campilongo, G.; Critelli, S.; Perrotta, D.I.; Perri, E. 3D nanopores modeling using TEM-tomography (dolostones-Upper Triassic). Mar. Petrol. Geol. 2019, 99, 443–452. [Google Scholar] [CrossRef]
- Radwan, A.E.; Trippetta, F.; Kassem, A.A.; Kania, M. Multi-scale characterization of unconventional tight carbonate reservoir: Insights from October oil filed, Gulf of Suez rift basin, Egypt. J. Petrol. Sci. Eng. 2021, 197, 107968. [Google Scholar] [CrossRef]
- Huntoon, P.W.; Lundy, D.A. Fracture-controlled ground-water circulation and well siting in the vicinity of Laramie, Wyoming. Groundwater 1979, 17, 463–469. [Google Scholar] [CrossRef]
- Maarten, V.; Exner, U.; Barnhoorn, A.; Baud, P.; Reuschlé, T. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples. J. Pet. Sci. Eng. 2015, 127, 1270–1285. [Google Scholar]
- Miranda, T.S.; Santos, R.F.; Barbosa, J.A.; Gomes, I.F.; Alencar, M.L.; Correia, O.J.; Falcao, T.C.; Gale, J.F.W.; Neumann, V.H. Quantifying aperture, spacing and fracture intensity in a carbonate reservoir analogue: Crato Formation, NE Brazil. Mar. Petrol. Geol. 2018, 97, 556–567. [Google Scholar] [CrossRef]
- Shehata, A.A.; Kassem, A.A.; Brooks, H.L.; Zuchuat, V.; Radwan, A.E. Facies analysis and sequence-stratigraphic control on reservoir architecture: Example from mixed carbonate/siliciclastic sediments of Raha Formation, Gulf of Suez, Egypt. Mar. Petrol. Geol. 2021, 131, 105160. [Google Scholar] [CrossRef]
- Price, N.J. Fault and Joint Development in Brittle and Semi-Brittle Rock; Pergamon Press: Oxford, UK, 1966; p. 176. [Google Scholar]
- Ramsay, J.G. Folding and Fracturing of Rocks; Mc Graw Hill Book Company: New York, NY, USA, 1967; p. 568. [Google Scholar]
- Hancock, P.L. Brittle microtectonics: Principles and practice. J. Struct. Geol. 1985, 7, 437–457. [Google Scholar] [CrossRef]
- Ramsay, J.G.; Huber, M.I. The Techniques of Modern Structural Geology: Volume 2 Folds and Fractures; Academic Press: London, UK; Orlando, FL, USA; San Diego, CA, USA; New York, NY, USA; Austin, TX, USA; Boston, MA, USA; Sydney, Australia; Tokyo, Japan; Toronto, ON, USA, 1987. [Google Scholar]
- Singh, S.K.; Akbar, M.; Khan, B.; Abu-Habbiel, H.; Montaron, B.; Sonneland, L.; Godfrey, R. Characterizing Fracture Corridors for a Large Carbonate Field of Kuwait by Integrating Borehole Data with the 3-D Surface Seismic; AAPG Search and Discovery Article: Denver, CO, USA, 2009. [Google Scholar]
- Dietrich, D.; McKenzie, J.A.; Song, H. Origin of calcite in syntectonic veins as determined from carbon-isotope ratios. Geology 1983, 11, 547–551. [Google Scholar] [CrossRef]
- Barker, S.L.; Cox, S.F.; Eggins, S.M.; Gagan, M.K. Microchemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow. Earth Planet. Sci. Lett. 2006, 250, 331–344. [Google Scholar] [CrossRef]
- Rustichelli, A.; Tondi, E.; Korneva, I.; Baud, P.; Vinciguerra, S.; Agosta, F.; Reuschlé, T.; Janiseck, J.M. Bedding-parallel stylolites in shallow-water limestone successions of the Apulian Carbonate Platform (central-southern Italy). Ital. J. Geosci. 2015, 134, 513–534. [Google Scholar] [CrossRef]
- Park, W.C.; Schot, E.H. Stylolites; their nature and origin. J. Sediment. Res. 1968, 38, 175–191. [Google Scholar]
- Buxton, T.M.; Sibley, D.F. Pressure solution features in a shallow buried limestone. J. Sediment. Res. 1981, 51, 19–26. [Google Scholar] [CrossRef]
- Railsback, L.B. Lithologic controls on morphology of pressure-dissolution surfaces (stylolites and dissolution seams) in Paleozoic carbonate rocks from the mid-eastern United States. J. Sediment. Res. 1993, 63, 513–522. [Google Scholar] [CrossRef]
- Tada, R.; Siever, R. Pressure solution during diagenesis. Annu. Rev. Earth Pl. Sci. 1989, 17, 89. [Google Scholar] [CrossRef]
- Bathurst, R.J.; Karpurapu, R. Large-scale triaxial compression testing of geocell-reinforced granular soils. Geotech. Test. J. 1993, 16, 296–303. [Google Scholar]
- Toussaint, R.; Aharonov, E.; Koehn, D.; Gratier, J.P.; Ebner, M.; Baud, P.; Rolland, A.; Renard, F. Stylolites: A review. J. Struct. Geol. 2018, 114, 163–195. [Google Scholar] [CrossRef] [Green Version]
- Koehn, D.; Renard, F.; Toussaint, R.; Passchier, C.W. Growth of stylolite teeth patterns depending on normal stress and finite compaction. Earth Planet. Sci. Lett. 2007, 257, 582–595. [Google Scholar] [CrossRef] [Green Version]
- Ben-Itzhak, L.L.; Aharonov, E.; Toussaint, R.; Sagy, A. Upper bound on stylolite roughness as indicator for amount of dissolution. Earth Planet. Sci. Lett. 2012, 337, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R.C.; Pollard, D.D. Anticrack model for pressure solution surfaces. Geology 1981, 9, 419–424. [Google Scholar] [CrossRef]
- Bathurst, R.G. Burial diagenesis of limestones under simple overburden; stylolites, cementation and feedback. Bull. Soc. Géol. Fr. 1995, 166, 181–192. [Google Scholar]
- Rolland, A.; Toussaint, R.; Baud, P.; Schmittbuhl, J.; Conil, N.; Koehn, D.; Renard, F.; Gratier, J.P. Modeling the growth of stylolites in sedimentary rocks. J. Geoph. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Bathurst, R.G. Diagenetically enhanced bedding in argillaceous platform limestones: Stratified cementation and selective compaction. Sedimentology 1987, 34, 749–778. [Google Scholar] [CrossRef]
- Zhang, X.; Spiers, C.J. Compaction of granular calcite by pressure solution at room temperature and effects of pore fluid chemistry. Int. J. Rock Mech. Min. Sci. 2005, 42, 950–960. [Google Scholar] [CrossRef]
- Burgess, C.J.; Peter, C.K. Formation, distribution, and prediction of stylolites as permeability barriers in the Thamama Group, Abu Dhabi. In Proceedings of the Middle East Oil Technical Conference and Exhibition, Manama, Bahrain, 11–14 March 1985; Volume 42, pp. 950–960. [Google Scholar]
- Koepnick, R.B. Distribution and permeability of stylolite-bearing horizons within a Lower Cretaceous carbonate reservoir in the Middle East. SPE Form. Eval. 1987, 2, 137–142. [Google Scholar] [CrossRef]
- Carozzi, A.V.; Bergen, D.V. Stylolitic porosity in carbonates: A critical factor for deep hydrocarbon production. J. Petrol. Geol. 1987, 10, 267–282. [Google Scholar] [CrossRef]
- Baron, M.; Parnell, J. Relationships between stylolites and cementation in sandstone reservoirs: Examples from the North Sea, UK and East Greenland. Sediment. Geol. 2007, 194, 17–35. [Google Scholar] [CrossRef]
- Lucia, F.J. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bull. 1995, 79, 1275–1300. [Google Scholar]
- Cochard, J.; Léonide, P.; Borgomano, J.; Guglielmi, Y.; Massonnat, G.; Rolando, J.P.; Marié, L.; Pasquier, A. Reservoir properties of Barremian–Aptian Urgonian limestones, SE France, Part 1: Influence of structural history on porosity-permeability variations. J. Petrol. Geol. 2020, 43, 75–94. [Google Scholar] [CrossRef]
- Narr, W. Estimating average fracture spacing in subsurface rock. AAPG Bull. 1996, 80, 1565–1585. [Google Scholar]
- Zeeb, C.; Gomez-Rivas, E.; Bons, P.D.; Blum, P. Evaluation of sampling methods for fracture network characterization using outcrops. AAPG Bull. 2013, 97, 1545–1566. [Google Scholar] [CrossRef]
- Eberli, G.P.; Baechle, G.T.; Anselmetti, F.S.; Incze, M.L. Factors controlling elastic properties in carbonate sediments and rocks. Leading Edge 2003, 22, 654–660. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Harris, S.D.; Mauldon, M. Use of curved scanlines and boreholes to predict fracture frequencies. J. Struct. Geol. 2003, 25, 109–119. [Google Scholar] [CrossRef]
- Burollet, P.F.; Mugniot, G.M.; Sweeney, P. The geology of the Pelagian Block: The Margins and Basins of Southern Tunisia and Tripolitania. In The Ocean Basins and Margins; Nairn, A., Kanes, W., Stelhi, F.G., Eds.; Plenum Press: New York, NY, USA, 1978; pp. 331–339. [Google Scholar]
- Micallef, A.; Foglini, F.; Le Bas, T.; Angeletti, L.; Maselli, V.; Pasuto, A.; Taviani, M. The submerged paleolandscape of the Maltese Islands: Morphology, evolution and relation to Quaternary environmental change. Mar. Geol. 2013, 335, 129–147. [Google Scholar] [CrossRef]
- Baldassini, N.; Di Stefano, A. Stratigraphic features of the Maltese Archipelago: A synthesis. Nat. Hazards 2017, 86, 203–231. [Google Scholar] [CrossRef]
- Distefano, S.; Gamberi, N.F.; Baldassini, Di Stefano A. Late Miocene to Quaternary structural evolution of the Lampedusa Island offshore. Geogr. Fis. E Din. Quat. 2018, 41, 17–31. [Google Scholar]
- Distefano, S.; Gamberi, F.; Baldassini, N.; Di Stefano, A. Neogene stratigraphic evolution of a tectonically controlled continental shelf: The example of the Lampedusa Island. Ital. J. Geosci. 2019, 138, 418–431. [Google Scholar] [CrossRef]
- Lentini, F.; Carbone, S.; Catalano, S. Main structural domains of the central Mediterranean region and their Neogene tectonic evolution. Boll. Geofis. Teor. Appl. 1994, 36, 103–125. [Google Scholar]
- Lentini, F.; Carbone, S. Geologia della Sicilia—Geology of Sicily. Mem. Descr. Carta Geol. D’ital 2014, 95, 7–414. [Google Scholar]
- Patacca, E.; Scandone, P.; Giunta, G.; Liguori, V. Mesozoic paleotectonic evolution of the Ragusa zone (Southeastern Sicily). Geol. Rom. 1979, 18, 331–369. [Google Scholar]
- Biju-Duval, B.; Morel, Y.; Baudrimont, A.; Bizon, G.; Bizond, J.J.; Borsetti, A.M.; Burollet, P.F.; Clairefond, P.; Clauzon, G.; Colanton, P.; et al. Exemples de sédimentation condensée sur les escarpements de la mer Ionienne (Méditerranée orientale). Observations à partir du submersible Cyana. Rev. De L'Inst. Fr. Pétrole 1983, 38, 427–438. [Google Scholar] [CrossRef]
- Pellegrino, A.G.; Maniscalco, R.; Speranza, F.; Hernandez-Moreno, C.; Sturiale, G. Paleomagnetism of the Hyblean Plateau, Sicily: A review of the existing data set and new evidence for lack of block rotation from the Scicli-Ragusa Fault System. Ital. J. Geosci. 2016, 135, 300–307. [Google Scholar] [CrossRef]
- Distefano, S.; Gamberi, F.; Di Stefano, A. Stratigraphic and structural reconstruction of an offshore sector of the Hyblean Foreland ramp (southern Italy). Ital. J. Geosci. 2019, 138, 390–403. [Google Scholar] [CrossRef]
- Gambino, S.; Barreca, G.; Gross, F.; Monaco, C.; Krastel-Gudegast, S.; Gutscher, M.A. Deformation Pattern of the Northern Sector of the Malta Escarpment (Offshore SE Sicily, Italy): Fault Dimension, Slip Prediction, and Seismotectonic Implications. Front. Earth Sci. 2021, 8, 613. [Google Scholar] [CrossRef]
- Schmincke, H.U.; Behncke, B.; Grasso, M.; Raffi, S. Evolution of the northwestern Iblean Mountains, Sicily: Uplift, Pliocene/Pleistocene sea-level changes, paleoenvironment, and volcanism. Geol. Rundsch. 1997, 86, 637–669. [Google Scholar] [CrossRef]
- Punturo, R.; Kern, H.; Scribano, V.; Atzori, P. Petrophysical and petrological characteristics of deep-seated xenoliths from the Hyblean Plateau, south-eastern Sicily, Italy: Suggestions for a lithospheric model. Miner. Petrogr. Acta 2000, 43, 1–20. [Google Scholar]
- Punturo, R. Contribution to the knowledge of the Hyblean lithosphere (southeastern Sicily, Italy): The petrophysical approach. Rend. Online Soc. Geol. Ital. 2010, 11, 103–104. [Google Scholar]
- Punturo, R. Contribution to a possible reconstruction of the Hyblean lithospheric column on the basis of deep-seated xenoliths from Miocene tuff breccias. Rend. Online Soc. Geol. Ital. 2012, 21, 144–145. [Google Scholar]
- Yellin-Dror, A.; Grasso, M.; Ben-Avraham, Z.; Tibor, G. The subsidence history of the northern Hyblean plateau margin, southeastern Sicily. Tectonophysics 1997, 282, 277–289. [Google Scholar] [CrossRef]
- Catalano, S.; Romagnoli, G.; Tortorici, G. Kinematics and dynamics of the late Quaternary rift-flank deformation in the Hyblean Plateau (SE Sicily). Tectonophysics 2010, 486, 1–14. [Google Scholar] [CrossRef]
- Bonforte, A.; Catalano, S.; Maniscalco, R.; Pavano, F.; Romagnoli, G.; Sturiale, G.; Tortorici, G. Geological and Geodetic Constraints on the Deformation along the Active Northern Margin of the Hyblean Plateau (Se Sicily). Tectonophysics 2015, 640–641, 80–89. [Google Scholar] [CrossRef]
- Punturo, R.; Sturiale, G.; Vaccaro, C.; Cirrincione, R.; Mustica, A. Integrated geological and petrographic study supporting the interpretation of ancient artefacts: The case history of Palagonia area (SE Sicily). Ital. J. Geosci. 2013, 132, 263–273. [Google Scholar] [CrossRef]
- Kafka, F.T.; Kirkbride, R.K. The Ragusa oil field, Sicily. In Proceedings of the Fifth World Petroleum Congress, New York, NY, USA, 1–5 June 1959; Volume 1, pp. 233–257. [Google Scholar]
- Cirilli, S.; Panfili, G.; Buratti, N.; Frixa, A. Paleoenvironmental reconstruction by means of palynofacies and lithofacies analyses: An example from the Upper Triassic subsurface succession of the Hyblean Plateau Petroleum System (SE Sicily, Italy). Rev. Palaeobot. Palynol. 2018, 253, 70–87. [Google Scholar] [CrossRef]
- Novelli, L.; Welte, D.H.; Mattavelli, L.; Yalcin, M.N.; Cinelli, D.; Schmitt, K.J. Hydrocarbon Generation in Southern Sicily. A Three-Dimensional Computer Aided Basin Modelling Study. In Organic Geochemistry in Petroleum Exploration; Pergamon: Great Britain, UK, 1988; Volume 13, pp. 153–164. [Google Scholar]
- Brosse, E.; Riva, A.; Santucci, S.; Bernon, M.; Loreau, J.P.; Frixa, A.; Laggoun-Defarge, F. Some sedimentological and geochemical characters of the late Triassic Noto formation, source rock in the Ragusa basin (Sicily). Org. Geochem. 1989, 16, 715–734. [Google Scholar] [CrossRef]
- Mattavelli, L.; Pieri, M.; Groppi, G. Petroleum exploration in Italy: A review. Mar. Petrol. Geol. 1993, 10, 410–425. [Google Scholar] [CrossRef]
- Pieri, M.; Mattavelli, L. Geologic framework of Italian petroleum resources. AAPG Bull. 1986, 70, 103–130. [Google Scholar]
- Brosse, E.; Loreau, J.P.; Hue, A.Y.; Frixa, A.; Martellini, L.; Riva, A. The Organic Matter of Interlayered Carbonates and Clays Sediments—Trias/Lias, Sicily. Org. Geochem. 1988, 13, 433–443. [Google Scholar] [CrossRef]
- Frixa, A.; Bertamoni, M.; Catrullo, D.; Trinicianti, E.; Miuccio, G. Late Norian—Hettangian palaeogeography in the area between wells Noto 1 and Polpo 1 (SE Sicily). Mem. Soc. Geol. Ital. 2000, 55, 279–284. [Google Scholar]
- Scribano, V.; Simakov, S.K.; Finocchiaro, C.; Correale, A.; Scirè, S. Pyrite and organic compounds coexisting in intrusive mafic xenoliths (Hyblean Plateau, Sicily): Implications for subsurface abiogenesis. Orig. Life Evol. Biosph. 2019, 49, 19–47. [Google Scholar] [CrossRef] [PubMed]
- Scirè, S.; Ciliberto, E.; Crisafulli, C.; Scribano, V.; Bellatreccia, F.; Ventura, G.D. Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily. Lithos 2011, 125, 956–968. [Google Scholar] [CrossRef]
- Mattavelli, L.; Chilingarian, G.V.; Storer, D. Petrography and diagenesis of the Taormina Formation, Gela oil field, Sicily (Italy). Sediment. Geol. 1969, 3, 59–86. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of carbonate rocks according to depositional textures. AAPG Mem. 1962, 1, 108–121. [Google Scholar]
- Cloetens, P.; Pateyron-Salome, M.; Buffiėre, J.Y.; Peix, G.; Baruchel, J.; Peyrin, F.; Schlenker, M. Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J. Appl. Physiol. 1997, 81, 5878–5886. [Google Scholar] [CrossRef]
- Maire, E.; Withers, P.J. Quantitative X-ray tomography. Int. Mater. Rev. 2014, 59, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Brun, F.; Massimi, L.; Fratini, M.; Dreossi, D.; Billé, F.; Accardo, A.; Pugliese, R.; Cedola, A. SYRMEP Tomo Project: A graphical user interface for customizing CT reconstruction workflows. Adv. Struct. Chem. Imag. 2017, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Paganin, D.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Wilkins, S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002, 206, 33–40. [Google Scholar] [CrossRef]
- Brun, F.; Mancini, L.; Kasae, P.; Favretto, S.; Dreossi, D.; Tromba, G. Pore3D: A software library for quantitative analysis of porous media. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2010, 615, 326–332. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VGStudio Max 2.2 Software; Volume Graphics: Heidelberg, Germany, 2018.
- Allmendinger, R.W. Stereonet; for Windows Version 10.2.0. (Free Software); Department of Earth & Atmospheric Sciences, Cornell University: Ithaca, NY, USA, 2018. [Google Scholar]
- Rocscience Inc. Dips, version 6.008; Software for Windows: Toronto, ON, Canada, 2002. [Google Scholar]
- Asquith, G.; Krygowski, D. Basic Well Log Analysis. AAPG Methods Explor. Ser. 2004, 16, 31–34. [Google Scholar]
- Aref, M.A.; Taj, R.J. Recent evaporite deposition associated with microbial mats, Al-Kharrar supratidal–intertidal sabkha, Rabigh area, Red Sea coastal plain of Saudi Arabia. Facies 2018, 64, 1–23. [Google Scholar] [CrossRef]
- Lanzafame, G.; Casetta, F.; Giacomoni, P.P.; Donato, S.; Mancini, L.; Coltorti, M.; Ntaflos, T.; Ferlito, C. The Skaros effusive sequence at Santorini (Greece): Petrological and geochemical constraints on an interplinian cycle. Lithos 2020, 362, 105504. [Google Scholar] [CrossRef]
- Ragg, S.; Grasso, M.; Müller, B. Patterns of tectonic stress in Sicily from borehole breakout observations and finite element modeling. Tectonics 1999, 18, 669–685. [Google Scholar] [CrossRef]
- Rispoli, R. Stress fields about strike-slip faults inferred from stylolites and tension gashes. Tectonophysics 1981, 75, T29–T36. [Google Scholar] [CrossRef]
- Koehn, D.; Ebner, M.; Renard, F.; Toussaint, R.; Passchier, C.W. Modelling of stylolite geometries and stress scaling. Earth Planet. Sci. Lett. 2012, 341, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Koehn, D.; Rood, M.P.; Beaudoin, N.; Chung, P.; Bons, P.D.; Gomez-Rivas, E. A new stylolite classification scheme to estimate compaction and local permeability variations. Sediment. Geol. 2016, 346, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Heap, M.J.; Baud, P.; Reuschlé, T.; Meredith, P.G. Stylolites in limestones: Barriers to fluid flow? Geology 2014, 42, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Martín-Martín, J.D.; Gomez-Rivas, E.; Gómez-Gras, D.; Travé, A.; Ameneiro, R.; Koehn, D.; Bons, P.D. Activation of stylolites as conduits for overpressured fluid flow in dolomitized platform carbonates. Geol. Soc. Lond. Spec. Publ. 2018, 459, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Zambrano, M.; Tondi, E.; Mancini, L.; Lanzafame, G.; Trias, F.X.; Arzilli, F.; Materazzi, M.; Torrieri, S. Fluid flow simulation and permeability computation in deformed porous carbonate grainstones. Adv. Water Resour. 2018, 115, 95–111. [Google Scholar] [CrossRef] [Green Version]
Facies | Description | Texture (Dunham, 1962) [97] | Main Elements | Sedimentary Features | Depositional Environment/Process Interpretation |
---|---|---|---|---|---|
A | Beige claystones | M | Disk-shaped mud clasts | Irregular upper and lower boundaries | Carbonate platform subject to tidal currents and drowning |
B1 | Light gray bioclastic limestone | M-W | Scattered intraclasts and bioclasts (gastropods) | No gradation | Carbonate platform. Dwarfed gastropods: anoxic conditions? |
B2 | Light gray microbialite | B (framestone) | Microbialite | Lamination | Tidal flats/Biologically influenced/Biochemical calcification |
B3 | Light gray limestone | M-W | -- | Structureless | Carbonate platform/inorganic |
C | Dark gray/black shale | M | Organic shales | Lamina-sets locally undulated | Lagoon/organic-rich shale deposition |
D | Brown microbialite | B (framestone) | Microbialite | Convoluted beds | Tidal flats/Biologically influenced/Biochemical calcification |
E | Brown algal mats | M-W | Stromatolites | Undulated algal laminae | Tidal flats/Sediment trapping and precipitation |
F | Brown carbonate | G | Graded beds | Carbonate platform/Storm-tide dominated | |
G | Brown algal mats | M-W | Algal mats and swallow tail gypsum | Local planar laminaset | Supra-inter-tidal lagoon, evaporite precipitation |
H | Brown algal mats | M-W | Algal mats | Convoluted laminae, voids filled with polycrystalline calcite | Tidal flats/Sediment trapping and precipitation |
I | Gray limestone | M-W | Rare algae | Rare convoluted algal laminae | Tidal flats/Sediment trapping and precipitation |
L | Light gray/light brown carbonate breccia | M-W | Subangular clasts in mudstone | Structureless | Carbonate platform/re-sedimentation processes |
Pores | Pores + Impregnation | ||||||
---|---|---|---|---|---|---|---|
Sample | Investigated Volume (mm3) | Amount (%) | Number Density (#/mm3) | Average Volume ** (mm3) | Amount (%) | Number Density (#/mm3) | Average Volume ** (mm3) |
ERK1_1b | 0.79 | 0.01 | 386 | 1.627 × 107 | 0.66 | 241,485 | 3.755 × 105 |
ERK1_13 * | 1.33 | 0.11–0.85 | 22379 | 4.097 × 107 | 3.45–20.00 | 191,877 | 1.2843 × 106 |
ERK1_17 | 0.47 | 1.13 | 5525 | 2.044 × 106 | 5.9 | 32,357 | 1.9831 ×106 |
ERK1_22 * | 1.18 | 0.15–1.12 | 1859 | 5.754 × 106 | 2.06–2.90 | 12,764 | 3.7138 × 106 |
ERK1_24 | 0.74 | 0.04 | 4363 | 9.589 × 108 | 3.58 | 103,400 | 1.0217 × 107 |
Samples | Depth (m) | Formation | Facies | Pores (%) | Total porosity (%) | Pores + Impregnation (%) | Vp (km/s) | Porosity Type |
---|---|---|---|---|---|---|---|---|
ERK1_1b_Z0mm | 2014.9–2015 | Streppenosa | B1 | 0.03 | 0.60 | 0.57 | 6.00 | Interparticle and intraparticle |
ERK1_1b_Z9mm | 2014.9–2015 | Streppenosa | B1 | 0.00 | 0.05 | 0,05 | 6.00 | Interparticle and intraparticle |
ERK1_9 | 2039.50–2039.58 | Noto | G | 0.63 | 3.04 | 2.41 | 2.30 | Fractures, interparticle |
ERK1_13_Z0mm | 2044.85–2044.94 | Noto | G | 0.11 | 3.56 | 3.45 | 3.58 | Fractures, interparticle |
ERK1_13_Z2.5mm | 2044.85–2044.94 | Noto | G | 0.90 | 20.87 | 19.97 | 3.58 | Fractures, interparticle |
ERK1_15 | 2047.66–2047.77 | Noto | B2 | 0.21 | 9.00 | 8.79 | 2.08 | Fractures, interparticle |
ERK1_17 | 2060.40–20,160.50 | Noto | B2 | 1.13 | 5.71 | 4.58 | 3.51 | Fractures, stylolites, interparticle |
ERK1_22_Z0mm | 2100.90–2101.00 | Noto | G | 0.16 | 3.06 | 2.90 | 1.96 | Fractures, veins, pseudomorphs after halite, interparticle, vugs |
ERK1_22_Z2.5mm | 2100.90–2101.00 | Noto | G | 1.12 | 3.21 | 2.09 | 1.96 | Fractures, veins, pseudomorphs after halite, interparticle, vugs |
ERK1_24 | 2107.66–2107.77 | Noto | G | 0.04 | 3.62 | 3.58 | 5.62 | Stylolite, fractures, interparticle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniscalco, R.; Fazio, E.; Punturo, R.; Cirrincione, R.; Di Stefano, A.; Distefano, S.; Forzese, M.; Lanzafame, G.; Leonardi, G.S.; Montalbano, S.; et al. The Porosity in Heterogeneous Carbonate Reservoir Rocks: Tectonic versus Diagenetic Imprint—A Multi-Scale Study from the Hyblean Plateau (SE Sicily, Italy). Geosciences 2022, 12, 149. https://doi.org/10.3390/geosciences12040149
Maniscalco R, Fazio E, Punturo R, Cirrincione R, Di Stefano A, Distefano S, Forzese M, Lanzafame G, Leonardi GS, Montalbano S, et al. The Porosity in Heterogeneous Carbonate Reservoir Rocks: Tectonic versus Diagenetic Imprint—A Multi-Scale Study from the Hyblean Plateau (SE Sicily, Italy). Geosciences. 2022; 12(4):149. https://doi.org/10.3390/geosciences12040149
Chicago/Turabian StyleManiscalco, Rosanna, Eugenio Fazio, Rosalda Punturo, Rosolino Cirrincione, Agata Di Stefano, Salvatore Distefano, Martina Forzese, Gabriele Lanzafame, Giusy Simona Leonardi, Sergio Montalbano, and et al. 2022. "The Porosity in Heterogeneous Carbonate Reservoir Rocks: Tectonic versus Diagenetic Imprint—A Multi-Scale Study from the Hyblean Plateau (SE Sicily, Italy)" Geosciences 12, no. 4: 149. https://doi.org/10.3390/geosciences12040149
APA StyleManiscalco, R., Fazio, E., Punturo, R., Cirrincione, R., Di Stefano, A., Distefano, S., Forzese, M., Lanzafame, G., Leonardi, G. S., Montalbano, S., Pellegrino, A. G., Raele, A., & Palmeri, G. (2022). The Porosity in Heterogeneous Carbonate Reservoir Rocks: Tectonic versus Diagenetic Imprint—A Multi-Scale Study from the Hyblean Plateau (SE Sicily, Italy). Geosciences, 12(4), 149. https://doi.org/10.3390/geosciences12040149